pretalk 4pm, talk 5:30pm

Shaffer 202

- September 7: Emily Riehl, Johns Hopkins

The plan is to give a leisurely introduction to the basic concepts of enriched category, in which the collection of morphisms between each fixed pair of objects is itself an object of another category, which will also function as a review of unenriched category theory, in which this collection of morphisms is a mere set. In particular, we will define enriched categories, functors, natural transformations, adjunctions, and at least state the enriched Yoneda lemma.

At the break we will hold the organizational meeting for the seminar to assign speakers and topics for the rest of the semester.

- September 28: Sam van Gool, CUNY, on more basic enriched category theory and the enriched Yoneda lemma
- October 12: Tslil Clingman on ends and coends
- October 19: Apurv Nakade on weighted limits and colimits in unenriched category theory
- October 26: Daniel Fuentes-Keuthan on weighted limits and colimits
- November 2: David Jaz Myers on weighted limits and colimits
- November 16: Qingci An on 2-category theory
- December 7: Martina Rovelli on 2-categorical limits and colimits

- September 19: Alexander Campbell, Centre of Australian Category Theory, Macquarie University

An (orthogonal) factorisation system on a category C consists of two classes (E,M) of morphisms in C, subject to an "orthogonality" axiom and both closed under composition and containing the isomorphisms, such that every morphism f in C factorises as f = me, with e in E and m in M. The axioms imply that the (E,M)-factorisations of a given morphism are unique up to unique isomorphism. As in the example of the image factorisation system (surjective, injective) on the category of sets, one can generally see a factorisation system on a category as providing a notion of image to its morphisms.

Following an introduction to the basic properties and examples of factorisation systems, this talk will survey the role of factorisation systems in such diverse topics of category theory as reflective subcategories, notions of epimorphism, regular categories and (bi)categories of relations, and constructions of associated sheaves, as dictated by time and interest.

- September 26: Apurv Nakade, Johns Hopkins

Simplicial objects provide a combinatorial model for doing homotopy theory, that generalize topological spaces and chain complexes simultaneously. In this talk we'll try and understand a multitude of examples of simplicial objects. We'll describe the homotopy groups of Kan complexes (fibrant objects in Quillen's model category). We'll state the connection between simplicial categories and other categories via dold-kan and geometric realization functors.

- October 10: Dominic Verity, Centre of Australian Category Theory, Macquarie University

In SGA1, Grothendieck re-imagines Galois theory in terms of an axiomatic characterisation of categories of group actions. This approach leads to generalisations of Galois theory which applies to infinite field extensions and to categories of commutative algebras. Maybe more surprisingly he is able to demonstrate that, in this framework, Galois theory and the theory of covering spaces / the fundamental group become examples of the same categorical formalism. Ultimately, Grothendieck's insight gains it most abstract and all encompassing form in the work of Joyal and Tierney, in which they demonstrate that any Grothendieck topos, that is to say any category of of generalised sheaves, is equivalent to a category of continuous actions of some localic (spatial) groupoid. We might call this the Galois groupoid of the topos.

In this talk I intend to provide an elementary introduction to Grothendieck's Galois theory, proving as many of his core results as I can in the time available. We will examine both finite and pro-finite variants, which will enable us to discuss the Galois theory of (infinite) algebraic closures and the theory of covering spaces of spaces that lack a universal covering space. I also hope to briefly touch upon the primary themes and motivations that arise in Joyal and Tierney's work. My plan is to rely on few categorical preliminaries, and to explain those that I do need as we go along.

- December 12: Tslil Clingman, Johns Hopkins

In this talk we aim to explore some of the elementary results in the theory of monads. We will begin by examining how monads might naturally arise from notions in monoidal categories and attempt to understand monads and their modules (specifically algebras) in this light — finding, as we will, the generation of monads from monoids to be unsatisfactory in that the inverse problem does not admit an immediately natural and adequate resolution. With that source of monads exhausted we will turn to the next and perhaps most fruitful approach, viz., the generation of monads from adjunctions.

Once some basic results have been established we will address the inverse problem again and find here the famous results of Kleisli and Eilenberg-Moore: every monad arises from an adjunction in two canonical and somehow universal ways. We will explore the Kleisli category and Eielenberg-Moore categories for some common monads in order to impress the niceties of the latter, the category of algebras. In particular we will interest ourselves with the observation that the construction of Eilenberg-Moore inherits all limits and suitable colimits from the base category and so prompt the answering of a very practical question: how might we tell, for a given “algebraic” system (groups, monoids, categories ...), whether and indeed which limits and colimits exist? This will lead us to the notion of monadicity and the theorem of Beck.

Time permitting we will consider the idea of a distributive law so that we may more clearly describe the situation of one monad acting over another — the generalisation of the case of unital rings in which the multiplicative monoid and additive group interact suitably.

Only a knowledge of categories, functors, natural transformations, limits and adjoints will be assumed.

Contact Emily Riehl.