On the directed univalence axiom
joint with Evan Cavallo and Christian Sattler

AMS Special Session on Homotopy Type Theory, Joint Mathematics Meetings
1. A type theory for synthetic \((\infty, 1)\)-categories

2. A directed univalence conjecture

3. Covariant type families

4. The covariant directed univalence axiom
A type theory for synthetic $(\infty, 1)$-categories
The bisimplicial sets model

\[
\begin{align*}
\text{Set}^{\Delta^\text{op} \times \Delta^\text{op}} & \supset \text{Reedy} \supset \text{Segal} \supset \text{Rezk} \\
bisimplicial \text{ sets} & \supset \text{types} \supset \text{types with composition} \supset \text{types with composition
& \text{& univalence}}
\end{align*}
\]

Theorem (Shulman). Homotopy type theory is modeled by the category of Reedy fibrant bisimplicial sets.

Theorem (Rezk). \((\infty, 1)\)-categories are modeled by Rezk spaces aka complete Segal spaces.

The bisimplicial sets model of homotopy type theory has:

- an interval type \(I\), parametrizing paths inside a general type
- a directed interval type \(2\), parametrizing arrows inside a general type
Paths and arrows

- The identity type for A depends on two terms in A:
 \[x, y : A \vdash x =_A y \]
 and a term $p : x =_A y$ may be thought of as a path in A from x to y.

- The hom type for A depends on two terms in A:
 \[x, y : A \vdash \text{hom}_A(x, y) \]
 and a term $f : \text{hom}_A(x, y)$ defines an arrow in A from x to y.

Hom types are defined as instances of extension types axiomatized in a three-layered type theory with shapes due to Shulman

\[
\text{hom}_A(x, y) := \left\langle 1 + 1 \xrightarrow{[x,y]} A \right\rangle
\]
Segal, Rezk, and discrete types

• A type A is Segal if every composable pair of arrows has a unique composite: if for every $f : \text{hom}_A(x, y)$ and $g : \text{hom}_A(y, z)$

$$\langle \Lambda_1^2 \xrightarrow{[f, g]} A \rangle$$

is contractible.

• A Segal type A is Rezk if every isomorphism is an identity: if

$$\text{id-to-iso} : \prod_{x, y : A} (x =_A y) \to (x \cong_A y)$$

is an equivalence.

• A type A is discrete if every arrow is an identity: if

$$\text{id-to-arr} : \prod_{x, y : A} (x =_A y) \to \text{hom}_A(x, y)$$

is an equivalence.

Prop. A type is discrete if and only if it is Rezk and all of its arrows are isomorphisms — the discrete types are the ∞-groupoids.
A directed univalence conjecture
What are the arrows in the universe?

For small types $A, B : \mathcal{U}$, the following are equivalent:

- an arrow $F : \text{hom}_\mathcal{U}(A, B)$
- a function $F : 2 \to \mathcal{U}$ with $F(0) \equiv A$ and $F(1) \equiv B$
- a type family $t : 2 \vdash F(t)$ with $F(0) \equiv A$ and $F(1) \equiv B$

In this context the dependent function type is equivalent to the dependent sum

$$
\prod_{t : 2} F(t) \simeq \sum_{a : A} \sum_{b : B} \text{hom}_{F(2)}(a, b)
$$

of dependent hom types

$$
\text{hom}_{F(2)}(a, b) := \left\langle \begin{array}{c}
1 + 1 \\
[0, 1]
\end{array} \right\rangle,
$$

the type of arrows in F from a to b over the generic arrow in 2.
A conjectural directed univalence axiom

Define

\[\text{arr-to-span} : \text{hom}_U(A, B) \to (A \times B \to U) \]

to carry \(F \) to the span given by the dependent product

\[
\prod_2 F \simeq \sum_{a:A} \sum_{b:B} \text{hom}_{F(2)}(a, b)
\]

and its domain and codomain projections.

Directed Univalence Conjecture.

For all small types \(A \) and \(B \) the map

\[\text{arr-to-span} : \text{hom}_U(A, B) \to (A \times B \to U) \]

is an equivalence.
Semantics of the directed univalence conjecture

Semantically, `arr-to-span` constructs the comma object of a cospan:

\[
\begin{array}{ccc}
A & \overset{i_0}{\rightarrow} & F & \overset{i_1}{\leftarrow} & B \\
\downarrow & \ & \downarrow & \ & \downarrow \\
1 & \overset{0}{\rightarrow} & 2 & \overset{1}{\leftarrow} & 1
\end{array}
\]

\[
\begin{array}{ccc}
\prod_2 F & \rightarrow & F^2 \\
\downarrow & \ & \downarrow \\
A \times B & \overset{i_0 \times i_1}{\rightarrow} & F \times F
\end{array}
\]

2-category theory suggests a converse construction:

\[
\begin{array}{ccc}
S & \overset{p+q}{\rightarrow} & A + B \\
\downarrow & \ & \downarrow \\
S \times 2 & \rightarrow & A \star_S B
\end{array}
\]

The image of `arr-to-span` is not all spans — only the “two-sided discrete fibrations” — the definition of which involves conditions on `A` and `B`.

\[
\Rightarrow \text{Search for a directed univalence axiom in a different universe.}
\]
3

Covariant type families
Covariant type families I

Let \(x : A \vdash B(x) \) be a type family over a Segal type \(A \). Then any arrow \(f : \text{hom}_A(x, y) \) in the base, gives rise to a span

\[
\sum_{u:B(x)} \sum_{v:B(y)} \text{hom}_B(f)(u, v)
\]

\[
\begin{array}{ccc}
B(x) & \xrightarrow{\text{dom}} & \text{hom}_B(f) \left(u, v \right) \\
\downarrow & & \downarrow \\
B(y) & \xleftarrow{\text{cod}} & B(y)
\end{array}
\]

and any 2-simplex in \(A \) witnessing \(h = g \circ f \) gives rise to a “higher span.”

A type family \(x : A \vdash B(x) \) over a Segal type \(A \) is covariant if for every \(f : \text{hom}_A(x, y) \) and \(u : B(x) \) there is a unique lift of \(f \) with domain \(u \), i.e.:

\[
\sum_{v:B(y)} \text{hom}_B(f)(u, v)
\]

is contractible.

\(x : A \vdash B(x) \) is covariant iff for each \(f : \text{hom}_A(x, y) \) the left leg of the span from \(B(x) \) to \(B(y) \) is an equivalence — defining a covariant span.
Covariant type families II

A type family $x : A \vdash B(x)$ over a Segal type A is **covariant** if for every $f : \text{hom}_A(x,y)$ and $u : B(x)$ there is a unique lift of f with domain u.

Prop. If $x : A \vdash B(x)$ is covariant then for each $x : A$ the fiber $B(x)$ is discrete. Thus covariant type families are fibered in ∞-groupoids.

Prop. Fix $a : A$. The type family $x : A \vdash \text{hom}_A(a,x)$ is covariant.

The Yoneda lemma proves that the type family $x : A \vdash \text{hom}_A(a,x)$ is freely generated by the identity arrow $\text{id}_a : \text{hom}_A(a,a)$ and gives a “directed” version of the “transport” operation for identity types.
The universe of covariant fibrations

In bisimplicial sets

• type families correspond to Reedy fibrations, characterized by a right lifting property against:

\[(\partial \Delta^m \to \Delta^m) \hat{\square} (\Lambda_k^n \to \Delta^n) \quad m \geq 0, \ 0 \leq k \leq n\]

• covariant type families correspond to covariant fibrations aka left fibrations, characterized by a further right lifting property against:

\[(\Lambda_k^n \to \Delta^n) \hat{\square} (\partial \Delta^m \to \Delta^m) \quad m \geq 0, \ 0 \leq k < n.\]

The universe of covariant fibrations \(\mathcal{U}_{\text{cov}}\) is the presheaf on \(\Delta \times \Delta\) with

\[\mathcal{U}_{\text{cov}}(m, n) := \{\text{covariant fibrations over } \Delta^m \square \Delta^n\}.\]

The universal covariant fibration is defined by pullback:
The covariant directed univalence axiom
A new directed univalence axiom

- A covariant type family over \(1\) is a discrete type. Thus the terms in \(\mathcal{U}_{\text{cov}}\) are discrete types.

- A covariant type family \(t : 2 \vdash F(t)\) over \(2\) determines a pair of discrete types \(A := F(0)\) and \(B := F(1)\) together with a span

\[
\sum_{a:A} \sum_{b:B} \text{hom}_{F(2)}(a, b)
\]

whose left leg is invertible. The type of such covariant spans is equivalent to the type of functions \(A \to B\).

Directed Univalence Axiom. For all small discrete types \(A\) and \(B\) the map

\[
\text{arr-to-fun} : \text{hom}_{\mathcal{U}_{\text{cov}}}(A, B) \to (A \to B)
\]

is an equivalence.
Evidence supporting the directed univalence axiom

Directed Univalence Axiom. For all small discrete types \(A\) and \(B\) the map

\[
\text{arr-to-fun} : \hom_{\mathcal{U}_{\text{cov}}}(A, B) \rightarrow (A \rightarrow B)
\]

is an equivalence.

Sattler has sketched a verification of the Directed Univalence Axiom in bisimplicial sets:

- The canonical map \(\mathcal{U}_{\text{cov}} \rightarrow \mathcal{U}\) is a fibration; hence \(\mathcal{U}_{\text{cov}}\) is fibrant.
- The homotopy inverse to \(\text{arr-to-fun}\) is the specialization of \(\text{span-to-arr}\) to the case of covariant spans between discrete types.
- This map \(\text{cov-span-to-arr}\) automatically produces a covariant fibration over \(2\).
- The fatal flaw in the original directed univalence conjecture is avoided since discrete types are local at \(2\): \(A \simeq I \rightarrow A \simeq 2 \rightarrow A\).
A warning about the universal property of \mathcal{U}_{cov}

The type theoretic definition of a covariant type family can be stated in any context and the universe for covariant fibrations \mathcal{U}_{cov} can be weakened to any context.

- A covariant type family $x : A \vdash B(x)$ over A in the empty context defines a map $B : A \rightarrow \mathcal{U}_{\text{cov}}$ and conversely.
- But a covariant type family $x : A \vdash B(x)$ over A in context Γ will not define a map $B : \Gamma.A \rightarrow \mathcal{U}_{\text{cov}}$.
- The definition of a covariant type family over A in context Γ is covariant over arrows in A fiberwise in Γ.
- Whereas a map $B : \Gamma.A \rightarrow \mathcal{U}_{\text{cov}}$ defines a type family that is covariant over arrows in the entire extended context.
A type theory for synthetic $(\infty, 1)$-categories with semantics in the bisimplicial sets model of HoTT has been developed by Riehl–Shulman but many questions about universes remain.

A directed univalence conjecture — that arrows in the universe of all types are equivalent to spans — is false in the model.

A restricted directed univalence axiom — that arrows in the universe of covariant fibrations correspond to functions between discrete types — is likely true in the model.

Much remains to be explored, so let us know if you’d like to get involved!
References

For considerably more, see:

Thank you!