
MADE-TO-ORDER WEAK FACTORIZATION SYSTEMS

EMILY RIEHL

The aim of this note is to briefly summarize techniques for building weak factor-
ization systems whose right class is characterized by a particular lifting property.

Weak factorization systems

Weak factorization systems are of paramount importance to homotopical algebra.
This connection is best illustrated by the following definition, due to Joyal and
Tierney [JT07].

Definition 1. A Quillen model structure on a category M, with a class of maps
W called weak equivalences satisfying the 2-of-3 property, consists of two classes
of maps C and F so that (C ∩W,F) and (C,F ∩W) are weak factorization systems.

Definition 2. A weak factorization system (L,R) on a category M consists of
two classes of maps so that

• Any map f ∈M can be factored as f = r · ` with ` ∈ L and r ∈ R.
• Any lifting problem, i.e., any commutative square

(1) ·
L3`
��

// ·
r∈R
��

· //

@@�
�

�
�

·

has a solution, i.e., a diagonal arrow making both triangles commute.
• The classes L and R are closed under retracts.

Remark 3.

(1) By the retract argument:

f ∈ L  

·
f

��

` // ·
r

��
 

·
f

��

·

`

��

·
f

��
·

s

@@�
�

�
�

· ·
s
// ·

r
// ·

the class L consists of retracts of maps appearing as left factors.
(2) Consequently, the left and right classes determine each other. More pre-

cisely:

L = �R and R = L�

meaning L and R are maximal with the lifting property (1).

I would like to thank Steve Awodey for sparking my interest in homotopy type theory and
encouraging me to keep in touch with recent progress.

1



2 EMILY RIEHL

(3) Any class of maps of the form �R is closed under retracts, coproducts,
pushouts, transfinite composition, and contains the isomorphisms. Such
classes are called weakly saturated. A class L� is closed under the dual
limit constructions.

(4) Given any set of maps J , there is a cofibrantly generated weak fac-
torization system (�(J�),J�)—provided that it is possible to construct
factorizations. This is accomplished by means of the small object argu-
ment.1

The algebraic small object argument

Assuming the category M is cocomplete and satisfies a certain “smallness” con-
dition (such as being locally presentable), the algebraic small object argument
defines the functorial factorization necessary for a “made-to-order” weak factoriza-
tion system with R = J�. For now, J is an arbitrary set of morphisms of M but
later we will use this notation to represent something more sophisticated.

Generic lifting problems. The small object argument begins by defining a generic
lifting problem, a single lifting problem that characterizes the desired right class:

(2) f ∈ J� !

·∐
j∈J

∐
Sq(j,f)

j

��

// ·
f

��
· //

@@�
�

�
�

·
The diagonal map defines a solution to any lifting problem between J and f .

Step-one functorial factorization. Taking a pushout transforms the generic
lifting problem (2) into the step-one functorial factorization, another generic
lifting problem that also factors f .

(3) f ∈ J� !

·∐
j∈J

∐
Sq(j,f)

j

��

//

p

·
L1f

��

·
f

��
· // ·

s

@@�
�

�
�
R1f
// ·

The step-one functorial factorization defines a pointed endofunctor R1 : M2 →M2

of the arrow category. An R1-algebra is a pair (f, s) satisfying (3). A map admits
the structure of an R1-algebra if and only if it is in the class J�.

The free monad construction. By the closure properties enumerated in Remark
3(3), L1f ∈ L = �(J�). However, there is no reason to expect that R1f ∈ J�:
maps in the image of R1 need not be R1-algebras—unless R1 is a monad. The idea
of the algebraic small object argument, due to Garner [Gar09], is to freely replace
the pointed endofunctor R1 by a monad.2

Following Kelly [Kel80], assuming certain “smallness” or “boundedness” condi-
tions, it is possible to construct the free monad R on a pointed endofunctor R1 in
such a way that the categories of algebras are isomorphic. Garner shows that with
sufficient care, Kelly’s construction can be performed in a way that preserves the

1Dual “fibrantly generated” weak factorization systems are much rarer because the technical

conditions necessary to “permit the small object argument” are satisfied by Set but not by Setop.
2When all maps in the left class are monomorphisms, the free monad is defined by “iteratively

attaching non-redundant cells” until this process converges.
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fact that the endofunctor R1 is the right factor of a functorial factorization whose
left factor L1 is already a comonad. In this way, the algebraic small object produces
a functorial factorization f = Rf · Lf in which L is a comonad, R is a monad, and
R-Alg ∼= R1-Alg ∼= J�.

Remark 4. When the weak saturation of the generating set J is contained within
the monomorphisms, the algebraic small object argument has the following simpli-
fied description: Iteratively apply the construction of the step-one functorial fac-
torization to the right factor constructed in the previous stage, but avoid attaching
solutions to redundant lifting problems. This means that any lifting problem whose
“attaching map” factors through a previous stage

·
j

��

// ·
f

��

L1f // ·
R1f

��
· // · ·

should be omitted from the coproduct defining the left-hand side of (2).

Example 5. Consider {∅ → ∗} on the category Set. The algebraic small object
argument produces the generic lifting problem displayed on the left and the step-one
functorial factorization displayed on the right:

∅

��

// X

f

��
 

∅

��

//

p

X
incl1

��

X

f

��
Y

??�
�

�
�

Y Y // X
∐

Y
f
∐

1
//

<<x
x

x
x

x
Y

Every lifting problem after step one is redundant. Indeed, Rf = f
∐

1 is already a
monad and the algebraic small object argument converges in one step to define the
functorial factorization (L = incl1,R).

Example 6. Consider {∂∆n ↪→ ∆n}n≥0 on the category of simplicial sets. Here
we may consider lifting problems against a single generator at a time inductively
by dimension. The step-one factorization of X → Y attaches the 0-skeleton of Y to
X. There are no non-redundant lifting problems involving the generator ∅ ↪→ ∆0,
so we move up a dimension. The step-two factorization of X → Y now attaches
1-simplices of Y to all possible boundaries in X∪sk0Y . After doing so, there are no
non-redundant lifting problems involving ∂∆1 ↪→ ∆1. The construction converges
at step ω.

Algebraic weak factorization systems

Functorial factorizations and lifting properties. A functorial factorization
f = Rf ·Lf for a weak factorization system (L,R) characterizes that weak factor-
ization system:

f ∈ L !

·
f

��

Lf // ·
Rf

��
·

s

@@�
�

�
�

·

g ∈ R !

·
Lg

��

·
g

��
·

t

@@�
�

�
�
Rg
// ·
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because the specified lifts assemble into a canonical solution to any lifting problem

· u //

f

��

·
g

��
·

v
// ·

 

·
Lf

��

u // ·
Lg

��
· //___

Rf

��

·
Rg

��

t

GG

*
� �

·
v
//

s

WW

�

�
*

·

A natural question is whether any functorial factorization defines a weak factor-
ization system. In order to have Lf ∈ L and Rf ∈ R we must have maps

(4) ·
Lf

��

L2f // ·
RLf

��

·
LRf

��

·
Rf

��
·

@@�
�

�
�

· ·
R2f

//

@@�
�

�
�

·

These need not exist in general but do when the pointed endofunctors L and R
underlie a comonad and monad respectively.3 So, in particular, the functorial
factorization produced by the algebraic small object argument determines its weak
factorization system.

Algebraic weak factorization systems. Put another way, the algebraic small
object argument produces an algebraic weak factorization system (L,R), a
functorial factorization that underlies a comonad L and a monad R and in which
the natural transformation defined using the canonical lifts (4) defines a distributive
law LR⇒ RL [GT06]. In fact, either of the categories L-coalg or R-alg determine
the other; see [Rie11, §2.5], [Rie13c, §5.1].

Example 7. In Example 5, L-coalg is the category of monomorphisms and pull-
back squares, while R-alg ∼= {∅ → ∗}� is the category of split epimorphisms and
commutative squares preserving the splittings.

Example 8. In Example 6, L-coalg is the category of monomorphisms and com-
mutative squares that induce pullback squares between the relative latching maps,
while R-alg ∼= {∂∆n ↪→ ∆n}�n≥0 is the category of algebraic acyclic Kan fibrations
and maps preserving the chosen liftings. This is the Reedy algebraic weak factor-
ization system defined with respect to the algebraic weak factorization system of
Example 7 [Rie13d].

Generalizations of the algebraic small object argument

The construction of the generic lifting problem admits a more categorical de-
scription which makes it evident that it can be generalized in a number of ways,
expanding the class of weak factorization systems whose functorial factorizations
can be “made-to-order.”

3This is why Lf ∈ L = �(J�).
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Coherence. Step zero of the algebraic small object argument forms the density
comonad, i.e., the left Kan extension along itself, of the inclusion of the generating
set of arrows:

M2

Lan=L0

""D
D

D
D

J

>>||||||||
//

⇑

M2

L0f =

∫ j∈J ∐
Sq(j,f)

j

When M is cocomplete, this construction makes sense for any small category of
arrows J . The counit of the density comonad defines the generic lifting problem
(2), admitting a solution if and only if f ∈ J�—but now J� denotes the category in
which an object is a map f together with a choice of solution to any lifting problem
against J that is coherent with respect to (i.e., commutes with) morphisms in J .
Proceeding as before, the algebraic small object argument produces an algebraic
weak factorization system (L,R) so that R-alg ∼= J� over M2 and L-coalgebras
lift against R-algebras.

Example 9. In the category of cubical sets, let u,A,t,@ suggestively denote four
subfunctors of the 2-dimensional representable �2. For n > 2 and J ⊂ {1, . . . , n}
with |J | = n − 2, define uJ ⊂ �n to be u ⊗ �J and similarly for the three other
shapes. Consider the category whose objects are the inclusions uJ ↪→ �n for each
shape and whose morphisms are generated by

• the projections

uJ //

��

uJ\{j}

��
�n

πj

// �n−1

for each j ∈ J , and

• the inclusions

uJ //

��

uJ∪{i}

��
�n // �n+1

embedding �n as the face i = 0 or i = 1.

This category generates the fibrant replacement functor described by Simon Huber.

Example 10 ([Rie11, §4.2]). Any algebraic weak factorization system (L,R) on M
induces a pointwise-defined algebraic weak factorization system (LA,RA) on the
category MA of diagrams. Moreover, when (L,R) is generated by J , (LA,RA) is
generated by the category Aop ×J , whose objects are tensors of arrows of J with
covariant representables.

Enrichment. Now suppose that M is tensored, cotensored, and enriched over a
closed symmetric monoidal category V. In this context, we may choose to define
the generic lifting problem using the V-enriched left Kan extension

L0f =

∫ j∈J
Sq(j, f)⊗ j,

where Sq(j, f) ∈ V is the object of commutative squares from j to f defined by the
evident pullback involving the hom-objects of M.

The enriched algebraic small object argument produces an algebraic weak fac-
torization system whose underlying left and right classes satisfy an enriched lifting
property, defined internally to V. The classes of an ordinary weak factorization
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system satisfy this enriched lifting property if and only if tensoring with objects in
V preserves the morphisms in the left class. See [Rie13a, §13] for more details.

Example 11. Consider {0 → R} in the category of modules over a commutative
ring R with identity. In analogy with Example 5, the unenriched algebraic small
object argument produces the functorial factorization

X
incl−−→ X ⊕ (⊕YR)

f⊕ev−−−→ Y

whereas the enriched algebraic small object argument produces the factorization

X
incl−−→ X ⊕ Y

f⊕1−−−→ Y.

Example 12 ([Rie13b]). On the category of unbounded chain complexes of R-
modules, consider the sets {0 → Dn}n∈Z and {Sn−1 ↪→ Dn}n∈Z where Dn is
the chain complex with R in degrees n and n − 1 and identity differential and
Sn has R in degree n and zeros elsewhere. The enriched algebraic small object
argument converges at step one in the former case and at step two in the latter
case to produce the natural factorizations through the mapping cocylinder and the
mapping cylinder respectively [BMR13].

Class cofibrantly generated. The algebraic weak factorization systems con-
structed in Examples 10 and 12 are not cofibrantly generated (in the usual sense)
[CH02, Lac07]. The following examples are not cofibrantly generated even in the
expanded sense introduced here.

Example 13 ([BR13]). There are two algebraic weak factorization systems on
topological spaces whose right class is the class of Hurewicz fibrations. A map is
a Hurewicz fibration if it has the homotopy lifting property, i.e., solutions to
lifting problems

(5) A

incl0
��

// X

f

��
A× I

<<x
x

x
x

// Y

defined for every topological space A. As there is proper class of generators, it is
not possible to form the coproduct in (2). However, the functor Topop → Set that
sends A to the set of lifting problems (5) is represented by the mapping cocylinder
Nf :

Nf

��

//
y

Y I

ev0

��
 

Nf

incl0

��

// X

f

��
X

f
// Y Nf × I // Y

It follows that any lifting problem (5) factors uniquely through the generic lifting
problem displayed on the right. The algebraic small object argument proceeds as
usual, though there are some subtleties to the proof that it converges.

There is another algebraic weak factorization system “found in the wild”: the
factorization through the space of Moore paths. The category of algebras for the
Moore paths monad admits the structure of a double category in such a way that the
forgetful functor to the arrow category becomes a double functor. A recognition
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criterion due to Garner implies that this defines an algebraic weak factorization
system.
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