
INDUCTION AND CONSTRUCTION:
THE POINTLESS THEORY OF LOCALIC TOPOX

tslil clingman

Abstract. In this talk we will explore a half-way notion between the concrete description
of the topos of sheaves of continuous functions on a topological space, and the fully general
description of topos on a site. Specifically, we will concern ourselves with the replacement
of topological spaces by categories of a particular nature. These categories are the locales
of the title, and we will sketch some of their theory that is of independent interest so as to
gain an intuition for the weirdness to come. To mention some highlights, we will encounter
spaces without points, and examine both extrinsic and intrinsic descriptions of when a topos
is equivalent to a topos of sheaves on a locale. The connection with topological spaces will
then motivate the definition of geometric morphisms, whose properties and utility will be of
central concern in the coming talks. For those playing along at home, references include, as
ever, Mac Lane – Moerdijk [MM] (the chapter bearing the same name as the title of this talk),
the nLab (articles: locale, localic topos, and geometric morphism) but also the book of Picado
– Pultr, “Frames and Locales” [PP].
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For a space𝑋with a topology 𝜏we considered the lattice of open setsΩ𝑋 of𝑋 determined
by the topology and the inclusion relation ⊆. The objects of Ω𝑋 are the open subsets of 𝑋
and there is a unique morphism from 𝑈 to 𝑉 just when 𝑈 ⊂ 𝑉. Then for any other space 𝑌,
such as ℝ, we can define a contravariant functor

𝐶(−, 𝑌) ∶ Ω𝑋op → Set
by defining𝐶(𝑈,𝑌) to be the set of continuous functions from𝑈 to𝑌. This presheaf satisfies
a “local to global” condition we referred to as the sheaf condition, defining a sheaf on 𝑋. This
leads to the following question:

Q. What are the open aspects of 𝑋 we need to be able to form the category of sheaves on 𝑋?

Are the open sets enough?

1. Answer

We’ll follow the following outline:
(i) We’ll start with a topological space (𝑋, 𝜏).
(ii) We’ll generalize this to a lattice (𝑌, ⊂).
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(iii) We’ll generalize this to a suitably structured category.
(iv) We’ll conclude by constructing sheaves on this.

defn. If (𝐿, ≤) is a poset (meaning the relation is anti-symmetric, transitive, and reflexive)
and we consider a family of elements {𝑥𝑖}𝑖∈𝐼 ⊂ 𝐿.

(i) The meet ∧𝑥𝑖, when it exists, is the largest 𝑥 ∈ 𝐿 such that 𝑥 ≤ 𝑥𝑖 for all 𝑖 ∈ 𝐼.
(ii) The join ∨𝑥𝑖, when it exists, is the smallest 𝑥 ∈ 𝐿 such that 𝑥𝑖 ≤ 𝑥 for all 𝑖 ∈ 𝐼.

We say that meets and joints are finite if the indexing set 𝐼 is finite.

Lemma-Exercise.
(i) In the lattice of opens (𝜏, ⊂) associated to a topological space (𝑋, 𝜏) joins are unions and always

exist.
(ii) If (𝐿, ≤) has all joins then it has all meets!
(iii) 𝑥 ∧ (∨𝑦𝑖) ≥ ∨(𝑥 ∧ 𝑦𝑖)
(iv) Upon considering (𝐿, ≤) as a thin category— that is a category with at most one arrow in each

hom-set —∏
𝑖∈𝐼 𝐿(𝑥𝑖, 𝑧) ≅ 𝐿(𝑧, ∧𝑥𝑖)

Exercise. Consequently, the lattice of opens (𝜏, ⊂) associated to a topological space (𝑋, 𝜏)
has all meets. We leave it as an exercise to work out what they are. Consequently Ω𝑋 is a
complete and cocomplete category (cccc).

Remark. Of course properties (ii), (iii), (iv) apply to the lattice (𝐿, ≤op) and thus dualize to
give us two more theorems for free about (𝐿, ≤).

A further exercise is to prove all of this diagrammatically.

NB. Note the lattice (𝐿, ≤op) is 𝐿op as a category.

NB. Note that Ω𝑋 = (𝜏, ⊆) ≅ Top(𝑋, 𝕊) as categories, where 𝕊 is the Sierpinski space, with
two points, one of which is open.

In Ω𝑋, the property (iii) above becomes an equality:

Lemma-Exercise. InΩ𝑋, 𝑥 ∧ (∨𝑦𝑖) = ∨(𝑥 ∧ 𝑦𝑖).

NB. There exist spaces 𝑋 so that in Ω𝑋, 𝑥 ∨ (∧𝑦𝑖) ≠ ∧(𝑥 ∨ 𝑦𝑖).

defn. A frame is a thin complete and cocomplete category which satisfies the infinite dis-
tributive law 𝑥 ∧ (∨𝑦𝑖) = ∨(𝑥 ∧ 𝑦𝑖).

Remark. The infinite distributive law 𝑥 ∧ (∨𝑦𝑖) = ∨(𝑥 ∧ 𝑦𝑖) is a decategorification of one of
Giraud’s axioms for Grothendieck topos: the axiom that says that colimits are universal.

ex. Every Heyting algebra is a frame.

ex. For any topological space (𝑋, 𝜏), Ω𝑋 is a frame.

Theorem-Exercise. A poset 𝑃 is a frame if and only if the Yoneda embedding

𝑃 𝟚𝑃op

よ

⊥

has a left exact left adjoint.

This is like the characterization of Grothendieck topox as lex reflexive subcategories of
presheaf categories but it’s better because the frame 𝑃 is given as a lex reflexive subcategory of
boolean-valued presheaves on itself, with the embedding given by the Yoneda embedding.
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Q. Given a continuous function 𝑓∶ (𝑋, 𝜏) → (𝑌, 𝜎), what does this mean for their frames
Ω𝑋 and Ω𝑌?

Lemma-Exercise. The inverse image function 𝑓↼ ∶ 𝔓𝑌 → 𝔓𝑋
(i) descends to a functionΩ𝑌 → Ω𝑋
(ii) which is cocontinuous (preserves joins)
(iii) and preserves finite meets (is lex)

These properties motivate the following definition:

defn. Given frames 𝐹 and 𝐹′ a frame morphism 𝑓∶ 𝐹 → 𝐹′ is a lex cocontinuous functor, a
finite meet and join preserving order-preserving map.

Corollary. Ω∶ Top → Frmop is a functor.

The contravariance is annoying, so we’d like to drop the op.

Q (op-drop warmup). Given a frame 𝐹 and 𝑥 ∈ 𝐹, does the functor − ∧ 𝑥∶ 𝐹 → 𝐹 have a
right adjoint?

If there were a right adjoint 𝑥 ⇒ −∶ 𝐹 → 𝐹, we would need to have

𝐹(𝑦 ≤ 𝑥, 𝑧) ≅ 𝐹(𝑦, 𝑥 ⇒ 𝑧)

for all 𝑦 and 𝑧. Recall that 𝐹(𝑦 ≤ 𝑥, 𝑧) ⊂ {∗} so if 𝑦 ≤ 𝑥 ≤ 𝑧 then we would have to have
𝑦 ≤ 𝑥 ⇒ 𝑧 . So we could try defining 𝑥 ⇒ 𝑧 to be the join

𝑥 ⇒ 𝑧 ≔ ∨{𝑤 ∈ 𝐹 ∣ 𝑤 ∧ 𝑥 ≤ 𝑧}.

Indeed then 𝑦 ≤ ∨{𝑤 ∈ 𝐹 ∣ 𝑤∧ 𝑥 ≤ 𝑧} if and only if ∃𝑤 so that 𝑦 ≤ 𝑤 and 𝑤∧ 𝑥 ≤ 𝑧 which
is the case if and only if 𝑦 ∧ 𝑥 ≤ 𝑧.

Corollary. A frame is a complete and cocomplete cartesian closed category (cccccc).

Exercise. What is ⇒ in Ω𝑋?

What does this have to do with dropping the op in the functor Ω∶ Top → Frmop?
Wouldn’t it be great that if for any morphism of frames 𝑓∶ 𝐹′ → 𝐹 we could magically

extract an arrow pointing in the other way. As it turns out every frame morphism, considered
as a functor between thin categories, has a right adjoint 𝑔∶ 𝐹 → 𝐹′.

We can work out the definition as follows. The defining universal property says that

𝐹(𝑓(𝑦), 𝑧) ≅ 𝐹′(𝑦, 𝑔(𝑧)),

i.e., 𝑓(𝑦) ≤ 𝑧 iff 𝑦 ≤ 𝑔(𝑧). We can use the same trick and define

𝑔(𝑧) ≔ ∨{𝑤 ∈ 𝐹′ ∣ 𝑓(𝑤) ≤ 𝑧}.

Remark. This is the usual formula provided by the adjoint functor theorem

𝑔(𝑧) ≔ colim(𝑓/𝑧 → 𝐹′).

Be careful:

Warning. 𝑔 is not in general a frame morphism!

In other words, the process of moving from 𝑓 to its right adjoint 𝑔 does not define an
identity-on-objects contravariant involution Frmop → Frm, since the arrows 𝑔 are not mor-
phisms of frames. Instead we land in the following category:
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defn. Loc is the category whose objects are frames and whose morphisms 𝑓∶ 𝐿 → 𝐿′ are
continuous functors with chosen left exact left adjoints (meaning the left adjoints are frame
morphisms).

The intent of this definition is that we have a contravariant equivalence of categories:

Exercise. Frmop ≃ Loc.

Note the morphisms in the category of locales go in the direction of a continuous function:
given 𝑓∶ (𝑋, 𝜏) → (𝑌, 𝜎), there is a locale morphism 𝑓∶ Ω𝑋 → Ω𝑌.

Corollary. There is a functor Lc ∶ Top → Loc defined on objects byΩ.

Even though the objects of the categoriesFrm andLoc are the same they should be thought
of differently. The objects of Frm should be thought of as logical where the objects of Loc
should be thought of as topological.

After the break we’ll define points of locales (objects of Loc) and look for exotic examples
of frames, other than the ones (spaces, Heyting algebras) mentioned above.

2. After the break

We started with the category Frm, whose objects are frames (complete and cocomplete
categories that satisfy the infinite distributive law) and whose morphisms are finite meet pre-
serving and join preserving order-preserving maps. We discovered that any morphism in the
category of frames has a right adjoint, which doesn’t preserve joins but does preserve arbitrary
meets (since right adjoints preserve limits). Thus we define a new categoryLoc whose objects
again are frames but whose morphisms are meet-preserving functors that have a left adjoint
that preserves finite meets (as well as arbitrary joins, since left adjoints preserve colimits).

Lemma-Exercise. If 𝑋 and 𝑌 are Hausdorff spaces, then

Frm(Ω𝑌,Ω𝑋) ≅ Top(𝑋, 𝑌).

That is the only morphisms of frames between open set lattices of Hausdorff spaces arise
from continuous functions. Note that the points of a space 𝑋 are recovered by continuous
functions 1 → 𝑋, i.e., 𝑋 ≅ Top(1, 𝑋). Thus, if 𝑋 is a Hausdorff space

𝑋 ≅ Top(1, 𝑋) ≅ Frm(Ω𝑋,Ω1) ≅ Loc(Ω1,Ω𝑋).
Note Ω1 is the frame ∅ ≤ ∗. So we generalize this to define the “points” of any locale. Moti-
vated by this we write ℙ ≔ Ω1.

defn. Given a locale 𝐿, a point in 𝐿 is a morphism of locales ℙ → 𝐿.

Lemma-Exercise. A point in 𝐿 is equivalently
(i) a frame morphism 𝐿 → ℙ
(ii) a completely prime filter
(iii) a meet irreducible element of 𝐿

Warning. The equivalence between (ii) and (iii) is classical, rather than constructive. The
second characterization is better.

defn. A filter 𝔉 on a poset 𝑄 is an
• upwards closed subset: meaning 𝑥 ∈ 𝔉 and 𝑦 ≥ 𝑥 implies 𝑦 ∈ 𝔉 that is
• that’s down directed: 𝑥, 𝑦 ∈ 𝔉, then there exists 𝑧 ∈ 𝔉 so that 𝑧 ≤ 𝑥 ∧ 𝑦
A completely prime filter satisfies the additional property that
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• ∨𝑥𝑖 ∈ 𝔉 implies that there exists 𝑖 so that 𝑥𝑖 ∈ 𝔉.

defn. An element 𝑝 ≠ ⊤ ∈ 𝐿 is meet-irreducible if whenever 𝑥 ∧ 𝑦 ≤ 𝑝 then 𝑥 ≤ 𝑝 or 𝑦 ≤ 𝑝.

ex. There are lots of locales without any points, whose open set lattices have a top element, a
bottom element, and an arbitrary set of at least three uncomparable elements in between.

⊤

• • •

⊥
These are distinct locales none of which have any points. So points don’t determine a locale!

There’s a lot of information that locales understand that point set topology does not.

Theorem. There is a functor Sp ∶ Loc → Top that carries a locale to a space whose underlying set
is the set of its points. This is right adjoint to the functor Lc.

defn. A sublocale is a regular subobject 𝐿′ ↣ 𝐿 in Loc (a regular quotient in Frm).

These are much richer than subspaces in topology.

Theorem. A sublocale on 𝐿 is equivalently a map 𝜈∶ 𝐿 → 𝐿 (not of locales or frames, just a map)
satisfying 𝑥 ≤ 𝜈𝑥, 𝑥 ≤ 𝑦 ⟹ 𝜈𝑥 ≤ 𝜈𝑦, 𝜈2 = 𝜈, and 𝜈(𝑥 ∧ 𝑦) = 𝜈𝑥 ∧ 𝜈𝑦.

The sublocale is then the equalizer of 𝜈 and the identity, the fixed points for 𝜈. This is
reminiscent of Lawvere-Tierney operators.

We can define what it means for a sublocale to be dense in such a way that dense subspaces
become dense sublocales.

Theorem. There is a smallest dense sublocale of any locale.

In particular, if𝐷 and𝐷′ are dense sublocales, then𝐷∩𝐷′ is dense. In particularℚ∩ℝ\ℚ
is dense in ℝ! It has no points, but it’s dense. Again, the points are not the point.

This can resolve the Banach-Tarski paradox. The points are disjoint as subspaces but not
as sublocales. You didn’t partition the points of the solid ball to get two solid balls. You
duplicated information. See Alex Simpson “Measure, randomness, and sublocales.”

defn. Let 𝐿 be a locale. A functor 𝑃∶ 𝐿op → Set is a sheaf if whenever 𝑥 = ∨𝑥𝑖 the map

𝑃𝑥 ∏
𝑗 𝑃𝑥𝑖 ∏

𝑖,𝑗 𝑃(𝑥𝑖 ∧ 𝑥𝑗)

is an equalizer.

We may collect all the sheaves on 𝐿 into a category Shv(𝐿) with natural transformations as
morphisms.

Theorem. Shv(𝐿) is a cccccc.

In fact, this category is a Grothendieck topos as we shall soon discover.
Here’s something interesting:

Theorem ([MM, §III.8]). For any locale 𝐿 and a sheaf 𝑆 ∈ Shv(𝐿), the subobject lattice of 𝑆 is a
locale.

Theorem-Exercise. The locale 𝐿 is recovered as the subobject locale of the terminal object.
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Hint. The objects in the image of the Yoneda embedding

𝐿 𝟚𝐿op Set𝐿opよ

are sheaves. I.e., the topology used to define sheaves is “canonical” meaning that it’s designed
to make the representables into sheaves. Each representable is a subobject of 1. So to prove the
theorem you show that each subobject of 1 is representable and then the Yoneda embedding
describes this locale. �

This is special to localic topox.

Theorem ([MM, §III.5]). A topos E is equivalent to Shv(𝐿) for some locale if E is generated under
colimits by subobjects of 1.

Q. What about morphisms?

Morphisms of locales 𝑓∶ 𝐿 → 𝐿′ come with left exact left adjoints. Immediately restricting
along the left adjoint 𝑓↼ defines a mapPsh(𝐿) → Psh(𝐿′). Left exactness will guarantee that
it restricts to a morphism Shv(𝐿) → Shv(𝐿′).

Theorem ([J∞, C.2.3.4]). Shv𝑓∶ Shv(𝐿) → Shv(𝐿′) has a left exact left adjoint!

Thus we’ve categorified the notion of morphism of locale to the notion of geometric mor-
phism of localic topos.

Theorem ([MM, §IX.5.2]). Loc(𝐿, 𝐿′) ≅ Topox(Shv(𝐿), Shv(𝐿′)).
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