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The motivation for ∞-categories

Mere 1-categories are insufficient habitats for sophisticated mathematical

objects like motives that have higher-dimensional transformations

encoding relevant “higher homotopical information.”

A better setting is given by ∞-categories, where the usual sets of

morphisms are enriched to spaces of morphisms.

⇝ Thus, we want to extend 1-category theory (e.g., adjunctions, limits

and colimits, universal properties, Kan extensions) to ∞-category theory.

First problem: it is hard to say exactly what an ∞-category is.



The idea of an ∞-category

∞-categories are the nickname that Lurie gave to (∞, 1)-categories,
which are categories weakly enriched over homotopy types.

The schematic idea is that an ∞-category should have

• objects

• 1-arrows between these objects

• with composites of these 1-arrows witnessed by invertible 2-arrows

• with composition associative up to invertible 3-arrows (and unital)

• with these witnesses coherent up to invertible arrows all the way up

But this definition is tricky to make precise.



Models of ∞-categories

The notion of ∞-category is made precise by several models:

Rezk Segal

RelCat Top-Cat

1-Comp qCat

• topological categories and relative categories are the simplest to

define but do not have enough maps between them

•

⎧{{
⎨{{
⎩

quasi-categories (nee. weak Kan complexes),
Rezk spaces (nee. complete Segal spaces),
Segal categories, and

(saturated 1-trivial weak) 1-complicial sets

each have enough maps and also an internal hom, and in fact any of

these categories can be enriched over any of the others



The analytic vs synthetic theory of ∞-categories

Q: How might you develop the category theory of ∞-categories?

Strategies:

• work analytically to give categorical definitions and prove theorems

using the combinatorics of one model

(eg., Joyal, Lurie, Gepner-Haugseng, Cisinski in qCat;

Kazhdan-Varshavsky, Rasekh in Rezk; Simpson in Segal)

• work synthetically to give categorical definitions and prove

theorems in all four models qCat, Rezk, Segal, 1-Comp at once

(R-Verity: an ∞-cosmos axiomatizes the common features of the

categories qCat, Rezk, Segal, 1-Comp of ∞-categories)

• work synthetically in a simplicial type theory augmenting HoTT to

prove theorems in Rezk

(R-Shulman: an ∞-category is a type with unique binary

composites in which isomorphism is equivalent to identity)



Plan

0. The analytic theory of ∞-categories

“∞-category theory for experts”

1. The synthetic theory of ∞-categories (in an ∞-cosmos)

“∞-category theory for graduate students”

2. The synthetic theory of ∞-categories (in homotopy type theory)

“∞-category theory for undergraduates”
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The synthetic theory of ∞-categories
(in an ∞-cosmos)



∞-cosmoi of ∞-categories

An ∞-cosmos is an axiomatization of the properties of qCat.

defn. An ∞-cosmos has:

• ∞-categories 𝐴, 𝐵 as objects

• functors between ∞-categories 𝑓∶ 𝐴 → 𝐵, which define the

points of a quasi-category Fun(𝐴, 𝐵) = 𝐵𝐴

• a class of isofibrations 𝐸 ↠ 𝐵 with familiar closure properties

• so that (flexible weighted simplicially enriched) limits of diagrams of

∞-categories and isofibrations exist.

Theorem. qCat, Rezk, Segal, and 1-Comp define ∞-cosmoi.

Henceforth ∞-category and ∞-functor are technical terms that mean

the objects and morphisms of some ∞-cosmos.



The homotopy 2-category

The homotopy 2-category of an ∞-cosmos is a strict 2-category whose:

• objects are the ∞-categories 𝐴, 𝐵 in the ∞-cosmos

• 1-cells are the ∞-functors 𝑓∶ 𝐴 → 𝐵 in the ∞-cosmos

• 2-cells we call ∞-natural transformations 𝐴 𝐵
𝑓

𝑔

⇓𝛾 which are

defined to be homotopy classes of 1-simplices in Fun(𝐴, 𝐵)

Prop. Equivalences in the homotopy 2-category

𝐴 𝐵 𝐴 𝐴 𝐵 𝐵
𝑓

𝑔

id𝐴

⇓≅

𝑔𝑓

id𝐵

⇓≅

𝑓𝑔

coincide with equivalences in the ∞-cosmos.

Thus, non-evil 2-categorical definitions are “homotopically correct.”



Adjunctions between ∞-categories

defn. An adjunction between ∞-categories is an adjunction in the

homotopy 2-category., consisting of:

• ∞-categories 𝐴 and 𝐵
• ∞-functors 𝑢∶ 𝐴 → 𝐵, 𝑓∶ 𝐵 → 𝐴

• ∞-natural transformations 𝐵 𝐵
id𝐵

⇓𝜂

𝑢𝑓

and 𝐴 𝐴
𝑓𝑢

⇓𝜖

id𝐴

satisfying the triangle equalities

𝐵 𝐵 𝐵 𝐵 𝐵 𝐵

𝐴 𝐴 𝐴 𝐴 𝐴 𝐴
⇓𝜖 𝑓 ⇓𝜂 = =

𝑓
⇓𝜂 ⇓𝜖

𝑓 = =
𝑓𝑓

𝑢
𝑢 𝑢 𝑢

𝑢

Write 𝑓 ⊣ 𝑢 to indicate that 𝑓 is the left adjoint and 𝑢 is the right adjoint.



The 2-category theory of adjunctions

Since an adjunction between ∞-categories is just an adjunction in the

homotopy 2-category, all 2-categorical theorems about adjunctions

become theorems about adjunctions between ∞-categories.

Prop. Adjunctions compose:

𝐶 𝐵 𝐴 ⇝ 𝐶 𝐴
𝑓′

⊥
𝑓

⊥
𝑢′ 𝑢

𝑓𝑓′

⊥
𝑢′𝑢

Prop. Adjoints to a given functor 𝑢∶ 𝐴 → 𝐵 are unique up to canonical

isomorphism: if 𝑓 ⊣ 𝑢 and 𝑓 ′ ⊣ 𝑢 then 𝑓≅𝑓 ′ .

Prop. Any equivalence can be promoted to an adjoint equivalence: if

𝑢∶ 𝐴 𝐵∼
then 𝑢 is left and right adjoint to its equivalence inverse.



Composing adjunctions

Prop. Adjunctions compose:

𝐶 𝐵 𝐴 ⇝ 𝐶 𝐴
𝑓′

⊥
𝑓

⊥
𝑢′ 𝑢

𝑓𝑓′

⊥
𝑢′𝑢

Proof: The composite 2-cells

𝐶 𝐶 𝐶

𝐵 𝐵 𝐵 𝐵

𝐴 𝐴 𝐴

𝑓′ ⇓𝜂′ ⇓𝜖′
𝑓′

𝑓
⇓𝜂

𝑢′
𝑢′

⇓𝜖
𝑓

𝑢
𝑢

define the unit and counit of 𝑓𝑓 ′ ⊣ 𝑢′𝑢 satisfying the triangle equalities.



Initial and terminal elements in an ∞-category

defn. An ∞-category 𝐴 has a terminal element iff 1 𝐴
𝑡
⊥
!

.

Prop. Right adjoints preserve terminal elements.

Proof: Compose the adjunctions 1 𝐴 𝐵
𝑡
⊥
!

𝑢
⊥
𝑓

.

More generally:

Prop. Right adjoints preserve limits and left adjoints preserve colimits.

Proof: The usual one!



The universal property of adjunctions

defn. Any ∞-category 𝐴 has an ∞-category of arrows 𝐴2 , pulling back

to define the comma ∞-category:

Hom𝐴(𝑓, 𝑔) 𝐴2

𝐶 × 𝐵 𝐴 × 𝐴

⌟
(cod,dom) (cod,dom)

𝑔×𝑓

Prop. 𝐴 𝐵
𝑢
⊥
𝑓

if and only if Hom𝐴(𝑓, 𝐴) ≃𝐴×𝐵 Hom𝐵(𝐵, 𝑢).

Prop. If 𝑓 ⊣ 𝑢 with unit 𝜂 and counit 𝜖 then

• 𝜂 is initial in Hom𝐵(𝐵, 𝑢) over 𝐵.

• 𝜖 is terminal in Hom𝐴(𝑓, 𝐴) over 𝐴.
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The synthetic theory of ∞-categories
(in homotopy type theory)



The Curry-Howard-Voevodsky correspondence

type theory set theory logic homotopy theory

𝐴 set proposition space

𝑥 ∶ 𝐴 element proof point

∅, 1 ∅, {∅} ⊥, ⊤ ∅, ∗
𝐴 × 𝐵 set of pairs 𝐴 and 𝐵 product space

𝐴 + 𝐵 disjoint union 𝐴 or 𝐵 coproduct

𝐴 → 𝐵 set of functions 𝐴 implies 𝐵 function space

𝑥 ∶ 𝐴 ⊢ 𝐵(𝑥) family of sets predicate fibration

𝑥 ∶ 𝐴 ⊢ 𝑏 ∶ 𝐵(𝑥) fam. of elements conditional proof section

∏𝑥∶𝐴 𝐵(𝑥) product ∀𝑥.𝐵(𝑥) space of sections

∑𝑥∶𝐴 𝐵(𝑥) disjoint sum ∃𝑥.𝐵(𝑥) total space

𝑝 ∶ 𝑥 =𝐴 𝑦 𝑥 = 𝑦 proof of equality path from 𝑥 to 𝑦
∑𝑥,𝑦∶𝐴 𝑥 =𝐴 𝑦 diagonal equality relation path space for 𝐴



Path induction

The identity type family is freely generated by the terms refl𝑥 ∶ 𝑥 =𝐴 𝑥.

Path induction. If 𝐵(𝑥, 𝑦, 𝑝) is a type family dependent on 𝑥, 𝑦 ∶ 𝐴 and

𝑝 ∶ 𝑥 =𝐴 𝑦, then to prove 𝐵(𝑥, 𝑦, 𝑝) it suffices to assume 𝑦 is 𝑥 and 𝑝 is

refl𝑥 . I.e., there is a function

path-ind ∶ (∏
𝑥∶𝐴

𝐵(𝑥, 𝑥, refl𝑥)) → ( ∏
𝑥,𝑦∶𝐴

∏
𝑝∶𝑥=𝐴𝑦

𝐵(𝑥, 𝑦, 𝑝)).



The intended model

Set𝚫
op×𝚫op ⊃ Reedy ⊃ Segal ⊃ Rezk

= = = =

bisimplicial sets types types with types with

composition composition

& univalence

Theorem (Shulman). Homotopy type theory is modeled by the category

of Reedy fibrant bisimplicial sets.

Theorem (Rezk). ∞-categories are modeled by Rezk spaces aka

complete Segal spaces.



Shapes in the theory of the directed interval

Our types may depend on other types and also on shapes Φ ⊂ 2𝑛 ,

polytopes embedded in a directed cube, defined in a language

⊤, ⊥, ∧, ∨, ≡ and 0, 1, ≤

satisfying intuitionistic logic and strict interval axioms.

Δ𝑛 ≔ {(𝑡1, … , 𝑡𝑛) ∶ 2𝑛 ∣ 𝑡𝑛 ≤ ⋯ ≤ 𝑡1} e.g. Δ1 ≔ 2

Δ2 ≔

⎧{{
⎨{{⎩

(0,0) (1,0)

(1,1)

(𝑡,0)

(1,𝑡)
(𝑡,𝑡)

𝜕Δ2 ≔ {(𝑡1, 𝑡2) ∶ 22 ∣ (𝑡2 ≤ 𝑡1) ∧ ((0 = 𝑡2) ∨ (𝑡2 = 𝑡1) ∨ (𝑡1 = 1))}
Λ2

1 ≔ {(𝑡1, 𝑡2) ∶ 22 ∣ (𝑡2 ≤ 𝑡1) ∧ ((0 = 𝑡2) ∨ (𝑡1 = 1))}



Extension types

Formation rule for extension types

Φ ⊂ Ψ shape 𝐴 type 𝑎 ∶ Φ → 𝐴

⟨
Φ 𝐴

Ψ

𝑎

⟩ type

A term 𝑓 ∶ ⟨
Φ 𝐴

Ψ

𝑎

⟩ defines

𝑓 ∶ Ψ → 𝐴 so that 𝑓(𝑡) ≡ 𝑎(𝑡) for 𝑡 ∶ Φ.

The simplicial type theory allows us to prove equivalences between

extension types along composites or products of shape inclusions.



Hom types

The hom type for 𝐴 depends on two terms in 𝐴:

𝑥, 𝑦 ∶ 𝐴 ⊢ Hom𝐴(𝑥, 𝑦)

Hom𝐴(𝑥, 𝑦) ≔ ⟨
𝜕Δ1 𝐴

Δ1

[𝑥,𝑦]

⟩ type

A term 𝑓 ∶ Hom𝐴(𝑥, 𝑦) defines an arrow in 𝐴 from 𝑥 to 𝑦.

Semantically, ∑𝑥,𝑦∶𝐴 Hom𝐴(𝑥, 𝑦) recovers the ∞-category of arrows

𝐴2 in the ∞-cosmos Rezk and Hom𝐴(𝑥, 𝑦) recovers the comma

∞-category from 𝑥 to 𝑦.



Segal types ≡ types with binary composition

A type 𝐴 is Segal iff every composable pair of arrows has a unique

composite., i.e., for every 𝑓 ∶ Hom𝐴(𝑥, 𝑦) and 𝑔 ∶ Hom𝐴(𝑦, 𝑧) the type

⟨
Λ2

1 𝐴

Δ2

[𝑓,𝑔]

⟩ is contractible.

Semantically, a Reedy fibrant bisimplicial set 𝐴 is Segal if and only if

𝐴Δ2 ↠ 𝐴Λ2
1 has contractible fibers.

By contractibility, ⟨
Λ2

1 𝐴

Δ2

[𝑓,𝑔]

⟩ has a unique inhabitant. Write

𝑔 ∘ 𝑓 ∶ Hom𝐴(𝑥, 𝑧) for its inner face, the composite of 𝑓 and 𝑔.



Identity arrows

For any 𝑥 ∶ 𝐴, the constant function defines a term

id𝑥 ≔ 𝜆𝑡.𝑥 ∶ Hom𝐴(𝑥, 𝑥) ≔ ⟨
𝜕Δ1 𝐴

Δ1

[𝑥,𝑥]

⟩,

which we denote by id𝑥 and call the identity arrow.

For any 𝑓 ∶ Hom𝐴(𝑥, 𝑦) in a Segal type 𝐴, the term

𝜆(𝑠, 𝑡).𝑓(𝑡) ∶ ⟨
Λ2

1 𝐴

Δ2

[id𝑥,𝑓]

⟩

witnesses the unit axiom 𝑓 = 𝑓 ∘ id𝑥 .



Associativity of composition

Let 𝐴 be a Segal type with arrows

𝑓 ∶ Hom𝐴(𝑥, 𝑦), 𝑔 ∶ Hom𝐴(𝑦, 𝑧), ℎ ∶ Hom𝐴(𝑧, 𝑤).

Prop. ℎ ∘ (𝑔 ∘ 𝑓) = (ℎ ∘ 𝑔) ∘ 𝑓.
Proof: Consider the composable arrows in the Segal type Δ1 → 𝐴:

𝑦

𝑥 𝑧

𝑧

𝑦 𝑤

𝑔

ℎ∘𝑔ℎ∘𝑔

𝑓

𝑔∘𝑓

𝑓

𝑔∘𝑓
𝑓

ℓ

ℎ

ℎℎ

𝑔𝑔

𝑔

Composing defines a term in the type Δ2 → (Δ1 → 𝐴) which yields a

term ℓ ∶ Hom𝐴(𝑥, 𝑤) so that ℓ = ℎ ∘ (𝑔 ∘ 𝑓) and ℓ = (ℎ ∘ 𝑔) ∘ 𝑓.



Isomorphisms

An arrow 𝑓∶ Hom𝐴(𝑥, 𝑦) in a Segal type is an isomorphism if it has a

two-sided inverse 𝑔∶ Hom𝐴(𝑦, 𝑥). However, the type

∑
𝑔∶ Hom𝐴(𝑦,𝑥)

(𝑔 ∘ 𝑓 = id𝑥) × (𝑓 ∘ 𝑔 = id𝑦)

has higher-dimensional structure and is not a proposition. Instead define

isiso(𝑓) ≔ ( ∑
𝑔∶ Hom𝐴(𝑦,𝑥)

𝑔 ∘ 𝑓 = id𝑥) × ( ∑
ℎ∶ Hom𝐴(𝑦,𝑥)

𝑓 ∘ ℎ = id𝑦).

For 𝑥, 𝑦 ∶ 𝐴, the type of isomorphisms from 𝑥 to 𝑦 is:

𝑥 ≅𝐴 𝑦 ≔ ∑
𝑓∶Hom𝐴(𝑥,𝑦)

isiso(𝑓).



Rezk types ≡ ∞-categories

By path induction, to define a map

path-to-iso ∶ (𝑥 =𝐴 𝑦) → (𝑥 ≅𝐴 𝑦)

for all 𝑥, 𝑦 ∶ 𝐴 it suffices to define

path-to-iso(refl𝑥) ≔ id𝑥.

A Segal type 𝐴 is Rezk iff every isomorphism is an identity, i.e., iff the map

path-to-iso ∶ ∏
𝑥,𝑦∶𝐴

(𝑥 =𝐴 𝑦) → (𝑥 ≅𝐴 𝑦)

is an equivalence.



Discrete types ≡ ∞-groupoids

Similarly by path induction define

path-to-arr ∶ (𝑥 =𝐴 𝑦) → Hom𝐴(𝑥, 𝑦)

for all 𝑥, 𝑦 ∶ 𝐴 by path-to-arr(refl𝑥) ≔ id𝑥 .

A type 𝐴 is discrete iff every arrow is an identity, i.e., iff path-to-arr is an

equivalence.

Prop. A type is discrete if and only if it is Rezk and all of its arrows are

isomorphisms.

Proof:

𝑥 =𝐴 𝑦 Hom𝐴(𝑥, 𝑦)

𝑥 ≅𝐴 𝑦

path-to-arr

path-to-iso



∞-categories for undergraduates

defn. An ∞-groupoid is a type in which arrows are equivalent to

identities:

path-to-arr ∶ (𝑥 =𝐴 𝑦) → Hom𝐴(𝑥, 𝑦) is an equivalence.

defn. An ∞-category is a type

• which has unique binary composites of arrows:

⟨
Λ2

1 𝐴

Δ2

[𝑓,𝑔]

⟩ is contractible

• and in which isomorphisms are equivalent to identities:

path-to-iso ∶ (𝑥 =𝐴 𝑦) → (𝑥 ≅𝐴 𝑦) is an equivalence.



Covariant type families ≡ categorical fibrations

A type family 𝑥 ∶ 𝐴 ⊢ 𝐵(𝑥) over a Segal type 𝐴 is covariant if for every

𝑓 ∶ Hom𝐴(𝑥, 𝑦) and 𝑢 ∶ 𝐵(𝑥) there is a unique lift of 𝑓 with domain 𝑢.

The codomain of the unique lift defines a term 𝑓∗𝑢 ∶ 𝐵(𝑦).

Prop. For 𝑢 ∶ 𝐵(𝑥), 𝑓 ∶ Hom𝐴(𝑥, 𝑦), and 𝑔 ∶ Hom𝐴(𝑦, 𝑧),

𝑔∗(𝑓∗𝑢) = (𝑔 ∘ 𝑓)∗𝑢 and (id𝑥)∗𝑢 = 𝑢.

Prop. If 𝑥 ∶ 𝐴 ⊢ 𝐵(𝑥) is covariant then for each 𝑥 ∶ 𝐴 the fiber 𝐵(𝑥) is

discrete. Thus covariant type families are fibered in ∞-groupoids.

Prop. Fix 𝑎 ∶ 𝐴. The type family 𝑥 ∶ 𝐴 ⊢ Hom𝐴(𝑎, 𝑥) is covariant.



The Yoneda lemma

Let 𝑥 ∶ 𝐴 ⊢ 𝐵(𝑥) be a covariant family over a Segal type and fix 𝑎 ∶ 𝐴.

Yoneda lemma. The maps

ev-id ≔ 𝜆𝜙.𝜙(𝑎, id𝑎) ∶ (∏
𝑥∶𝐴

Hom𝐴(𝑎, 𝑥) → 𝐵(𝑥)) → 𝐵(𝑎)

and

yon ≔ 𝜆𝑢.𝜆𝑥.𝜆𝑓.𝑓∗𝑢 ∶ 𝐵(𝑎) → (∏
𝑥∶𝐴

Hom𝐴(𝑎, 𝑥) → 𝐵(𝑥))

are inverse equivalences.

Corollary. A natural isomorphism 𝜙 ∶ ∏𝑥∶𝐴 Hom𝐴(𝑎, 𝑥) ≅ Hom𝐴(𝑏, 𝑥)
induces an identity ev-id(𝜙) ∶ 𝑏 =𝐴 𝑎 if the type 𝐴 is Rezk.



The dependent Yoneda lemma

Yoneda lemma. If 𝐴 is a Segal type and 𝐵(𝑥) is a covariant family

dependent on 𝑥 ∶ 𝐴, then evaluation at (𝑎, id𝑎) defines an equivalence

ev-id ∶ (∏
𝑥∶𝐴

Hom𝐴(𝑎, 𝑥) → 𝐵(𝑥)) → 𝐵(𝑎)

The Yoneda lemma is a “directed” version of the “transport” operation

for identity types, suggesting a dependently-typed generalization

analogous to the full induction principle for identity types.

Dependent Yoneda lemma. If 𝐴 is a Segal type and 𝐵(𝑥, 𝑦, 𝑓) is a

covariant family dependent on 𝑥, 𝑦 ∶ 𝐴 and 𝑓 ∶ Hom𝐴(𝑥, 𝑦), then
evaluation at (𝑥, 𝑥, id𝑥) defines an equivalence

ev-id ∶ ( ∏
𝑥,𝑦∶𝐴

∏
𝑓∶Hom𝐴(𝑥,𝑦)

𝐵(𝑥, 𝑦, 𝑓)) → ∏
𝑥∶𝐴

𝐵(𝑥, 𝑥, id𝑥)



Dependent Yoneda is directed path induction

Slogan: the dependent Yoneda lemma is directed path induction.

Path induction. If 𝐵(𝑥, 𝑦, 𝑝) is a type family dependent on 𝑥, 𝑦 ∶ 𝐴 and

𝑝 ∶ 𝑥 =𝐴 𝑦, then to prove 𝐵(𝑥, 𝑦, 𝑝) it suffices to assume 𝑦 is 𝑥 and 𝑝 is

refl𝑥 . I.e., there is a function

path-ind ∶ (∏
𝑥∶𝐴

𝐵(𝑥, 𝑥, refl𝑥)) → ( ∏
𝑥,𝑦∶𝐴

∏
𝑝∶𝑥=𝐴𝑦

𝐵(𝑥, 𝑦, 𝑝)).

Arrow induction. If 𝐵(𝑥, 𝑦, 𝑓) is a covariant family dependent on

𝑥, 𝑦 ∶ 𝐴 and 𝑓 ∶ Hom𝐴(𝑥, 𝑦) and 𝐴 is Segal, then to prove 𝐵(𝑥, 𝑦, 𝑓) it

suffices to assume 𝑦 is 𝑥 and 𝑓 is id𝑥 . I.e., there is a function

id-ind ∶ (∏
𝑥∶𝐴

𝐵(𝑥, 𝑥, id𝑥)) → ( ∏
𝑥,𝑦∶𝐴

∏
𝑓∶Hom𝐴(𝑥,𝑦)

𝐵(𝑥, 𝑦, 𝑓)).



Closing thoughts

More theorems about ∞-categories can be proven using analytic

methods in a particular model, but there are other advantages to the

synthetic approach:

• efficiency: a large part of the theory can be developed

simultaneously in many models by working synthetically with

∞-categories as objects in an ∞-cosmos.

• simplification: the axioms of an ∞-cosmos are chosen to simplify

proofs by working strictly up to isomorphism insofar as possible.

• model-independence: ∞-cosmology may be used to demonstrate

that both analytically- and synthetically-proven results about

∞-categories transfer across suitable “change-of-model” functors.

• compatible with new foundations: synthetic constructions can easily

be adapted to simplicial HoTT, which yields further streamlining.
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