Categorifying cardinal arithmetic
Plan

Goal: prove $a \times (b + c) = (a \times b) + (a \times c)$ for any natural numbers a, b, and c.

- Step 1: categorification
- Step 2: the Yoneda lemma
- Step 3: representability
- Step 4: the proof
- Epilogue: what was the point of that?
Plan

Goal: prove $a \times (b + c) = (a \times b) + (a \times c)$ for any natural numbers a, b, and c by taking a tour of some deep ideas from category theory.
Plan

Goal: prove $a \times (b + c) = (a \times b) + (a \times c)$ for any natural numbers $a, b,$ and c by taking a tour of some deep ideas from category theory.

• Step 1: categorification
• Step 2: the Yoneda lemma
• Step 3: representability
• Step 4: the proof
Plan

Goal: prove $a \times (b + c) = (a \times b) + (a \times c)$ for any natural numbers a, b, and c by taking a tour of some deep ideas from category theory.

• Step 1: categorification
• Step 2: the Yoneda lemma
• Step 3: representability
• Step 4: the proof
• Epilogue: what was the point of that?
Step 1: categorification
The idea of categorification

The first step is to understand the equation

\[a \times (b + c) = (a \times b) + (a \times c) \]

as expressing some deeper truth about mathematical structures.
The idea of categorification

The first step is to understand the equation

\[a \times (b + c) = (a \times b) + (a \times c) \]

as expressing some deeper truth about mathematical structures.

Q: What is the deeper meaning of the equation

\[a \times (b + c) = (a \times b) + (a \times c) \]
The idea of categorification

The first step is to understand the equation

\[a \times (b + c) = (a \times b) + (a \times c) \]

as expressing some deeper truth about mathematical structures.

Q: What is the deeper meaning of the equation

\[a \times (b + c) = (a \times b) + (a \times c) \]?

Q: What is the role of the natural numbers \(a, b, \) and \(c \)?
Q: What is the role of the natural numbers a, b, and c?

A: Natural numbers define the cardinalities, or sizes, of finite sets. Natural numbers a, b, and c encode the sizes of finite sets A, B, and C.

\[a \equiv |A|, \quad b \equiv |B|, \quad c \equiv |C|. \]
Q: What is the role of the natural numbers a, b, and c?

A: Natural numbers define the **cardinalities**, or sizes, of finite sets.
Q: What is the role of the natural numbers a, b, and c?

A: Natural numbers define the cardinalities, or sizes, of finite sets.

Natural numbers a, b, and c encode the sizes of finite sets A, B, and C.

$$a := |A|, \quad b := |B|, \quad c := |C|.$$
Categorifying equality

Natural numbers a, b, and c encode the sizes of finite sets A, B, and C.

\[a := |A|, \quad b := |B|, \quad c := |C|. \]
Natural numbers a, b, and c encode the sizes of finite sets A, B, and C.

$$a := |A|, \quad b := |B|, \quad c := |C|.$$

Q: What is true of A and B if $a = b$?
Natural numbers a, b, and c encode the sizes of finite sets A, B, and C.

$$a := |A|, \quad b := |B|, \quad c := |C|.$$

Q: What is true of A and B if $a = b$?

A: $a = b$ if and only if A and B are isomorphic, which means there exist functions $f: A \to B$ and $g: B \to A$ that are inverses in the sense that $g \circ f = \text{id}$ and $f \circ g = \text{id}$. In this case, we write $A \cong B$.

Eugenia Cheng: "All equations are lies." Categorification: the truth behind $a = b$ is $A \cong B$.
Natural numbers a, b, and c encode the sizes of finite sets A, B, and C.

\[a := |A|, \quad b := |B|, \quad c := |C|. \]

Q: What is true of A and B if $a = b$?

A: $a = b$ if and only if A and B are isomorphic, which means there exist functions $f: A \to B$ and $g: B \to A$ that are inverses in the sense that $g \circ f = \text{id}$ and $f \circ g = \text{id}$. In this case, we write $A \cong B$.

For $a := |A|$ and $b := |B|$, the equation $a = b$ asserts the existence of an isomorphism $A \cong B$.
Categorifying equality

Natural numbers a, b, and c encode the sizes of finite sets A, B, and C.

\[
a := |A|, \quad b := |B|, \quad c := |C|.
\]

Q: What is true of A and B if $a = b$?

A: $a = b$ if and only if A and B are isomorphic, which means there exist functions $f: A \to B$ and $g: B \to A$ that are inverses in the sense that $g \circ f = \text{id}$ and $f \circ g = \text{id}$. In this case, we write $A \cong B$.

For $a := |A|$ and $b := |B|$, the equation $a = b$ asserts the existence of an isomorphism $A \cong B$.

Eugenia Cheng: “All equations are lies.”
Natural numbers a, b, and c encode the sizes of finite sets A, B, and C.

$$a := |A|, \quad b := |B|, \quad c := |C|.$$

Q: What is true of A and B if $a = b$?

A: $a = b$ if and only if A and B are isomorphic, which means there exist functions $f: A \to B$ and $g: B \to A$ that are inverses in the sense that $g \circ f = \text{id}$ and $f \circ g = \text{id}$. In this case, we write $A \cong B$.

For $a := |A|$ and $b := |B|$, the equation $a = b$ asserts the existence of an isomorphism $A \cong B$.

Eugenia Cheng: “All equations are lies.”

Categorification: the truth behind $a = b$ is $A \cong B$.
Q: What is the deeper meaning of the equation

\[a \times (b + c) = (a \times b) + (a \times c) \]?
Q: What is the deeper meaning of the equation

\[a \times (b + c) = (a \times b) + (a \times c) \]?

The story so far:

- The natural numbers \(a, b, \) and \(c \) encode the sizes of finite sets \(A, B, \) and \(C \):
 \[a := |A|, \quad b := |B|, \quad c := |C|. \]
Q: What is the deeper meaning of the equation

\[a \times (b + c) = (a \times b) + (a \times c) \] ?

The story so far:

- The natural numbers \(a, b, \) and \(c \) encode the sizes of finite sets \(A, B, \) and \(C \):
 \[
 a := |A|, \quad b := |B|, \quad c := |C|.
 \]
- The equation “\(= \)” asserts the existence of an isomorphism “\(\cong \)”.
Q: What is the deeper meaning of the equation

\[a \times (b + c) = (a \times b) + (a \times c) \]?

The story so far:

- The natural numbers \(a\), \(b\), and \(c\) encode the sizes of finite sets \(A\), \(B\), and \(C\):
 \[
a := |A|, \quad b := |B|, \quad c := |C|.
\]
- The equation “\(\cong\)” asserts the existence of an isomorphism “\(\cong\)”.

Q: What is the deeper meaning of the symbols “\(+\)” and “\(\times\)”?
Q: If $b := |B|$ and $c := |C|$ what set has $b + c$ elements?
Q: If $b := |B|$ and $c := |C|$ what set has $b + c$ elements?

A: The disjoint union $B + C$ is a set with $b + c$ elements.

$B = \left\{ \begin{array}{c} \# \\ b \\ q \end{array}\right\}, \quad C = \left\{ \begin{array}{c} \spadesuit \\ \heartsuit \\ \diamondsuit \\ \clubsuit \end{array}\right\}, \quad B + C = \left\{ \begin{array}{c} \# \\ b \\ \spadesuit \\ \heartsuit \\ \diamondsuit \\ \clubsuit \end{array}\right\}$
Categorifying +

Q: If $b := |B|$ and $c := |C|$ what set has $b + c$ elements?

A: The disjoint union $B + C$ is a set with $b + c$ elements.

\[
B = \left\{ \begin{array}{c}
\#
\end{array} \right\}, \quad
C = \left\{ \begin{array}{c}
\spadesuit, \heartsuit, \diamondsuit, \clubsuit
\end{array} \right\}, \quad
B + C = \left\{ \begin{array}{c}
\#, b, \spadesuit, \heartsuit, \diamondsuit, \clubsuit
\end{array} \right\}
\]

\[
b + c := |B + C|
\]
Q: If $a := |A|$ and $b := |B|$ what set has $a \times b$ elements?
Q: If $a := |A|$ and $b := |B|$ what set has $a \times b$ elements?

A: The cartesian product $A \times B$ is a set with $a \times b$ elements.

$$A = \{ \ast \, \ast \}, \quad B = \{ \begin{array}{c} \# \\ \flat \\ \natural \end{array} \}, \quad A \times B = \{ (\ast, \#), (\ast, \#), (\ast, \flat), (\ast, \natural), (\ast, \flat), (\ast, \natural) \}$$
Q: If \(a := |A| \) and \(b := |B| \) what set has \(a \times b \) elements?

A: The cartesian product \(A \times B \) is a set with \(a \times b \) elements.

\[
A = \{ \star \ \ast \} , \quad B = \left\{ \begin{array}{c} \# \\ \flat \\ \natural \end{array} \right\} , \quad A \times B = \left\{ \begin{array}{c} (\ast, \#) \\ (\ast, \flat) \\ (\ast, \natural) \\ (\star, \#) \\ (\star, \flat) \\ (\star, \natural) \end{array} \right\}
\]

\(a \times b := |A \times B| \)
Categorifying cardinal arithmetic

In summary:

- Natural numbers define cardinalities: there are sets A, B, and C so that $a \equiv |A|$, $b \equiv |B|$, and $c \equiv |C|$.
- The equation $a = b$ encodes an isomorphism $A \cong B$.
- The disjoint union $B + C$ is a set with $b + c$ elements.
- The cartesian product $A \times B$ is a set with $a \times b$ elements.

Q: What is the deeper meaning of the equation $a \times (b + c) = (a \times b) + (a \times c)$?
A: It means that the sets $A \times (B + C)$ and $(A \times B) + (A \times C)$ are isomorphic! $A \times (B + C) \cong (A \times B) + (A \times C)$.
Categorifying cardinal arithmetic

In summary:

- Natural numbers define cardinalities: there are sets A, B, and C so that $a := |A|$, $b := |B|$, and $c := |C|$.

Q: What is the deeper meaning of the equation $a \times (b + c) = (a \times b) + (a \times c)$?

A: It means that the sets $A \times (B + C)$ and $(A \times B) + (A \times C)$ are isomorphic! $A \times (B + C) \cong (A \times B) + (A \times C)$.
Categorifying cardinal arithmetic

In summary:

- Natural numbers define cardinalities: there are sets A, B, and C so that $a := |A|$, $b := |B|$, and $c := |C|$.
- The equation $a = b$ encodes an isomorphism $A \cong B$.

Categorifying cardinal arithmetic

In summary:

- Natural numbers define cardinalities: there are sets \(A, B, \) and \(C \) so that \(a := |A|, b := |B|, \) and \(c := |C| \).
- The equation \(a = b \) encodes an isomorphism \(A \cong B \).
- The disjoint union \(B + C \) is a set with \(b + c \) elements.

Q: What is the deeper meaning of the equation \(a \times (b + c) = (a \times b) + (a \times c) \)?
A: It means that the sets \(A \times (B + C) \) and \((A \times B) + (A \times C) \) are isomorphic! \(A \times (B + C) \cong (A \times B) + (A \times C) \).
In summary:

- Natural numbers define cardinalities: there are sets A, B, and C so that $a := |A|$, $b := |B|$, and $c := |C|$.
- The equation $a = b$ encodes an isomorphism $A \cong B$.
- The disjoint union $B + C$ is a set with $b + c$ elements.
- The cartesian product $A \times B$ is a set with $a \times b$ elements.

Q: What is the deeper meaning of the equation $a \times (b + c) = (a \times b) + (a \times c)$?
A: It means that the sets $A \times (B + C)$ and $(A \times B) + (A \times C)$ are isomorphic! $A \times (B + C) \cong (A \times B) + (A \times C)$
Categorifying cardinal arithmetic

In summary:

• Natural numbers define cardinalities: there are sets A, B, and C so that $a := |A|$, $b := |B|$, and $c := |C|$.

• The equation $a = b$ encodes an isomorphism $A \cong B$.

• The disjoint union $B + C$ is a set with $b + c$ elements.

• The cartesian product $A \times B$ is a set with $a \times b$ elements.

Q: What is the deeper meaning of the equation

$$a \times (b + c) = (a \times b) + (a \times c)$$
Categorifying cardinal arithmetic

In summary:

• Natural numbers define cardinalities: there are sets A, B, and C so that $a := |A|$, $b := |B|$, and $c := |C|$.
• The equation $a = b$ encodes an isomorphism $A ≅ B$.
• The disjoint union $B + C$ is a set with $b + c$ elements.
• The cartesian product $A \times B$ is a set with $a \times b$ elements.

Q: What is the deeper meaning of the equation

$$a \times (b + c) = (a \times b) + (a \times c)$$?

A: It means that the sets $A \times (B + C)$ and $(A \times B) + (A \times C)$ are isomorphic!

$$A \times (B + C) \cong (A \times B) + (A \times C)$$
Summary of Step 1

Q: What is the deeper meaning of the equation

\[a \times (b + c) = (a \times b) + (a \times c) \]?

A: The sets \(A \times (B + C) \) and \((A \times B) + (A \times C) \) are isomorphic!
Q: What is the deeper meaning of the equation

\[a \times (b + c) = (a \times b) + (a \times c) \]?

A: The sets \(A \times (B + C) \) and \((A \times B) + (A \times C) \) are isomorphic!

\[A \times (B + C) \cong (A \times B) + (A \times C) \]
Summary of Step 1

Q: What is the deeper meaning of the equation

\[a \times (b + c) = (a \times b) + (a \times c) \]?

A: The sets \(A \times (B + C) \) and \((A \times B) + (A \times C) \) are isomorphic!

\[
\begin{align*}
&\{(\ast, \#)\} \quad \{\ast, \#\} \\
&\{(\ast, \flat)\} \quad \{\ast, \flat\} \\
&\{\ast, \spadesuit\} \quad \{\ast, \spadesuit\} \\
&\{(\ast, \diamondsuit)\} \quad \{\ast, \diamondsuit\} \\
&\{(\ast, \clubsuit)\} \quad \{\ast, \clubsuit\}
\end{align*}
\]

\[\cong\]

\[
\begin{align*}
&\{(\ast, \#)\} \quad \{(\ast, \flat)\} \quad \{(\ast, \spadesuit)\} \quad \{(\ast, \diamondsuit)\} \quad \{(\ast, \clubsuit)\} \\
&\{(\ast, \#)\} \quad \{(\ast, \diamondsuit)\} \quad \{(\ast, \spadesuit)\} \quad \{(\ast, \clubsuit)\} \quad \{(\ast, \diamondsuit)\}
\end{align*}
\]

\[A \times (B + C) \cong (A \times B) + (A \times C)\]

By categorification:

Step 1 summary: To prove \(a \times (b + c) = (a \times b) + (a \times c) \)
Summary of Step 1

Q: What is the deeper meaning of the equation

\[a \times (b + c) = (a \times b) + (a \times c) ? \]

A: The sets \(A \times (B + C) \) and \((A \times B) + (A \times C) \) are isomorphic!

\[
\begin{align*}
\{(\ast, \#), (\ast, b), (\ast, \flat), (\ast, \spadesuit), (\ast, \heartsuit), (\ast, \diamondsuit), (\ast, \clubsuit)\} & \cong \{(\ast, \#, \ast, b, \ast, \flat, \ast, \spadesuit, \ast, \heartsuit, \ast, \diamondsuit, \ast, \clubsuit)\} \\
& \cong \{(\ast, \#, \ast, b, \ast, \spadesuit, \ast, \heartsuit, \ast, \diamondsuit, \ast, \clubsuit)\}
\end{align*}
\]

By categorification:

Step 1 summary: To prove \(a \times (b + c) = (a \times b) + (a \times c) \)

\(\Rightarrow \) we'll instead show that \(A \times (B + C) \cong (A \times B) + (A \times C). \)
Step 2: the Yoneda lemma
The Yoneda lemma. Two sets A and B are isomorphic if and only if
The Yoneda lemma. Two sets A and B are isomorphic if and only if

- for all sets X, the sets of functions

$$\text{Fun}(A, X) := \{h: A \to X\} \quad \text{and} \quad \text{Fun}(B, X) := \{k: B \to X\}$$

are isomorphic
The Yoneda lemma. Two sets A and B are isomorphic if and only if

- for all sets X, the sets of functions

$$\text{Fun}(A, X) := \{ h : A \to X \} \quad \text{and} \quad \text{Fun}(B, X) := \{ k : B \to X \}$$

are isomorphic and moreover

- the isomorphisms $\text{Fun}(A, X) \cong \text{Fun}(B, X)$ are “natural” in the sense of commuting with composition with any function $\ell : X \to Y$.
The Yoneda lemma. Two sets A and B are isomorphic if and only if

- for all sets X, the sets of functions

$$\text{Fun}(A, X) := \{ h : A \to X \} \quad \text{and} \quad \text{Fun}(B, X) := \{ k : B \to X \}$$

are isomorphic and moreover

- the isomorphisms $\text{Fun}(A, X) \cong \text{Fun}(B, X)$ are “natural” in the sense of commuting with composition with any function $\ell : X \to Y$.

???
Proof of the Yoneda lemma

The Yoneda lemma. A and B are isomorphic if and only if for any X the sets of functions $\text{Fun}(A, X)$ and $\text{Fun}(B, X)$ are "naturally" isomorphic.
Proof of the Yoneda lemma

The Yoneda lemma. \(A \) and \(B \) are isomorphic if and only if for any \(X \) the sets of functions \(\text{Fun}(A, X) \) and \(\text{Fun}(B, X) \) are “naturally” isomorphic.

Proof (\(\Leftarrow \)):

\[
\text{id}_A \circ g = \text{Fun}(A, A) \xrightarrow{\text{bijection}} \text{Fun}(B, A) \xrightarrow{\text{bijection}} \text{Fun}(A, B) \xrightarrow{\text{bijection}} \text{id}_B \circ f \in \text{Fun}(B, B) \\
\Rightarrow f \circ g = \text{id}_A \\
\Rightarrow g \circ f = \text{id}_B
\]
The Yoneda lemma. A and B are isomorphic if and only if for any X the sets of functions $\text{Fun}(A, X)$ and $\text{Fun}(B, X)$ are “naturally” isomorphic.

Proof (\Leftarrow): Suppose $\text{Fun}(A, X) \cong \text{Fun}(B, X)$ for all X.
Proof of the Yoneda lemma

The Yoneda lemma. \(A \) and \(B \) are isomorphic if and only if for any \(X \) the sets of functions \(\text{Fun}(A, X) \) and \(\text{Fun}(B, X) \) are “naturally” isomorphic.

Proof (\(\iff \)): Suppose \(\text{Fun}(A, X) \cong \text{Fun}(B, X) \) for all \(X \). Taking \(X = A \) and \(X = B \), we use the bijections:

\[
\begin{align*}
\text{Fun}(A, A) & \cong \text{Fun}(B, A) \\
\text{Fun}(A, B) & \cong \text{Fun}(B, B)
\end{align*}
\]
Proof of the Yoneda lemma

The Yoneda lemma. A and B are isomorphic if and only if for any X the sets of functions $\text{Fun}(A, X)$ and $\text{Fun}(B, X)$ are “naturally” isomorphic.

Proof (\Leftarrow): Suppose $\text{Fun}(A, X) \cong \text{Fun}(B, X)$ for all X. Taking $X = A$ and $X = B$, we use the bijections:

\[
\text{Fun}(A, A) \cong \text{Fun}(B, A) \quad \text{Fun}(A, B) \cong \text{Fun}(B, B)
\]

\[
\cup
d_{A}
\]

\[
\cup
d_{B}
\]
Proof of the Yoneda lemma

The Yoneda lemma. A and B are isomorphic if and only if for any X the sets of functions $\text{Fun}(A, X)$ and $\text{Fun}(B, X)$ are "naturally" isomorphic.

Proof (\Leftarrow): Suppose $\text{Fun}(A, X) \cong \text{Fun}(B, X)$ for all X. Taking $X = A$ and $X = B$, we use the bijections:

$$
\begin{align*}
\text{Fun}(A, A) & \cong \text{Fun}(B, A) \\
\text{id}_A & \quad g \\
\text{Fun}(A, B) & \cong \text{Fun}(B, B) \\
\text{Fun}(A, A) & \cong \text{Fun}(B, B)
\end{align*}
$$

$\text{id}_A, g, f, \text{id}_B$

to define functions $g: B \to A$ and $f: A \to B$.
Proof of the Yoneda lemma

The Yoneda lemma. \(A \) and \(B \) are isomorphic if and only if for any \(X \) the sets of functions \(\text{Fun}(A, X) \) and \(\text{Fun}(B, X) \) are “naturally” isomorphic.

Proof (\(\Leftarrow \)): Suppose \(\text{Fun}(A, X) \cong \text{Fun}(B, X) \) for all \(X \). Taking \(X = A \) and \(X = B \), we use the bijections:

\[
\begin{align*}
\text{Fun}(A, A) & \cong \text{Fun}(B, A) \\
\text{Fun}(A, B) & \cong \text{Fun}(B, B)
\end{align*}
\]

\[
\begin{array}{ccc}
\text{id}_A & \overset{\cong}{\rightarrow} & g \\
\uparrow & & \uparrow \\
\text{Fun}(A, A) & \cong & \text{Fun}(B, A) \\
\downarrow & & \downarrow
\end{array}
\]

\[
\begin{array}{ccc}
\text{id}_B & \overset{\cong}{\leftarrow} & f \\
\uparrow & & \uparrow \\
f & \overset{\cong}{\rightarrow} & \text{Fun}(A, B) \cong \text{Fun}(B, B) \\
\downarrow & & \downarrow
\end{array}
\]

\[
\begin{array}{ccc}
f & \overset{\cong}{\rightarrow} & \text{id}_B = f \circ g
\end{array}
\]

to define functions \(g: B \rightarrow A \) and \(f: A \rightarrow B \). By naturality:
Proof of the Yoneda lemma

The Yoneda lemma. A and B are isomorphic if and only if for any X the sets of functions $\text{Fun}(A, X)$ and $\text{Fun}(B, X)$ are “naturally” isomorphic.

Proof (\Leftarrow): Suppose $\text{Fun}(A, X) \cong \text{Fun}(B, X)$ for all X. Taking $X = A$ and $X = B$, we use the bijections:

$$
\begin{align*}
\text{Fun}(A, A) & \cong \text{Fun}(B, A) \\
\text{id}_A & \cong g
\end{align*}
$$

$$
\begin{align*}
\text{Fun}(A, B) & \cong \text{Fun}(B, B) \\
f & \cong \text{id}_B
\end{align*}
$$

to define functions $g: B \to A$ and $f: A \to B$. By naturality:

$$
\begin{align*}
\text{id}_A & \cong g \\
\text{Fun}(A, A) \cong \text{Fun}(B, A) \\
f \cong f \circ g
\end{align*}
$$

and similarly $g \circ f = \text{id}_A$.

\[\square\]
Summary of Steps 1 and 2

By categorification:

Step 1 summary: To prove $a \times (b + c) = (a \times b) + (a \times c)$
Summary of Steps 1 and 2

By categorification:

Step 1 summary: To prove $a \times (b + c) = (a \times b) + (a \times c)$

\Rightarrow we'll instead show that $A \times (B + C) \cong (A \times B) + (A \times C)$.
Summary of Steps 1 and 2

By categorification:

Step 1 summary: To prove $a \times (b + c) = (a \times b) + (a \times c)$

\Rightarrow we’ll instead show that $A \times (B + C) \cong (A \times B) + (A \times C)$.

By the Yoneda lemma:

Step 2 summary: To prove $A \times (B + C) \cong (A \times B) + (A \times C)$
Summary of Steps 1 and 2

By categorification:

Step 1 summary: To prove \(a \times (b + c) = (a \times b) + (a \times c) \)
\(\Rightarrow \) we'll instead show that \(A \times (B + C) \cong (A \times B) + (A \times C) \).

By the Yoneda lemma:

Step 2 summary: To prove \(A \times (B + C) \cong (A \times B) + (A \times C) \)
\(\Rightarrow \) we'll instead define a “natural” isomorphism
\[
\text{Fun}(A \times (B + C), X) \cong \text{Fun}((A \times B) + (A \times C), X).
\]
Step 3: representability
The universal property of the disjoint union

Q: For sets B, C, and X, what is $\text{Fun}(B + C, X)$?
The universal property of the disjoint union

Q: For sets B, C, and X, what is $\text{Fun}(B + C, X)$?

Q: What is needed to define a function $f: B + C \to X$?
The universal property of the disjoint union

Q: For sets B, C, and X, what is $\text{Fun}(B + C, X)$?

Q: What is needed to define a function $f : B + C \to X$?

A: For each $b \in B$, we need to specify $f(b) \in X$, and for each $c \in C$, we need to specify $f(c) \in X$. So the function $f : B + C \to X$ is determined by two functions $f_B : B \to X$ and $f_C : C \to X$. By "pairing" $\text{Fun}(B + C, X) \cong \text{Fun}(B, X) \times \text{Fun}(C, X)$.
The universal property of the disjoint union

Q: For sets B, C, and X, what is $\text{Fun}(B + C, X)$?

Q: What is needed to define a function $f : B + C \to X$?

A: For each $b \in B$, we need to specify $f(b) \in X$, and for each $c \in C$, we need to specify $f(c) \in X$. So the function $f : B + C \to X$ is determined by two functions $f_B : B \to X$ and $f_C : C \to X$.
The universal property of the disjoint union

Q: For sets B, C, and X, what is $\text{Fun}(B + C, X)$?

Q: What is needed to define a function $f: B + C \to X$?

A: For each $b \in B$, we need to specify $f(b) \in X$, and for each $c \in C$, we need to specify $f(c) \in X$. So the function $f: B + C \to X$ is determined by two functions $f_B: B \to X$ and $f_C: C \to X$.

By "pairing"

$$
\text{Fun}(B + C, X) \ni f \mapsto (f_B, f_C)
$$
A universal property of the cartesian product

Q: For sets A, B, and X, what is $\text{Fun}(A \times B, X)$?
A universal property of the cartesian product

Q: For sets A, B, and X, what is $\text{Fun}(A \times B, X)$?

Q: What is needed to define a function $f: A \times B \to X$?
A universal property of the cartesian product

Q: For sets A, B, and X, what is $\text{Fun}(A \times B, X)$?

Q: What is needed to define a function $f: A \times B \to X$?

A: For each $b \in B$ and $a \in A$, we need to specify an element $f(a, b) \in X$.
A universal property of the cartesian product

Q: For sets A, B, and X, what is $\text{Fun}(A \times B, X)$?

Q: What is needed to define a function $f: A \times B \rightarrow X$?

A: For each $b \in B$ and $a \in A$, we need to specify an element $f(a, b) \in X$. Thus, for each $b \in B$, we need to specify a function $f(-, b): A \rightarrow X$ sending a to $f(a, b)$.
Q: For sets A, B, and X, what is $\text{Fun}(A \times B, X)$?

Q: What is needed to define a function $f: A \times B \to X$?

A: For each $b \in B$ and $a \in A$, we need to specify an element $f(a, b) \in X$. Thus, for each $b \in B$, we need to specify a function $f(-, b): A \to X$ sending a to $f(a, b)$. So, altogether we need to define a function $f: B \to \text{Fun}(A, X)$.

By “currying” $\text{Fun}(A \times B, X)$

$$\text{Fun}(A \times B, X) \cong \text{Fun}(B, \text{Fun}(A, X))$$
A universal property of the cartesian product

Q: For sets A, B, and X, what is $\text{Fun}(A \times B, X)$?

Q: What is needed to define a function $f: A \times B \to X$?

A: For each $b \in B$ and $a \in A$, we need to specify an element $f(a, b) \in X$. Thus, for each $b \in B$, we need to specify a function $f(-, b): A \to X$ sending a to $f(a, b)$. So, altogether we need to define a function $f: B \to \text{Fun}(A, X)$.

By “currying”

\[
\begin{align*}
\text{Fun}(A \times B, X) & \cong \text{Fun}(B, \text{Fun}(A, X)) \\
\cup \\
f: A \times B \to X & \leftrightarrow f: B \to \text{Fun}(A, X)
\end{align*}
\]
Summary of Steps 1, 2, and 3

By categorification:

Step 1 summary: To prove $a \times (b + c) = (a \times b) + (a \times c)$
Summary of Steps 1, 2, and 3

By categorification:

Step 1 summary: To prove \(a \times (b + c) = (a \times b) + (a \times c) \)

\(\leadsto \) we'll instead show that \(A \times (B + C) \cong (A \times B) + (A \times C) \).
Summary of Steps 1, 2, and 3

By categorification:

Step 1 summary: To prove $a \times (b + c) = (a \times b) + (a \times c)$

\Rightarrow we'll instead show that $A \times (B + C) \cong (A \times B) + (A \times C)$.

By the Yoneda lemma:

Step 2 summary: To prove $A \times (B + C) \cong (A \times B) + (A \times C)$
Summary of Steps 1, 2, and 3

By categorification:

Step 1 summary: To prove \(a \times (b + c) = (a \times b) + (a \times c) \)
\(\Rightarrow \) we’ll instead show that \(A \times (B + C) \cong (A \times B) + (A \times C) \).

By the Yoneda lemma:

Step 2 summary: To prove \(A \times (B + C) \cong (A \times B) + (A \times C) \)
\(\Rightarrow \) we’ll instead define a “natural” isomorphism
\[
\text{Fun}(A \times (B + C), X) \cong \text{Fun}((A \times B) + (A \times C), X).
\]
Summary of Steps 1, 2, and 3

By categorification:

Step 1 summary: To prove \(a \times (b + c) = (a \times b) + (a \times c) \)

\[\iff \text{we'll instead show that } A \times (B + C) \cong (A \times B) + (A \times C). \]

By the Yoneda lemma:

Step 2 summary: To prove \(A \times (B + C) \cong (A \times B) + (A \times C) \)

\[\iff \text{we'll instead define a “natural” isomorphism} \]

\[\text{Fun}(A \times (B + C), X) \cong \text{Fun}((A \times B) + (A \times C), X). \]

By representability:

Step 3 summary:
Summary of Steps 1, 2, and 3

By categorification:

Step 1 summary: To prove $a \times (b + c) = (a \times b) + (a \times c)$
\[\Rightarrow\] we'll instead show that $A \times (B + C) \cong (A \times B) + (A \times C)$.

By the Yoneda lemma:

Step 2 summary: To prove $A \times (B + C) \cong (A \times B) + (A \times C)$
\[\Rightarrow\] we'll instead define a “natural” isomorphism
\[\text{Fun}(A \times (B + C), X) \cong \text{Fun}((A \times B) + (A \times C), X).\]

By representability:

Step 3 summary:

- $\text{Fun}(B + C, X) \cong \text{Fun}(B, X) \times \text{Fun}(C, X)$ by “pairing”
Summary of Steps 1, 2, and 3

By categorification:

Step 1 summary: To prove $a \times (b + c) = (a \times b) + (a \times c)$
ilihan we'll instead show that $A \times (B + C) \cong (A \times B) + (A \times C)$.

By the Yoneda lemma:

Step 2 summary: To prove $A \times (B + C) \cong (A \times B) + (A \times C)$
ilihan we'll instead define a “natural” isomorphism

$\text{Fun}(A \times (B + C), X) \cong \text{Fun}((A \times B) + (A \times C), X)$.

By representability:

Step 3 summary:

- $\text{Fun}(B + C, X) \cong \text{Fun}(B, X) \times \text{Fun}(C, X)$ by “pairing” and
- $\text{Fun}(A \times B, X) \cong \text{Fun}(B, \text{Fun}(A, X))$ by “currying.”
Step 4: the proof
The proof

Theorem. For any natural numbers a, b, and c,

$$a \times (b + c) = (a \times b) + (a \times c).$$

Proof:
The proof

Theorem. For any natural numbers a, b, and c,

$$a \times (b + c) = (a \times b) + (a \times c).$$

Proof: To prove $a \times (b + c) = (a \times b) + (a \times c)$:
Theorem. For any natural numbers a, b, and c,

$$a \times (b + c) = (a \times b) + (a \times c).$$

Proof: To prove $a \times (b + c) = (a \times b) + (a \times c)$:

- pick sets A, B, and C so that $a := |A|$, and $b := |B|$, and $c := |C|$
The proof

Theorem. For any natural numbers a, b, and c,

$$a \times (b + c) = (a \times b) + (a \times c).$$

Proof: To prove $a \times (b + c) = (a \times b) + (a \times c)$:

- pick sets A, B, and C so that $a := |A|$, and $b := |B|$, and $c := |C|
- and show that $A \times (B + C) \cong (A \times B) + (A \times C)$.
Theorem. For any natural numbers a, b, and c,

$$a \times (b + c) = (a \times b) + (a \times c).$$

Proof: To prove $a \times (b + c) = (a \times b) + (a \times c)$:

- pick sets A, B, and C so that $a := |A|$, and $b := |B|$, and $c := |C|
- and show that $A \times (B + C) \cong (A \times B) + (A \times C)$.
- By the Yoneda lemma, this holds if and only if, “naturally,”
 \[\text{Fun}(A \times (B + C), X) \cong \text{Fun}((A \times B) + (A \times C), X). \]
Theorem. For any natural numbers \(a, b, \) and \(c, \)
\[a \times (b + c) = (a \times b) + (a \times c). \]

Proof: To prove \(a \times (b + c) = (a \times b) + (a \times c)\):

- pick sets \(A, B, \) and \(C \) so that \(a := |A|, \) and \(b := |B|, \) and \(c := |C| \)
- and show that \(A \times (B + C) \cong (A \times B) + (A \times C). \)
- By the Yoneda lemma, this holds if and only if, “naturally,”
\[\text{Fun}(A \times (B + C), X) \cong \text{Fun}((A \times B) + (A \times C), X). \]
- Now
\[\text{Fun}(A \times (B + C), X) \cong \]
Theorem. For any natural numbers a, b, and c,

$$a \times (b + c) = (a \times b) + (a \times c).$$

Proof: To prove $a \times (b + c) = (a \times b) + (a \times c)$:

- pick sets A, B, and C so that $a := |A|$, and $b := |B|$, and $c := |C|$
- and show that $A \times (B + C) \cong (A \times B) + (A \times C)$.
- By the Yoneda lemma, this holds if and only if, “naturally,”
 \[
 \text{Fun}(A \times (B + C), X) \cong \text{Fun}((A \times B) + (A \times C), X).
 \]
- Now
 \[
 \text{Fun}(A \times (B + C), X) \cong \text{Fun}(B + C, \text{Fun}(A, X)) \text{ by “currying”}
 \]
The proof

Theorem. For any natural numbers a, b, and c,

$$a \times (b + c) = (a \times b) + (a \times c).$$

Proof: To prove $a \times (b + c) = (a \times b) + (a \times c)$:

- pick sets A, B, and C so that $a := |A|$, and $b := |B|$, and $c := |C|
- and show that $A \times (B + C) \cong (A \times B) + (A \times C)$.
- By the Yoneda lemma, this holds if and only if, “naturally,”
 $\text{Fun}(A \times (B + C), X) \cong \text{Fun}((A \times B) + (A \times C), X)$.
- Now

 $\text{Fun}(A \times (B+C), X) \cong \text{Fun}(B + C, \text{Fun}(A, X))$ by “currying”

 $\cong \text{Fun}(B, \text{Fun}(A, X)) \times \text{Fun}(C, \text{Fun}(A, X))$ by “pairing”
Theorem. For any natural numbers a, b, and c,

$$a \times (b + c) = (a \times b) + (a \times c).$$

Proof: To prove $a \times (b + c) = (a \times b) + (a \times c)$:

- pick sets A, B, and C so that $a := |A|$, and $b := |B|$, and $c := |C|$
- and show that $A \times (B + C) \cong (A \times B) + (A \times C)$.
- By the Yoneda lemma, this holds if and only if, “naturally,”
 $$\text{Fun}(A \times (B + C), X) \cong \text{Fun}((A \times B) + (A \times C), X).$$
- Now

 $$\text{Fun}(A \times (B + C), X) \cong \text{Fun}(B + C, \text{Fun}(A, X))$$ by “currying”
 $$\cong \text{Fun}(B, \text{Fun}(A, X)) \times \text{Fun}(C, \text{Fun}(A, X))$$ by “pairing”
 $$\cong \text{Fun}(A \times B, X) \times \text{Fun}(A \times C, X)$$ by “currying”
The proof

Theorem. For any natural numbers a, b, and c,

$$a \times (b + c) = (a \times b) + (a \times c).$$

Proof: To prove $a \times (b + c) = (a \times b) + (a \times c)$:

- pick sets A, B, and C so that $a := |A|$, and $b := |B|$, and $c := |C|$
- and show that $A \times (B + C) \cong (A \times B) + (A \times C)$.
- By the Yoneda lemma, this holds if and only if, "naturally,”
 $\text{Fun}(A \times (B + C), X) \cong \text{Fun}((A \times B) + (A \times C), X)$.
- Now
 $$\text{Fun}(A \times (B + C), X) \cong \text{Fun}(B + C, \text{Fun}(A, X)) \text{ by "currying"}$$
 $$\cong \text{Fun}(B, \text{Fun}(A, X)) \times \text{Fun}(C, \text{Fun}(A, X)) \text{ by "pairing"}$$
 $$\cong \text{Fun}(A \times B, X) \times \text{Fun}(A \times C, X) \text{ by "currying"}$$
 $$\cong \text{Fun}((A \times B) + (A \times C), X) \text{ by "pairing."}$$
Theorem. For any natural numbers a, b, and c,

$$a \times (b + c) = (a \times b) + (a \times c).$$

Proof: To prove $a \times (b + c) = (a \times b) + (a \times c)$:

- pick sets A, B, and C so that $a := |A|$, and $b := |B|$, and $c := |C|$
- and show that $A \times (B + C) \cong (A \times B) + (A \times C)$.
- By the Yoneda lemma, this holds if and only if, “naturally,”
 $\text{Fun}(A \times (B + C), X) \cong \text{Fun}((A \times B) + (A \times C), X)$.
- Now

 $\text{Fun}(A \times (B + C), X) \cong \text{Fun}(B + C, \text{Fun}(A, X))$ by “currying”
 $\cong \text{Fun}(B, \text{Fun}(A, X)) \times \text{Fun}(C, \text{Fun}(A, X))$ by “pairing”
 $\cong \text{Fun}(A \times B, X) \times \text{Fun}(A \times C, X)$ by “currying”
 $\cong \text{Fun}((A \times B) + (A \times C), X)$ by “pairing.”

\square
Epilogue: what was the point of that?
Generalization to infinite cardinals

Note we didn’t actually need the sets A, B, and C to be finite.
Generalization to infinite cardinals

Note we didn’t actually need the sets A, B, and C to be finite.

Theorem. For any cardinals α, β, γ,

$$\alpha \times (\beta + \gamma) = (\alpha \times \beta) + (\alpha \times \gamma).$$
Generalization to infinite cardinals

Note we didn’t actually need the sets A, B, and C to be finite.

Theorem. For any cardinals α, β, γ,

$$\alpha \times (\beta + \gamma) = (\alpha \times \beta) + (\alpha \times \gamma).$$

Proof: The one we just gave.
Generalization to infinite cardinals

Note we didn’t actually need the sets A, B, and C to be finite.

Theorem. For any cardinals α, β, γ,

$$\alpha \times (\beta + \gamma) = (\alpha \times \beta) + (\alpha \times \gamma).$$

Proof: The one we just gave.

Exercise: Find a similar proof for other identities of cardinal arithmetic:

$$\alpha^{\beta + \gamma} = \alpha^\beta \times \alpha^\gamma \quad \text{and} \quad (\alpha^\beta)^\gamma = \alpha^{\beta \times \gamma} = (\alpha^\gamma)^\beta.$$
Generalization to other mathematical contexts

In the discussion of representability or the Yoneda lemma, we didn’t need A, B, and C to be sets at all!
Generalization to other mathematical contexts

In the discussion of representability or the Yoneda lemma, we didn’t need A, B, and C to be sets at all!

Theorem.

- For vector spaces U, V, W,
 $$U \otimes (V \oplus W) \cong (U \otimes V) \oplus (U \otimes W).$$

- For nice topological spaces X, Y, Z,
 $$X \times (Y \sqcup Z) = (X \times Y) \sqcup (X \times Z).$$

- For abelian groups A, B, C,
 $$A \otimes_{\mathbb{Z}} (B \oplus C) \cong (A \otimes_{\mathbb{Z}} B) \oplus (A \otimes_{\mathbb{Z}} C).$$
Generalization to other mathematical contexts

In the discussion of representability or the Yoneda lemma, we didn’t need \(A, B, \) and \(C \) to be sets at all!

Theorem.

- For vector spaces \(U, V, W, \)
 \[U \otimes (V \oplus W) \cong (U \otimes V) \oplus (U \otimes W). \]
- For nice topological spaces \(X, Y, Z, \)
 \[X \times (Y \sqcup Z) = (X \times Y) \sqcup (X \times Z). \]
- For abelian groups \(A, B, C, \)
 \[A \otimes_Z (B \oplus C) \cong (A \otimes_Z B) \oplus (A \otimes_Z C). \]

Proof: The one we just gave.
The real point

The ideas of

• categorification (replacing equality by isomorphism),
• the Yoneda lemma (replacing isomorphism by natural isomorphism),
• representability (characterizing maps to or from an object),
• limits and colimits (like cartesian product and disjoint union),
• adjunctions (such as currying)

are all over mathematics — so keep a look out!

Thank you!
The real point

The ideas of

- categorification (replacing equality by isomorphism),
- the Yoneda lemma (replacing isomorphism by natural isomorphism),
- representability (characterizing maps to or from an object),
- limits and colimits (like cartesian product and disjoint union),
- adjunctions (such as currying)

are all over mathematics—so keep a look out!

Thank you!
The real point

The ideas of

- **categorification** (replacing equality by isomorphism),
- **the Yoneda lemma** (replacing isomorphism by natural isomorphism),
The real point

The ideas of

- **categorification** (replacing equality by isomorphism),
- **the Yoneda lemma** (replacing isomorphism by natural isomorphism),
- **representability** (characterizing maps to or from an object),
The real point

The ideas of

- categorification (replacing equality by isomorphism),
- the Yoneda lemma (replacing isomorphism by natural isomorphism),
- representability (characterizing maps to or from an object),
- limits and colimits (like cartesian product and disjoint union),
The real point

The ideas of

• categorification (replacing equality by isomorphism),
• the Yoneda lemma (replacing isomorphism by natural isomorphism),
• representability (characterizing maps to or from an object),
• limits and colimits (like cartesian product and disjoint union), and
• adjunctions (such as currying)
The real point

The ideas of

• categorification (replacing equality by isomorphism),
• the Yoneda lemma (replacing isomorphism by natural isomorphism),
• representability (characterizing maps to or from an object),
• limits and colimits (like cartesian product and disjoint union), and
• adjunctions (such as currying)

are all over mathematics.
The real point

The ideas of

- **categorification** (replacing equality by isomorphism),
- **the Yoneda lemma** (replacing isomorphism by natural isomorphism),
- **representability** (characterizing maps to or from an object),
- **limits and colimits** (like cartesian product and disjoint union), and
- **adjunctions** (such as currying)

are all over mathematics — so keep a look out!
The real point

The ideas of

• **categorification** (replacing equality by isomorphism),
• **the Yoneda lemma** (replacing isomorphism by natural isomorphism),
• **representability** (characterizing maps to or from an object),
• **limits and colimits** (like cartesian product and disjoint union), and
• **adjunctions** (such as currying)

are all over mathematics — so keep a look out!

Thank you!