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Cyclic multicategories, multivariable adjunctions and mates

by

EUGENIA CHENG, NICK GURSKI AND EMILY RIEHL

Abstract

A multivariable adjunction is the generalisation of the notion of a 2-variable
adjunction, the classical example being the hom/tensor/cotensor trio of
functors, to n + 1 functors of n variables. In the presence of multivariable
adjunctions, natural transformations between certain composites built from
multivariable functors have “dual” forms. We refer to corresponding natural
transformations as multivariable or parametrised mates, generalising the
mates correspondence for ordinary adjunctions, which enables one to pass
between natural transformations involving left adjoints to those involving right
adjoints. A central problem is how to express the naturality (or functoriality)
of the parametrised mates, giving a precise characterization of the dualities
so-encoded.

We present the notion of “cyclic double multicategory” as a structure in which
to organise multivariable adjunctions and mates. While the standard mates
correspondence is described using an isomorphism of double categories, the
multivariable version requires the framework of “double multicategories”.
Moreover, we show that the analogous isomorphisms of double multicate-
gories give a cyclic action on the multimaps, yielding the notion of “cyclic
double multicategory”. The work is motivated by and applied to Riehl’s
approach to algebraic monoidal model categories.
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Introduction

Frequently in homotopical algebra and algebraic K-theory, one is dealing with
model categories with extra structure. In particular, the model structure is often
required to be compatible with a closed monoidal structure on the underlying cate-
gory or an enrichment over another model category. For instance, enriched model
categories play an essential role in equivariant homotopy theory [8, 9, 10]. The
formal definitions, introduced in [12], generalise Quillen’s notion of a simplicial
model category and can be expressed in three equivalent (“dual”) forms. Although
these formulations are well-known, the precise nature of these dualities is not
obvious because they involve a two-variable adjunction defined on arrow categories
constructed from a two-variable adjunction on the underlying categories and an
associated bijective correspondence between certain natural transformations that has
never been precisely described.

Indeed, a fully satisfactory account of the dualities for natural transformations
involving the internal hom in an enriched category and its adjoints demands a
generalisation from two-variable adjunctions to multivariable adjunctions: the
“tensor/cotensor/hom” trio of functors combine with the closed monoidal struc-
ture on the enriching category to define functors of n-variables with compatibly
defined adjoints.! Again, in the presence of multivariable adjunctions, natural
transformations between certain composites built from multivariable functors (e.g.
encoding coherence conditions) have “dual” forms. This phenomenon was perhaps
first observed in [3], a paper that paved the way for the development of enriched
category theory. The authors introduce the notion of a closed monoidal category
and note that “Both the data and axioms for a monoidal closed category are highly
redundant.” In that paper, Mac Lane’s coherence theorem for monoidal categories

UIn this paper, “cotensor” will have its usual meaning from enriched category theory [15], not to
be confused with other uses in differential graded algebra.
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is recalled but no accompanying coherence theorem for closed monoidal categories
is given; this result appears later in a paper solely devoted to its proof [16].

In the homotopical context, this sort of structure occurs in work of the third
author in the context of monoidal and enriched algebraic model category structures
[24, 25]. In an algebraic model category structure, the weak factorisation systems
involved have certain extra linked algebraic/coalgebraic structure; all cofibrantly
generated model categories can be made algebraic in this sense. That research was
one direct motivation for the work and results in this paper, which are essential to
define the central notion studied in [25].

Our main theorem gives a complete characterisation of the natural transfor-
mations involving multivariable adjoints that admit dual forms. It also solves
the associated “coherence problem”: Certain (but not all) commuting diagrams
involving these sorts of natural transformations will have “dual” forms. Theorem
3.10 makes this precise. As a special case, we deduce that the coherence for closed
monoidal categories follows from coherence for monoidal categories.

The most basic categorical version of duality is given by adjunctions. This
duality extends to 2-cells as well: certain natural transformations involving left
adjoints are associated to natural transformations involving right adjoints via the
“mates correspondence” introduced in [17], which extends the more familiar adjoint
correspondence between arrows. The mates correspondence is elegantly described
using the framework of double categories. Recall that a double category is a form
of 2-dimensional category with two types of morphism—horizontal and vertical—
and 2-cells that fit inside squares. The double category used to describe the mates
correspondence is given as follows:

e O-cells are categories,

e horizontal 1-cells are functors,

vertical 1-cells are adjunctions (pointing in a fixed chosen direction e.g. the
direction of the left adjoint), and

e 2-cells are certain natural transformations.

There is a choice for the 2-cells—we could take the natural transformations to live
in the squares defined by either the left or right adjoints. This produces a priori
two different double categories for each choice of 1-cell direction, but the mates
correspondence says precisely that there is an isomorphism of double categories
between them.

Importantly for our generalisation to multivariable adjunctions, this mates
correspondence theorem can be expressed in an alternate form. Observe that an
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adjunction

This defines a “cyclic action” of sorts on the double category just introduced that
encodes the mates correspondence: the process of replacing the adjunctions by their
opposites exchanges the 2-cell with its mate.

A 2-variable adjunction exists whenever there is a bifunctor so that when any
one of its variables is fixed, the resulting single-variable functor admits a right
adjoint. In familiar examples, the bifunctor might be some sort of tensor product,
in which case the adjoints might be called “left hom” or “right hom”. We might
summarise this situation by saying that

e it involves 3 functors of 2 variables,

e cach pair of functors is related by a 1-variable adjunction if we fix the
common variable, and

e some care is required over dualities of source and target categories.

In fact, when treated cyclically, the structure becomes transparent; we discuss
it in detail in Section 2.2. While the functors in this example have only two
variables, composing them results in new functors of higher arity. For instance, any
tensored and cotensored category enriched in a closed symmetric monoidal category
admits an n-variable adjunction for each natural number 7, encoding the interaction
between these structures.

The correct framework for handling multivariable functors is multicategories.
These are just like categories except that morphisms can have many inputs (or none);
they still have a single output. Note that non-symmetric operads are multicategories
with only one object, and so multicategories are often referred to as “coloured
operads”. As above, we desire a richer structure than just multicategories because
the “duality” involved in adjunctions extends to 2-cells as well. For multivariable
adjunctions we thus need to combine the notions of multicategory, double category,
and cyclic action. Our vertical 1-cells will now be n-variable adjunctions, which are
the maps of a multicategory with a cyclic action that exchanges inputs and outputs.
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For example a 2-variable adjunction involves functors

F
AXB— C
G
BxC — AP
H
CxA—> B,
Note the duality that arises as a category “cycles” between the source and target.
The essential fact is that each time a category moves between the source and target,
it is dualised.

An analogous cyclic multicategory structure with dualities exists for finite-
dimensional vector spaces: a linear map

F:V—W
corresponds precisely to a map between the duals in the opposite direction, that is
F*:W*— V™.

Vector spaces form not merely a category, but a monoidal category, and the tensor
product interacts with the duality as follows. A linear map

M-V, —V
corresponds precisely to one as shown below
@V, Vy — V*

where the “output” vector space has been exchanged with one of the “inputs”, and
those two spaces are dualised. We can repeat this process and “cycle” the inputs and
outputs round as many times as we like. In this sense the basic version above is the
1-ary version of this cyclic process, definable for any n > 1.

This is the notion of a “cyclic multicategory”—a multicategory equipped with
additional structure in the form of

e an involution (such as ( )°P), and
e acyclic action on homsets, invoking the involution appropriately.

This formulation allows for cyclic structures that do not arise from duals in the sense
of dual vector spaces, such n-variable adjunction. (Note that opposite categories are
not “duals” in the sense that dual vector spaces are duals.)
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We must also implement the cyclic structure on 2-cells, that is, the n-variable
version of the mates correspondence. We are interested in a correspondence of
natural transformations such as below (for the 2-variable example):

AxB—>A'xB" BxC—>B'xC' CxA—C' x4

RED R

C °p C'oP AP ——> g/oP B — > pB/opP

and this indicates the required form of 2-cells and their cyclic structure, in our
“cyclic double multicategory”. Recall that a double category can be defined
succinctly as a category object in Cat; similarly a cyclic double multicategory is
a category object in the category of cyclic multicategories.

The motivation for this work is the third author’s work on algebraic monoidal
model categories. In the theory of algebraic model categories [24] the double
category framework for 1-variable adjunctions and mates plays a crucial role. For
the monoidal version [25], multivariable adjunctions and mates are needed, not
simply to describe the equivalent forms the definition of a monoidal algebraic model
category might take but to state the correct definition at all. Examples that could now
be made algebraic using the results of the present paper include the model structures
arising from 2-category theory [20], in particular the monoidal model structure on
2-categories with the Gray tensor product [18, 19]. Multivariable adjunctions of
this sort are also used in higher category theory, for instance, to define the lifting
properties characterising an n-fold quasi-category, a presheaf model for an (co,n)-
category [11]. Similar ideas applied in the context of n-fold quasi-categories would
give an “algebraic” model for (co,n)-categories.

This paper is organised as follows. In Section 1 we recall the standard theory of
mates. In Section 2 we define multivariable adjunctions and the multivariable mates
correspondence. In Section 3 we give the definition of cyclic double multicategory,
building up gradually through multicategories, cyclic multicategories and double
multicategories. We show that multivariable adjunctions form a cyclic double
multicategory. In Section 4 we describe the application to algebraic monoidal model
categories.

Our notion of cyclic multicategory is non-symmetric and thus generalises the
notion of (non-symmetric) cyclic operad given in [1]; symmetric cyclic operads are
defined in [5] and a multicategory version is mentioned in [13]. Our definition could
also be given in a symmetric form but we felt that the new ideas introduced here
were highlighted most clearly when the obvious symmetries of the cartesian product
on CAT were ignored. Cyclic operads support a wide variety of applications, as
described in the papers [1] and [5], and so we expect the categorical formalism
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encoded by our “coloured” version presented here will also be useful in other
contexts.

Our notion of double multicategory is not the same as the notion of fc-
multicategory (introduced by Leinster in [21] and renamed ‘“‘virtual double cate-
gory” by Cruttwell and Shulman in [2]); fc-multicategories do not involve vertical
1-cells of higher arities.

NOTATION

Throughout this paper we will write A® for A°°. Also, for n-variable adjunctions
and cyclic multicategories, we will need to use subscripts cyclically. Thus we will
index objects by 0,...,n with lists taken cyclically, mod n 4 1. For example we will
frequently use the string a; 4+1,...,a;—1 which means

ai—f—l’ai+2,---aan,a0,a1,---,ai—l-
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1. Mates

In this section we describe the situation we will be generalising. Suppose we have
the following categories, functors and adjunctions

A A
F|H|G F’|H|G’
B B’

with unit and counit (1,¢) and (1/,&") respectively. Then given functors S and 7" and
a natural transformation « as shown
S

A—— A

F| o |F
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its mate & is the natural transformation
S

A—— A

o & e

B—— 8

obtained as the following composite

B—S%—a4——y
&
14
N F| 7 |\
Ly
B——F— B’ e, A
Conversely we can start with s
A—— A
G‘ ﬂ\ ‘G’
B—— 8
and obtain the mate B
A——> A
B—— 8
as the composite
A—S o p
\71/
Vo6l N\ |6
£
A—F—>B—F— B

By triangle identities these processes of “conjugation” are inverse to one another.
Furthermore, the correspondence respects both horizontal and vertical composition
in the following sense. Given adjunctions

Ay Az As

RHQ F%#z &H@

B B, Bs
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and natural transformations S

A Ay =32 4y
Fll Lo le Lo l&
By 3 B> o Bs
we have
O %0 = 0 * 01

345

where * is to be interpreted with the appropriate whiskering, so in fact the honest

equality is
T20l1 OO[2S1 == Ol_2T1 o Szm

For “vertical” composition, given adjunctions

Ay Az

Fi 4Gy F> |4 Ga

By B,
H, |4| K, H> |H| K>
Cy C

and natural transformations

Fy 1/051 F>
—_
B, 7 B>

H Lar |Hz

Cchz

we have

0y O =Ol_20m

which actually means

Olel 9] HzOl] = Gz@om[{].

Both of these facts are easily checked using 2-pasting diagrams and triangle

identities.
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This situation is conveniently formalised using double categories. In the follow-
ing definition we have chosen the direction of the vertical 1-cells to correspond to
the direction of the left adjoints.

Definition 1.1 We define two double categories LAdj and RAdj with the same
0- and 1-cells, but different 2-cells. In both cases the O-cells are categories, the
horizontal 1-cells are functors, and a vertical 1-cell A — B is an adjunction

A 2-cell

is given in each case as follows.

e In LAdj such a 2-cell is a natural transformation

AILAZ

Fll Of/ le

Bl T> Bz.

e In RAdj such a 2-cell is a natural transformation

AILAz

GI’ o\ ’Gz
Bl—>Bz.

T

Theorem 1.2 [17, Proposition 2.2]
There is an isomorphism of double categories

LAdj ~ RAdj

which is the identity on 0- and 1-cells (horizontal and vertical); on 2-cells it is given
by taking mates.
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We now look at this from a slightly different point of view that seems a little
contrived here, but leads to a natural framework for the n-variable generalisation.
The idea is to notice that an adjunction

A

is equivalently an adjunction
G*
B*__ 1L —A*
“fFe
Now, we could deal with this by introducing yet another pair of double categories
LAdjz and RAdjy as above but whose vertical 1-cells point in the direction of the
right adjoints; the 2-cell directions must also be changed accordingly. We would

then get isomorphisms of double categories

()*: LAdj — RAdjp
()*: RAdj —> LAdj.

However, we can actually express all this structure using one single version of the
above four isomorphic double categories, as follows.
Given a 2-cell in LAdj, that is, a natural transformation

A —5 4,

its mate

Bl T Bz
is not a priori a 2-cell of LAd]j as its source and target involve right adjoints G; and

G,. However, it can be dualised to give

A} —— A5
G;] N ]Gs
By e B;
where we must reverse the 2-cell direction as the target category has been dualised.
Thus, turning the diagram round so that the left adjoints point downwards, we have
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[ ] T. [ ]

B1 — B2
Grl &y ng

AI - A;

S.

which is a 2-cell of ILAdj as G} and G5 are left adjoints. Thus the mates
correspondence actually gives us some extra structure on LAdj in the form of
isomorphisms:

e LAdj,(4,B) ~LAdj,(B*,A*), and
e LAdj,(S.T) = LAdj,(T*.S*).

Here the subscript v indicates the hom-set of vertical 1-cells, and the subscript 2
indicates the hom-set of 2-cells with respect to their horizontal 1-cell boundaries.

We will see that these isomorphisms are the beginning of a cyclic structure: the
I-ary part. The situation has a slightly different flavour, without technically being
different, if we put it in the language of “mutual left adjoints”.

Definition 1.3 Consider functors

ALB' SO A'L.>B
B % 4° B* %% 4.

A mutual left adjunction of F and G is an adjunction
F*HG
or equivalently
G*-F.
Note that this is given by isomorphisms
B(Fa,b) = A(Gb,a)
natural in ¢ and b. If we started with

A* LB and
B*-% 4
then the adjunctions
F*4G or G*HF
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as above would be given by isomorphisms
B(b,Fa) = A(a,Gb),

which is called a mutual right adjoint.
Note that the unit and counit for a mutual left adjoint as above have components

Na: GFa—>a e A and
ep: FGb—>be B,
whereas for a mutual right adjoint the components are
Na:a—>GFa€A and
ep:b—> FGb e B.
Remark 1.4 The unit and counit given above are for an adjunction
F*-HG
whereas for the (equivalent) adjunction
G*HF
the unit and counit are the other way round, that is,

gq: GFa—>ae A and

ny: FGb—>b € B.

In the spirit of symmetry, we will refer to all natural transformations involved in
a mutual adjunction as ¢; it will be clear from the source and target for which
adjunction this is actually a counit.

We can now express the mates correspondence for mutual left adjunctions.
Given a mutual left adjunction between

ALB' and
B-% 4°

the mates correspondence together with duality as above gives us a correspondence
between natural transformations
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S T

A—— A B—— B’
B* e B* AT g A

This is obtained from the ordinary mates correspondence by taking some appropri-
ate duals. This is the n = 1 part of the n-variable case, in which we look at natural
transformations

S1X--x Sy

Ay XX Ap A} x--x A,

R

A Ay

5o

and
S2 X eee X SO

/ /
Ay X x Ay

R

A3 A,

St

and every cyclic variant.

2. Multivariable adjunctions

In this section we define multivariable adjunctions. The basic idea is that for an
“n-variable adjunction” we have n + 1 categories Ag,---, A4, and n 4 1 multifunctors,
each of which has one of the A? as its target, and the product of the other n categories
as its source. These multifunctors can all be restricted to functors with a single
category as their source, by fixing an object in each of the other categories. For every
pair i # j there is a pair of contravariant functors obtained in this way involving A;
and A;. These should be in a specified adjunction; moreover, of course, all these
adjunctions should be coherent in an appropriate way.

We first give the definition of this structure, and then immediately prove
Theorem 2.2 giving a more “economical” characterisation, in which a priori we
specify only one multifunctor, and a family of 1-variable adjoints for it. Using
standard results about parametrised representability, these 1-variable adjoints then
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extend uniquely to n-variable multifunctors with the required structure. It is the
characterisation in Theorem 2.2 that we will use in the rest of the work.

2.1. Definition of multivariable adjunctions

Definition 2.1 Let n € N. An n-variable (mutual) left adjunction is given by the
following data and axioms.

e Categories Ag,...,Ay.

e Functors F
A1 X Ay XX Ay X A, —> AQ
F
Ay X A3 XX Ay X Ao -5 AS
F; R
Ai+1 X---XAi_l —— Ai
Fy R
Ag X+ X Ap—q — A

Here the subscripts are all to be taken mod n + 1. Where possible, we
will adopt the convention that the subscript on a multifunctor matches the
subscript of its target category.

e Forall 0 <i < n, and for all aj+; € Aj+1,...,ai—» € A;j—> a mutual left
adjunction between

Fi1(,qi41,ai42,.-,0;—2) /o
A; AP,
Fi(ajt+1,ai+42,...,ai—2,_) A°
i

Aiq

thus isomorphisms
Ai—1(Fi—1(ai,....ai-2).ai-1) = A (Fi(@j+1.....ai-1),a;)

natural in a;—; and ;. If we use the shorthand a; for the sequence
aj+1,...,ai—1, this isomorphism takes the appealing form

Ai—1(Fi—1(8i-1).ai-1) = A; (F; (di).a;).
The following axioms must be satisfied:

o the above isomorphisms must additionally be natural in all variables, and
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e the “cycle” of isomorphisms commutes:

Ao(Fo(do).ap) —=—— A1(F1(a1).a1)
An (Fn (&n)aan) AZ(F2(&2)’a2)

A3(E3(&3),03)-

We say that the functor Fy is equipped with n-variable left adjoints F,---, F;,.
This terminology makes more sense in the light of the following theorem.

Theorem 2.2 The following description precisely corresponds to an n-variable left
adjunction.

e categories Ay,..., Ay
e afunctor Ay X - X Ay Jo, AQ
e forall 0, j,k distinct, and for all a; € A, a mutual left adjoint for the functor

Fo(ay,....ak—1,_,ak+1,-.-,an): A —> Aj.

Remark 2.3 Note we say that F is equipped with n-variable left adjoints if each
of its 1-variable restrictions has a left adjoint. F is equipped with n-variable right
adjoints if each of its 1-variable restrictions has a right adjoint.

To prove this we use the following result of Mac Lane [22, IV.7, Theorem 3].

Theorem 2.4 Given categories A,B,C, a functor F: A x B— C*, and for all
b € B a mutual left adjoint G(b,_) : C — A® for the functor

F(.b): A—>C"*

i.e. isomorphisms

C(F(a,b),c) = A(G(b,c),a) 1
natural in a and c, there is a unique way to extend the functors
Gb, ):C— A4

to a single functor
G:BxC—A*

such that the isomorphism (1) is also natural in b.
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This is a standard result about parametrised representability; we give a 2-
categorical expression of Mac Lane’s proof, as this will be useful later.

Proof: We write 1 —2> B for the functor picking out the object b € B. The
hypothesis of the theorem then says that for each such » we have a right adjoint
for the composite

/40_121é:>‘40 % l;o__li:_>(j

which we call

G(b,
c— 6% .

with unit and counit

Now, extending the individual functors
Gb, ):C—A*

to a functor
G:BxC—A°

consists of giving, for each morphism b, i> b, in B, a natural transformation
G(bl :J
SN
c | =a
\_/
G(b2,)
and checking functoriality. The natural transformation is given as the mate of
1xb3
A% s acxBr—Esc

1xb}
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that is

c— ¢t | G(b1 D)
Sbl
1><
1 *x B
C—————>A4°.

G(b2,)

Functoriality then follows from the functoriality of the mates correspondence.
Now we further need that the isomorphism

C(F(a,b),c) — A(G(b,c),a)

is natural in . By the Yoneda lemma this is equivalent to the following diagram
commuting for all f: by — b, in B:

G(by.F(a.br)) SLE Gy, Fla.by))

G(laF(laf)) 77b1,a

G(by,F(a,by)) ———>a
Nbs,a

or dually an analogous diagram involving &’s:

F(f,
Fby.Gla.by) ~L 2 F(by.Gla.by)
F(LG(L,f)) €br.a

F(bz,G(a,bz)) T a.

2-categorically this is
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b1X1

™ G bix1
C V<1 BxC A® C—BxC A*
\J
b2X1

o —
1xb3 1xb} Ixf* 1xb3

A® x B® A® x B®

F* F*

2

Now by our definition we have

Gb,f
C (®1,) e

5”1/ <c> /bl)d\
1xf
1 = ¢ | Bxc—Y%—40
\/

1 A® x B*®
box1
lF. /77b2
C A*
G(bZ;J (3)

since the right-hand side is the definition of G on morphisms of B. Then equation
(2) follows from a triangle identity for 7, and €, ; dually the equation for n holds
by a triangle identity for 7, and &p, .

For uniqueness we suppose we have a functor G satisfying the naturality
condition as shown in diagram (2) above. Then as above, equation (3) must hold,
showing that our construction of G is unique. O

Theorem 2.2: First we show that the structure in the theorem gives rise to an n-
variable left adjunction. First we need to define for all i # 0 a functor

Fit Aig1 XX Aj—1 — A;.
Now, we have for for all ay,...,a;—1,ai+1,....a, a left adjoint for the functor
Fo(ay,....ai—1, .Gj41,....a,): Ai —> Ay,
equivalently a right adjoint for its opposite

° . °
FO (611,...,Cli_l,_,ai+1,...,an). Ai —> A()
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called, say

F,' (a,'+1,...,an,_,al,...,ai_l): A() —> Ai .

By Theorem 2.4 it extends uniquely to a functor
Fii Ajy1 XX Ajy —> A
making the isomorphism
Ao(Fo(ao),ao) = Ai (F;(a;).a;)

natural in every variable (where a priori it was only natural in a¢ and a;). This is by
putting

A = A;
B = Ajy1x-xA4iq
C = A

in the theorem. It remains to show that we have the correct adjunctions. Now by the
above hom-set isomorphism we construct the composite isomorphism

Ai1(Fi—1(@@i-1).ai—1) — Ao(Fo(do).a0) — Ai (F;(a;).a;)

which we already know to be natural in every variable, and by construction the cycle
of isomorphisms commutes as required.

Conversely given an n-variable adjunction we use the cycle of isomorphisms to
specify an isomorphism

Ao(Fo(CAlo),a()) e A] (F1 ((,AZ]),Cll) = .. Al' (Fl' (&i),ai).
Then, fixing all variables except a; and a¢ we get the required adjunction. O

It is instructive to work through this definition for some small values of #.

Example 2.5 n=1
A 1-variable adjunction is just an ordinary adjunction, but in the notation of the
definition it is given by

e categories Ag, A1,

F
e functors A; —O>A0 , and
F
Ag —> A}

e an adjunction F - Fj.
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Example 2.6 n =2
A 2-variable adjunction is given by categories, functors and adjunctions as
follows:

Ax B e F(_.b)*G(b, )
BxC -2 4° G(_.c)* 4 H(c. )
cxal pe H( .a)* - F(a, )

given by a “cycle of isomorphisms”

C(F(a,b),c) = A(G(b,c),a)
S 7
B(H(c,a),b)

natural in a, b and c.

Theorem 2.2 says that to specify this it is equivalent to specify the functor F
along with, for each ¢ € A and b € B left adjoints for the functors F(_,b) and
F(a,_), that is functors

Gb, ). C—A*

H( ,a): C — B*®

and isomorphisms

A(G(b,c),a) = C(F(a,b),c) natural in @ and ¢
A(G(b,c),a) = B(H(c,a),b) natural in b and c.

Note that the original definition has n 4+ 1 adjunctions specified cyclically, each
involving a pair of “numerically adjacent” categories and naturality in all n + 1
variables; Theorem 2.2 specifies n adjunctions, each involving Ay and one other
category, and natural only in 2 variables.

Remark 2.7 For n = 0 it is useful to say that a “O-variable adjunction” is a functor
1 — A as these will be the 0-ary maps in our eventual multicategory structure. The
fact that these compose is the following lemma.

Lemma 2.8 Consider an n-variable adjunction as above. Fix 0 <k <n and ay €
Ag. Then fixing ay in each functor F;,i # k yields an (n — 1)-variable adjunction
in the evident way.

Obviously we can repeat this process to fix any number of variables to restrict
an multivariable adjunction to one in a smaller number of variables. Note that apart
from being a crucial component of the eventual multicategory structure, this fact is
also used in the proof of the multivariable mates correspondence (Theorem 2.16).
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Proposition 2.9 An n-variable left adjunction of functors Fy,..., F, is equivalently
an n-variable right adjunction of Fy,..., F,.
2.2. A motivating example

We begin by presenting the standard example of a 2-variable adjunction that we
have generalised, the “tensor/hom/cotensor” adjunction. The only slightly tricky
thing is taking care of the dualities.

Let V be a monoidal category, so we have a functor

®_VXV—V,

Then 'V is biclosed if

e Vb €V the functor _ ® b has a right adjoint [, ] (“*hom”), and

e Va €V the functor a ® _ has a right adjoint a h __ (“cotensor™).

The first adjunction gives us isomorphisms

V(a®b,c) =V(a,[b,c])
natural in a and c; by parametrised representability the functor
b, ]: V—7V

extends to a functor
[, ]:V'xV—V

uniquely making the isomorphisms natural in b as well.
Similarly for the second adjunction we get a functor

i VXV —V
making the isomorphism
V(a ®b,c) =V(b,athc)

natural in all three variables.
Note that usually in the non-enriched setting “hom” is called “right hom” and
“cotensor” is called “left hom”.

More generally for categories A, B,C a tensor/hom/cotensor adjunction consists
of functors and adjunctions
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®

AxB —— C YaeAd a® - at_
B xC ‘==L 4 VbeB _®b 4 [b, ]
Axc —="—. B YeeC [_,c]* 4 _re

and by parametrised representability it follows that the following isomorphisms are
natural in all three variables:

A(a,[b,c]) = B(b,ahc) = C(a®b,c).
For our standard framework with functors
Ay x Ay 2% A2
A2 X A() i) AI
Ao x A1 22 A3

we can put
A = A° Fo=(C®))°
Ay = B*® =[]
Ag = C = _h_

and Fy,F;, F, then form a 2-variable left adjunction (although M _ now has
domain C x A® instead of A°® x C).
This 2-variable adjunction is is the starting point of the discussion in Section 4.

2.3. Composition

Just as ordinary adjunctions can be composed (with care over directions) so can
n-variable adjunctions, with care over directions, dualities and arities. The only
difficulty in the following theorem is the notation. The idea is to compose n-variable
adjunctions in the manner of multimaps in a multicategory; indeed this is what they
will be in Section 3. In this section all multivariable adjunctions are left adjunctions;
of course the right adjunctions follow dually.

Theorem 2.10 Suppose we have the following multivariable left adjunctions.
Fig

Ay XX Aipy — A}y = B1 with ny-variable adjoints  Fi1,...,Fip,
Ay X+ X Aap, == Ay = B> with ny-variable adjoints  F»y,...,Fap,
Fro

Agr X+ X A —> Az = Bx with ni-variable adjoints  Fyy,...,Fin,
and

By x -+ x By, G, B = A3, with k-variable adjoints  Gq,...,Gy.
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Then the composite functor

Go(F10.F20..... Fro): A1 X+ X A1p, X -+ X Ay X -+ X Agn, —> By

is canonically equipped with (ny + - 4+ ng)-variable adjoints. This composition
makes categories and multivarible adjunctions into a multicategory.

Proof: We write ny + -+ + ny = m and call the above composite Hgg. We must
construct m-variable adjoints for Hyg, so first we need m functors which we call

Hiy,....,Hin,
H217 "aH2n2
Hiy,....Hyp,

where H;; has target category A7; and its source is then determined cyclically.

As the notation is rather complex we will give one example with all variables
written down and then convert to a shorthand for convenience. We define H;; by

Hll(a127"-’aln1 7---7akn1 st) =
F11(alz,---,alnl,Gl(on(azl,---,aznz),---,Fko(akl,--.,aknk),bo))

where each a;; € A;; and by € By. We think this is clearer if we do not write the
variables explicitly, giving

H11:F11( ,Gl(FZO,...,FkO,.))-

Here the long line indicates a string of variables and a dot indicates a single variable.
From the sources and targets of all the relevant functors it is unambiguous what the
variables need to be, though somewhat tedious to write them out. The remaining
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functors H;; can then be written like this:

H12 = F12( ’GI(FZO’-‘-’F]CO’.)’.)
Hiz = Fuis( ,G1(Fao.,.... Fxo.9),9.0)
Hiy = Fu(___ .Gi(F.....Fig.0).0.0.0)
H1n1 = Flnl(Gl(FZOs"'aFkO?.)’—)
H21 — F21( ,Gz(F:;(),...,Fko,.,FIO))
H22 = F22(—7G2(F307"'5Fk07.’Flo)’.)
Hyy = Fa(____ .Ga(Fa....,Fro.9,F10).e.0)
Hony = Fana(Ga(Faoue. Froo.Fro) )
Hay = Ful .Gy (e, Fio.....Fr_1,0))
Hine = Fine(Gr(e.Fro.....Fx—10). ).

It remains to exhibit the adjunctions required, which will take the form of the
following isomorphisms.

Aoo(Hoo(@00).a00) Ay (Hyi(@n).an)

A12(H12(d12).a12)

lle 1

Ak”k (Hknk (&knk),aknk)-

Il

The schematic diagram in Table 1 indicates which adjunctions of F;;’s and G;’s are
involved with each of the adjunctions for the H;;’s. The vertical arrows indicate
individual adjunctions.
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Table 1: Individual adjunctions forming composite multivariable adjunctions

Hyo Gg F1¢0 Foo Fzo -+ Fgo
Hii | Gy F1¢1 Foo  F3o Fro
Hiz | Gy F1¢3 Fyo F3o - Fgo

Hiyy |Gt Fia Fy Fo - TFyo

Hy,, G¢1 Fin, F2¢0 Fzo -+ Fgo
Hyy | G2 Fuu F2$1 Fzo -+ Fro
Hy | G2 Fiu F2$2 Fz - Fio

Hys |Gy Fuu I Fio - Fyo

Hyp, | Go Fi1 Fan, F3p Fro
0 O

Hsi | Gs Fii  Fa F3$1 Fro

Hs3 | Gs Fii Far Fs Fro

Hyy |Gy Fuu Fair F3p o Fg

Hir |Gy Fuu For F3i o Fra

Hiny | Gk Fi1 Fa1r Fzi - Fipy

Hoo | Go Fio Fx Fzo - Fgo.
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This is much easier to construct formally using Theorem 2.2: we just need to
exhibit mutual left /-variable adjoints for each of the m functors obtained from Hyg
by fixing all but one of the variables. Now fixing every variable except a;; in the

functor
Hyy = Go(Fio...., Fro)

we construct a mutual left adjoint using
o the mutual left adjoint for F;o with all but the jth variable fixed, and
o the mutual left adjoint for G with all but the ith variable fixed.

These compose to give the adjoint required. We can depict this schematically as
follows. We depict the latter as

so then composing this with the former looks like the diagram below, where Fjg
and Gy are the multifunctors pointing downwards, and the 1-variable left adjoint is
indicated as the dotted arrow pointing upwards.

aiy aijj din;
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That is, starting from the functor
F,'()I Ail X oeee X Aini —> Al.O

we fix all but the jth variable and have a mutual left adjoint, that is right adjoint for

Fi.o(aila'-"ai,j—l’_,ai,j-f-l"'-,ainj): Al.j - AIO
which is

Fij (@i j41sees@ings_s@its..,aij—1): Aio — A7}
Also consider

Ga(bl,...,bi_l,_,bi+1,...,bk)l Bz. —> B()

with its right adjoint

Gi(biy1.....bk,_.b1,....bi_1): By —> B = Ajo.
Now we simply compose the functors

BO — Al'() I Al.]
setting each
bq = qu(aql,...,aqnq).

Using the previous shorthand this is the composite
Fi(____ .Gi(Fit1,0.---.Fko.®. Fro.....Fio). ___).

This completes the construction of composition. Identities are given by identity
adjunctions, which obviously satisfy unit conditions. Associativity follows from
associativity of composition of n-variable functors (with one another) and of 1-
variable adjunctions (with one another). 0

SPECIAL CASES

1. If any n; = O this amounts to fixing the ith variable of G. If all but
1 of the n; is O then we have fixed every variable except one, and if we
do this for each n; in turn we have effectively characterised the composite
multivariable adjunction by producing the necessary 1-variable adjunctions
as in Theorem 2.2.

2. If we compose with the identity adjunction (as a 1-ary adjunction) for all but
one of the i’s, we have effectively composed in just one position.

3. If we take every n; = 1 or k = 1 this says we can compose an #n-
variable adjunction with 1-variable adjunctions (pre- or post-) to get a new
n-variable adjunction; this example is mentioned for composing 2-ary with
1-ary adjunctions in [25].
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2.4. Multivariable mates

We now give a multivariable version of the calculus of mates. As for the adjunctions,
we start with the 2-variable case and proceed inductively.

Proposition 2.11 Suppose we have two 2-variable left adjunctions of functors
F:AxB—C* and F':A'xB —C’*

G: BxC — A* G':B' xC' — A"
H:CxA—> B®* H':C'xA —> B'®,

together with functors
S:A— A
T: B— B’
U:C—C'

and a natural transformation
SxT
Ax B =25 A'x B’

BN

c’*

UO

with components
oqp: F'(Sa,Tby — UF(a,b).

Then for each b € B we have a natural transformation

A S A
F(,b)| /‘71 , lF’(,Tb)
C*———C’
with mate
c—Y ¢
G(b,gl /ﬂ lG’(Tb,)
A® 5 A’

Then in fact the components (&__p). are the components of a natural transformation
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BxC XY prycr
A" ——— A"

Dually if we start with 2-variable right adjunctions then the result holds with all
the natural transformations pointing in the opposite direction as below.

Ax B2, gy pr

Fl o lp

c* c’*.

Ue
Proof: 'We just need to check that the components &, . = (& ). are natural in
b; a priori they are natural in ¢c. We use the fact that « is natural in b. As with
Theorem 2.2 the proof is possible by a 1-dimensional diagram chase, but we provide
a 2-categorical proof as it is quite aesthetically pleasing.

Now the natural transformation & 4 is given by the following composite

bx1 G S*

C——BxC A A®
/81; 1xb*® 1xTh*®
1 A°xB*® SexT*® A% B'* 1
7 F* s F'* /’7/”9
¢ U C Fpxt B/ < C' g A"
B x C\_/
TxU

taking care over the direction as the target is in A’°. Again we use the fact that a
morphism b iR b, in B corresponds to a natural transformation

b
/1\
1 lf B.
N~

b>
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Thus to check that the components

/BXC \S:G

lan_ ar

\Bxc /(TxU)

are natural in b we show that for all 5, N by

%Bx b1 _AXC seq
fx1 1
_% Uotb = C< U&b,\A".
2
3
m %U) wl_? G/f(TxU)
brx1
We have

b]Xl

G S*

R
C V/fx1 BxC
\/

brx1

box1
U C
B x c¥/
TxU
bix1 .
c2opgxc—Y9 5 go0—32 A
1xb;<><f>1xb‘ IxThS
<
.XT.

A°xB*® EA/QXB/Q

box1
— F* /a F’® /77

367



368 E. CHENG, N. GURSKI & E. RIEHL

bix1 .
2 Bxc—Y9s go0—5 A
1xb} IxTh} XTfjlebE
<
Zep,  goxB* ST gro pre
box1 1
— F* /ao F’*
’
C——F——C
B XC\—/
TxU
bix1 .
c22opxc—Yb s ygpo0—5 A
1xb} 1xTh?
/gbl A.XB.MA,.XB/. ,
bzXl 1 nTbl
= F* l/a' F’* Thix1
™
- C U C’ UTleB’XC’TA”
v
TxU
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Remark 2.12 Note that in the definition of the mate of & we could start by fixing the
first variable instead of the second variable and then follow the analogous process
to produce a natural transformation & as below:

CxAYLX5 cry g

[

B* B’°.

T.

Note that @ = o = « by the usual mates correspondence; the following result
deals with a less trivial combination of these processes. This can be thought of as
the 2-variable version of the mates correspondence.

Proposition 2.13 Given 2-variable adjunctions and a natural transformation o as
above, & = Q.

The proof of this result is analogous to the 1-variable case, which follows from
the triangle identities for the adjunctions in question. Therefore we start by making
explicit the 2-variable version of the triangle identities, which must now involve
three instances of units/counits.

Lemma 2.14 (Generalised triangle identity) For a 2-variable adjunction, the
following triangles commute, along with all cyclic variants.

H(F(a,b).a) 2 b H(c.G(b.c)) . b
H(l,¢) € H(e,1) €
H(F(a,b),G(b,F(a.b))) H(F(G(b.c).b).G(b.c)).
Proof: This follows from the “cycle of isomorphisms” as in Example 2.6. O

In the following proof we adopt notational shorthand as below, for simplifica-
tion, clarity and to save space.

1. All objects have been omitted. The source categories can always be
determined from the functors shown, and whenever a variable in A is required,
it is understood to be a; likewise for ¢ € C. For example:

e TH means TH(c,a), and
e G(H,1) means G(H(c,a),c)).



370 E. CHENG, N. GURSKI & E. RIEHL

2. As in Remark 1.4 we write all units and counits for all adjunctions as ¢; the
source and target functors uniquely determine which adjunction is being used,
and the object at which the component is being taken.

For example, the above two triangles become:

H(F,1) H(1,G)
0o\, / e\, /
H(F,G(1,F)) H(F(G,1),G).

Proof of Proposition 2.13: It suffices to show that these two natural transforma-
tions have the same component at (c,a) € C x A. This is shown in the following
(large) commutative diagram in which the top edge is the component &, and the
bottom edge dc 4.

Regions (3) and (4) are naturality squares, (5) and (6) are functorality of H’, (2)
and (7) are generalised triangle identities and (1) commutes by extranaturality of ¢
as follows. The counit ¢ in question has components

H'(c,G'(b,c)) —>b

and is natural in b but extranatural in c. Region (1) is obtained by writing out the
extranaturality condition for the morphism

F'(S,TH)-*>UF(1,H) % U
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HI

(S (HL'S) ) ,H

(1), H

G'D.H

((HL'S), A HL),D (HL'S),4),H

(2°HL),5'N),H

(G151, H

(¢n'D,51.H

(S(H'DAN),H

G'D.H
(1'21),H

((HL'$),4°HL) O (H DA, H

?

((@'1),0°1),H

G'D.H

((HL'S), I ' HL).D'1),H (S'M,H

®

((H'DAA'HLD) DN, H (38D, H

©

(H'U'H)DAN'HL) DH'N),H

®

((1%29),4°1),51),H

(I''’)osm,H

(*940°‘1),51),H
G1),H

(HL'O'H)DS) L 'HL) DN, H

((®'1),0°1),H
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Now by allowing B to be a finite product of categories, we get a notion of 7n-
variable mates with respect to an n-variable adjunction.

Theorem 2.15 Suppose we have functors

Fy: AIX"'XAn_>A(.)7
Fj: Ay x - x A, — Ap°

equipped with n-variable left adjoints, and for all 0 <i < n a functor

Sl' . Ai — A;.
Then a natural transformation
Ay XX A, S1 X S A} x - x Al
1
AQ 5 Ap®
has for all 1 <i <n a mate
Ajg1 XX Ai_q Sid1 X xSiz A X x Al

le /a LFz‘/

A = A

1

given as in Proposition 2.11 with

A = A
B = A1X"'XAI‘_1XAZ'+1X“'XA”
C = A,

We now give the n-variable version of the mates correspondence, which follows
from the 2-variable case (Proposition 2.13). First we need to fix our notation
carefully.

NOTATION FOR n-VARIABLE MATES.
Suppose we have functors

Fo: Aj x - x Ay —> A,
Fl: A x o x Al —> AL
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equipped with n-variable left adjoints, and for all 0 <i < n a functor
Si . Al‘ —— A; .
Then for any 0 <i < n, given a natural transformation « as below

/
Ajy1 XX Aj—q Aj g X

FiJ /Zx lFi/

Si41 XX S

/
e X Ai—l

Al. SO A;.
i
and any j # i we denote by «;; the mate
S'+1 X e X S i—1
Aj+1X--'XAj_1 4 / A/]'+1X"'XA/]'—1
° ;7 ®
A5 A’

s
J
produced by Theorem 2.15. Note that in this notation, the mate called ¢; in the
theorem would be called ;.

Theorem 2.16 (The n-variable mates correspondence) Given a pair of n-
variable adjunctions, any distinct i, j,k and a natural transformation o as above,
we have

(@if) jk = k.
Proof: Restricting to the functors F;, F;, Fy and fixing all variables except those in
A;,Aj, A we get a 2-variable adjunction. The result is then simply an instance of
Proposition 2.13 since it suffices to check it componentwise. 0

Corollary 2.17 Given a pair of n-variable adjunctions as above and a natural

transformation
Si X% Sy , ,
Ay X X Ay Al x-x A,
F()J /a J/F(;
A AL®
0 0
6
we have

(¢ ((@01)12)**)n—1,1)n0 = .

That is, taking mates n + 1 times is the identity.

Note that the n-variable mates correspondence respects horizontal and vertical
composition. For horizontal composition this follows immediately from the
analogous result for 1-variable mates. For vertical composition a little more
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effort is required, but mainly just to make precise the meaning of “respects
vertical composition”. However this is only a matter of indices. The idea is
not hard: composition of multivariable adjunctions is defined by fixing variables
and composing the resulting 1-variable adjunctions, and the mates correspondence
follows likewise.

To put this result in a more precise framework we will show that we have the
structure of a cyclic double multicategory.

3. Cyclic double multicategories

In this section we give the definition of “cyclic double multicategory”, the structure
into which multivariable adjunctions and mates organise themselves. The idea
is to combine the notions of double category and cyclic multicategory so that
in our motivating example the cyclic action expresses the multivariable mates
correspondence.

Recall that a double category can be defined as a category object in Cat;
similarly a double multicategory is a category object in the category Mcat of
multicategories, and a cyclic double multicategory is a category object in the
category CMcat of “cyclic multicategories”. (Note that this could be called a
“double cyclic multicategory” but this might sound as if there are two cyclic
actions.)

We build up to the definition step by step, with some examples.

3.1. Plain multicategories

We begin by recalling the definition of plain (non-symmetric) multicategories.
Definition 3.1 Let 7 be the free monoid monad on Set. Write 7-Span for the
bicategory in which

e (-cells are sets,

e l-cells A —o— B are T-spans X

N

TA B

e 2-cells are maps of T-spans.

Composition is by pullback using the multiplication for 7': the composite

X
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is given by the span
/ V\
/TX\ / Y\
T2A TB C.
My
TA
A multicategory A is a monad in 7' -Span, thus
e a(-cell Ay,
e a T-span A,
N
TAy Ay
equipped with unit and multiplication 2-cells. Explicitly, this gives
e aset Ay of objects,

e for all n > 0 and objects aq,...,ay,a0 € Ao a set A(a,...,a,;ap) of n-ary
“multimaps” (in the case n = 0 the source is empty)

equipped with

e composition: for all sets of k ordered strings a;1,...,a;m;.a;0 and agp in Ag a
function

A(ao;---,ako;a00) X A(ay;aro) x -+ x A(ag;axo) —> A(@y,-..,ax;:a00)
where we have written a; for the string a;1,...,a;n,, and

e identities: for all a € Ay a function

P A(a:a)

satisfying the usual associativity and unit axioms.

Note that we can define composition at the ith input by composing with
identities at every other input; this will be useful when giving the axioms for a
cyclic multicategory and we denote it o;.
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Examples 3.2

1. Multifunctors: take objects to be categories and k-ary multimaps to be
multifunctors, that is functors of the form

Ay X x A —> Ag.

2. Multicategories from monoidal categories: given any monoidal category C
there is a multicategory M¢ with the same objects, and with

Mc(x1,...,.Xk:x0) = C(x1 ® -+ ® Xk, Xo).

3. Profunctors: we might try to use profunctors instead of functors in the above
example, but this would form some sort of “weak multicategory” or “multi-
bicategory” as profunctor composition is not strictly associative and unital.
However this is a pertinent case to consider. A profunctor

Ay X+ X A —— Ay
is by definition a functor
Ap X+ X A x Ay —> Set.
But this also gives rise to a profunctor
Ai x Ay —— A?
for each i # 0 where here A; denotes the product
Ay X - Aj_1 X Ajg1 X X Ag.

Strictness aside, this is the sort of cyclic action we will be considering. (In
fact, the cyclic action in this example is strict although the composition is
not.)

3.2. Cyclic multicategories

We now introduce the notion of a “cyclic action” on a multicategory. Symmetric
multicategories are multicategories with a symmetric group action that can be
thought of as permuting the source elements of a given multimap. Cyclic
multicategories have a cyclic group action that permutes the inputs and outputs
cyclically. There is also a “duality” that is invoked each time an object moves
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between the input and output sides of a map under the cyclic action, as in the
example with profunctors sketched above.

Throughout, we work with C, the cyclic group of order n considered as a
subgroup of the symmetric group S, with canonical generator the cycle o, =
(123---n). We will often write this as o with its order being understood from the
context.

Definition 3.3 A cyclic multicategory X is a multicategory equipped with
e an involution on objects
XO — Xo
x > x*
e for every n > 1 and ordered string x¢,X1,...,X, an isomorphism
0 =0nt1: X(x1,,Xn3%0) —> X (X2,..., X0, X5 5X7)
such that the following axioms are satisfied:

1. Each isomorphism gy, is cyclic so that (0,,)" = 1.

2. The identity is preserved by o5, that is, the following diagram commutes

1x
1 ——— X(x;x)

T

X(x*;x™).

3. Interaction between o and composition.

Let ¢; denote composition at the i th input only, that is

Cit X(V1seesYmiyo) X X(X1,..0, %05 0i)
> X(V1see s YVie1:X10e s X0, Vi 1o, Ym3 Y0)-

Then the following diagrams commute.

e Fori = 1, that is, for composition at the first input:
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€1

X1s-sYmsyo) X X(X1,....Xn3 Y1) X(X1,. s Xp, Y2, Ymi Vo)

o X0

X2, Yms Y5397 X X (X2, X0, Y1 3XT) o

IR

X(x2,0 o Xn, YEX)) X X2, Y Y35 VT) ———— X (X2, X0, Y20 Y Vo XY

Cn

o Ifi #1

o
X1 YmiY0) X X (X140 s X5 01) ———> X(V1e s Vie1sX T seees Xy Vik 1o os Y3 Y0)

oxl1 4

X (20 yms Y3 V1) X X O X3 i) = X (V2,00 Yim 1o X 1o X Vit 150 Y Y53 V1)

In algebra
) @f)onlog) i=1
s =\ oo Zim
We can depict the axioms (3) pictorially as follows. Depicting

J € X(x1,....xn1x5) as

xl xz ces xn

/

f

e

we depict o f as
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Then the first axiom is depicted as shown below.

Yo
xl x2 eee
yiy2 = Ym
g
xy Yo
/’J\’l Y2 o Ym Yo
= X1 X2 o Xp Vi J
S
1
xq

The second is a little is a little less satisfying to depict pictorially, but is shown
below.

X1 X3 o Xp

Nj N
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Note that these two axioms are equivalent to a single axiom involving the cyclic
action and composition at every variable.

Examples 3.4 First we give some slightly degenerate examples.

1. If X is a cyclic multicategory with only one object (so the involution must
be the identity) then we have a notion of non-symmetric cyclic operad as
given by Batanin and Berger in [1]. This is in contrast to the definition of
(symmetric) cyclic operad in [14].

2. More generally, the involution can be the identity even for a non-trivial set of
objects.

Example 3.5 We define a cyclic multicategory MAdj as follows. Take objects to be
categories, and a multimap
Al,...,An — A()

to be a functor

Ay X x Ay T A,

equipped with all n-variable left adjoints, Fj,..., F,. The involution ()* is then given
by ()® and the cyclic action is given by

o: Fi— Fi
and the axioms are satisfied by construction. We could also do this with n-variable

right adjoints.

Note that MAdj can be expressed using profunctors. Recall our profunctor ex-
ample that was not quite a true example (Example 3.2.3) as profunctor composition
is not strictly associative or unital; nevertheless it has a strict cyclic action. In fact
n-variable adjunctions can be thought of as n-variable profunctors Fy such that Fy
and all its cyclic versions in Prof are representable, or, more precisely, equipped
with representations as follows.

Proposition 3.6 Let P : Ay x --- X A, X Ag — Set be a profunctor equipped with
a representation for each P(a,...,a;—1,_,di+1,...,an,dg). That is, given

ai41,...,4j—1
an object Fi(aj+1,...,ai—1) € A; and an isomorphism
P(ay,...,a0) = A; (Fi(ai+1,....ai-1).a;) “4)

natural in a;.
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Then the F; canonically extend to functors
Fi °
Ajg1 XX Aj—g —> A

forming an n-variable (left) adjunction.

Proof: By standard results about parametrised representability, each F; extends to

a functor

Fi °
Ai+1 X oo X Ai—l I Ai

unique making the isomorphism (4) above natural in all variables. For the n-variable
adjunction we then compose the isomorphisms

Aj (Fj(aj+1,...,aj_1),aj) i P(al,...,ao) i Ai(E(ai+1,...,ai_1),ai).

O]

Remark 3.7 Note that composition of these profunctors matches composition of
the corresponding multivariable adjunctions up to isomorphism; this is as strict as
we can expect as profunctor composition is only defined up to isomorphism (by
coends).

Remark 3.8 The idea is that we consider the functor
Cat — Prof

that is the identity on objects and on morphisms sends a functor

A-S. B

to the profunctor
A—— B

given by
AxB®* — Set
(a,b) +— B(b,Ga).

With the usual composition in Prof this is only a pseudo-functor, giving us a “sub-
pseudo-multicategory” of Prof that is somehow “equivalent” to MAdj. In order
to get an honest multicategory we must specifiy data as above, giving us a strict
multicategory biequivalent to the more natural arising pseudo-multicategory.
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3.3. Cyclic double multicategories

We are now ready to introduce the 2-cells we need. Recall that a double category can
be defined very succinctly as a category object in the category of (small) categories.
We proceed analogously for the multi-versions.

Definition 3.9 A double multicategory is a category object in the category Mcat
of multicategories.

A cyclic double multicategory is a category object in the category CMcat of
cyclic multicategories.

Note that pullbacks in the category CMcat are defined in the obvious way, so
this definition makes sense. As with double categories, it is desirable to give an
elementary description. A cyclic double multicategory X has as underlying data a
diagram

BT/—=ZA

t

in CMcat.

Recall that the underlying data for a multicategory A is in turn a diagram in sets
of the following form

Ay
v N

TAy Ao

where T is the free monoid monad on Set. Thus for a category object in Mcat we
have a diagram of the following form in Set:

TBOd/ SIE’\{*BO
8N

TAp A
where the sets correspond to data as follows:

Ag = O-cells

Aq vertical (multi) 1-cells
By horizontal (plain) 1-cells
By = 2-cells.
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Commuting conditions tell us that 2-cells might be depicted as:

X1 il Y1

> Y
S\\z Vn

Inside the structure of a (cyclic) double multicategory we have two categories
given by

e (-cells, horizontal 1-cells and horizontal composition, and
o vertical 1-cells, 2-cells and horizontal composition
and two (cyclic) multicategories with objects and multimaps given by
e O-cells, vertical 1-cells and vertical multi-composition, and
e horizontal 1-cells, 2-cells and vertical multi-composition.

Furthermore these must all be compatible, in the following sense. In addition to the

underlying diagram s
B——4a

in CMcat we must have an identity map
I1:A— B

and a composition map
y: BxyB— B

and s,¢,/,y must all be maps of cyclic multicategories, that is, they must respect
(co)domains, composition, involution and cyclic actions in passing from B to A.
Note that s/¢ give “horizontal source and target”, / gives “horizontal identities” and
y “horizontal composition”. Respecting (co)domains and composition is analogous
to the axioms for a double category, just with multimaps instead of 1-ary maps
where appropriate; notably this gives us interchange between horizontal and vertical
composition.
Respecting involution and cyclic actions gives us the following information.
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. Horizontal source and target respect involution: we have an involution on Ay

(0O-cells) and an involution on By (horizontal 1-cells), both written ( )* under
which

x#y > x*Ly*

. Horizontal identities respect involution: for any O-cell x € Ao we have a

horizontal 1-cell identity I, : x — x € By. This assignation must satisfy the
following equality of horizontal 1-cells:

I = (Ix)*-

. Horizontal composition respects involution: given composable horizontal 1-

cells in By
f g
X—>y—>z

we must have the following equality of horizontal 1-cells:

g =g" 1"

. Horizontal source and target respect cyclic action: given a 2-cell @ € By we

have the following equalities of vertical 1-cells

s(oa) =0o(sa), and
toa) =o(ta).

. Horizontal identities respect cyclic action: given a vertical 1-cell f € A; we

have a horizontal 2-cell identity /y € B;. This assignation must satisfy the
following equality of 2-cells:

o(ly)=1Isy.

. Horizontal composition respects cyclic action: given horizontally composable

2-cells o, B € By we have the following equality of 2-cells:
o(fxa)=0B xoa

where as usual we write horizontal composition of 2-cells as § * «.
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3.4. Multivariable adjunctions

In this section we show how to organise multivariable adjunctions and mates into a
cyclic double multicategory. In fact, just as for the 1-variable case, there are many
choices of such a structure on this underlying data. The difference is that now,
because of the extra variables, there are also extra choices but many of them are
rather unnatural so there is more danger of confusion. The other source of confusion
is that the standard notation used in the 1-variable case does not generalise very
easily to express all the possible choices in the multivariable case. We begin by
giving the most obvious choices of structure.

Theorem 3.10 There is a cyclic double multicategory MAdj extending the cyclic
multicategory MAdj of multivariable (left) adjunctions, given as follows.

O-cells are categories.

Horizontal 1-cells are functors.

F
A vertical 1-cell Ay,...,A, —> AJ is a functor F equipped with n-variable
left adjoints.

2-cells are natural transformations

Ay x - x Ay S1 X S By x--x B,
F PR
A3 se Bo*

(note direction). Here, despite the direction of the natural transformation, the
horizontal source of o as a 2-cell of MIAdj is F and the horizontal target is
G, the vertical source is Si,...,S, and the vertical target is Sg.

The cyclic action on 2-cells is given by the multivariable mates correspondence.

Proof: It only remains to prove that the cyclic composition axioms hold for 2-cells;
these are the axioms given in Definition 3.3, applied to the multicategory whose
objects are horizontal 1-cells and whose multimaps are 2-cells. We will use the
subscript notation for multivariable adjoints of a functor and corresponding mates
of a natural transformation, as in Theorem 2.16.

For the first axiom, it suffices to consider the following 2-cells.
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AXB%A/XB/

F0| “7 [Fo/

c* c’

U.

C.XDMC/.XC/

GO[ by lcof

EQ E/l

W.
This gives the general axiom by considering B and D to be products. Using

multicategorical notation, and our previous notation for multivariable mates, we
need to show

(Bo1a)or = o1 22 Bor-

Now the component of (8 o; @)o; at (b,d,e) is obtained as follows:
1. fix b and d in the composite § o «,
2. take the 1-variable mate,
3. evaluate at e.

Now step (1) is the same as fixing b in «, d in B and then composing the squares
vertically. So the axiom is an instance of 1-variable mates respecting vertical
composition.

For the second axiom it suffices to consider the following 2-cells.

4—3 A’
F[ 7 lF’
C. U. C/.

BXC.MB/XC/'

Go‘/ ﬂ/ lGo’
D.

’1®
Ve D

This gives the general axiom by letting A and C be products.
We need to show

(,3 03 )g1 = ,301 o1 .
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Note that the o on the right hand side is not a mate, as in the axiom given in
Definition 3.3.
The component of (8 o5 at)o1 at (a,d) is obtained as follows:

1. fix a in the composite 8 o, «,

2. take the 1-variable mate, and

3. evaluate at d.

Step (1) is the same as taking the following horizontal composite:

T

B B’ B/
ﬂf,Fa/ / , ,
GOL,F(I) G(/)L,UFLI) GéL’aa) GOL,F Sa)
D* e D' 1 D’

and the axiom then follows from the fact that 1-variable mates respect horizontal
composition, together with the fact that the mate of G (_,0t,) is G| (tg,_). To show
this last fact, we show that, more generally, for any morphism f: ¢ — c; the
mate of Go(_, f) is G1(f,_) (omitting the primes as they are not relevant to this
general result). This is seen from the following diagram, where the top edge is the
mate of Go(_, /) and the bottom is G (f,_).

G1(1,Go(1,/))
_—5

G1(c2.Go(G1(c1.b).c1) G2(c2.Go(G1(c1,b).c2))

Gi1(1,8) @ G1(f.1) o) e
Gi(c1.D) Gi(c1,Bo(G1(c1.b),c1)) £ Gi(c1.D)
G1(f.1) G1(1,¢8) ®
Gl (Clvb)

Region (1) is functoriality of G, region (2) is extranaturality of ¢, and region (3) is
a triangle identity. O
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Remark 3.11 The direction of the natural tranformation for 2-cells is crucial so that
the multivariable mates correspondence can be applied. There is a cyclic double
multicategory involving multivariable right adjunctions in which the 2-cells must
be given by natural transformations pointing down, as in

Sixx S
Ay XX Ap l " > By x--xB,

/| 2 [G

A3 Bo".

56

To be precise we write MAdj; for the multivariable left adjunctions and
MAdjg for the multivariable right adjunctions. We will need the latter construction
in the next section.

Theorem 3.12 There is an isomorphism of double multicategories
()°*: MAdj; — MAdjg.
This isomorphism is analogous to the isomorphism of double categories
LAdj = LAdjp.
We now discuss isomorphisms analogous to the isomorphism of double categories
LAdj =~ RAdj.

Recall that these double categories have the same 0- and 1-cells, but the 2-cells are
natural transformations living in squares involving the left adjoints, for LAdj, and
the right adjoints, for RAdj. For the n-variable version we have instead of left and
right adjoints, a cycle of n + 1 possible mutual adjoints. This gives us many possible
variants of the cyclic double multicategory MAdj.

For the multivariable case the situation is further complicated by the fact that
we have a choice of 2-cell convention for each arity n, and these can all be
chosen independently. These choices are the w, in the following theorem. This
theorem might seem unnatural and/or contrived to state; we include it emphasise
the fact that the LAdj =~ RAdj isomorphism is not the natural one to generalise to
multivariables.

Theorem 3.13 Suppose we have fixed for each n € N an integer w, with 0 <
wy, < n. Write this infinite sequence of natural numbers as w. Then we have a
cyclic double multicategory MAdj,, with the same 0- and 1-cells as MAdj (with
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multivariable left adjunctions, say) but where for each n an n-ary 2-cell is as shown

below
Swn+1 Xeee X Swn—l

A, 41 X X Ay, —1

Fw,l [ /Ol [Gwn
A3, By,

By, +1 XX By, —1

Son
(note direction). We emphasise that the horizontal source is still Fy and the
horizontal target is Gy, the vertical source is Si,...,S, and the vertical target is
So- If each w, = 0 we get the original version of MAdj.

Composition proceeds via the mates correspondence.

Then for all w there is an isomorphism of cyclic double multicategories

MAdj = MAdj,,
which is the multivariable generalisation of the double category isomorphism

LAdj = RAdj.

4. Application to algebraic monoidal model categories

One aim of this work is to study an algebraic version of Hovey’s notion of monoidal
model category [12]. In such a model category we have hom and tensor structures
that must interact well with the given model structure. One such interaction
requirement is that the 2-variable adjunction for hom and tensor should be a
morphism of the underlying algebraic weak factorisation systems of the model
category. An important consequence of the defining axioms is that the total derived
functors of the 2-variable adjunction given by the tensor and hom define a closed
monoidal structure on the homotopy category of the model category.

A model category has, among other things, two weak factoristion systems. In
an algebraic model category [24] these are algebraic weak factorisation systems
[7]. In this case, elements in the left and right classes of the weak factorisation
systems specifying the model structure become coalgebras and algebras for the
comonads and monads of the algebraic weak factorisation systems. An algebraic
model category with a closed monoidal structure is a monoidal algebraic model
category [25] just when the tensor/hom/cotensor 2-variable adjunction is a “2-
variable adjunction of algebraic weak factorisation systems”. This notion makes
use of the definition of parametrised mates and motivates much of the present work.

As in [24], we abbreviate “algebraic weak factorisation system” to “awfs”. First
we recall the definition of awfs and of a standard (1-variable) adjunction of awfs.
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Throughout this section, given a category A we write A® for the category whose
objects are morphisms of A, and whose morphisms are commuting squares. That
is, A% is the category Cat(2, A) where 2 denotes the category containing a single
non-trivial arrow. We have domain and codomain projections dom ,cod : 42 — A.

A functorial factorisation on a category A is given by a pair of functors
L,R: A2 — A? with dom L = dom, cod R = cod, and cod L = dom R. We
call this last functor E, so we can write the factorisation of a morphism f as below.

a;b
ij Af
Ef.

An awfs on a category A is given by a functorial factorisation together with extra
structure making

e [ acomonad on A2, and
e R amonad on A2, such that

o the canonical map LR — RL given by multiplication and comultiplication
is a distributive law.

The idea is that the L-coalgebras are the left maps (equipped with structure
specifying their liftings) and the R-algebras are the right maps.

Definition 4.1 A adjunction of awfs

(L1,R1)) — (L2,R2)
on A; on A,

consists of the following.

e An adjunction

e Natural transformations A and p making

1. (F2,1) into a colax comonad map L; —> L,, and

2. (G?,p) into a lax monad map R, —> R;
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where
A=(l,a), and

p=(a1).

Here o denotes the mate of o, about which some further comments are called
for. A priori the natural transformations A and p are as shown below

L R
A} —> A7 A} —> A%
FQJ /A JFQ GQ] p\ ]GQ
L Ak

but it turns out that such A and p are completely determined by respective natural
transformations as below

A? i) A A? i) Ay
F?j V4 lF GQ] N\ ]G

It is these that are required to be mates « and & respectively, under the adjunctions
F? - G?and F - G. (Note that ()? is actually the 2-functor Cat(2, ) so preserves
adjunctions.)

It turns out that the appropriate generalisation for the n-variable case involves
generalising the functor ()? as well, as follows.

Definition 4.2 Let F': Ay x --- x A, —> Ao be an n-variable functor, and assume
that each category A; has appropriate colimits. We define a functor

F: AT X o x A7 —> A
as follows. Consider morphisms
aio 2> a1 € 4

for each 1 <i <n. We need to define a morphism ﬁ(fl y..r fn) in Ag. Consider the
commuting hypercube in A; x -+ X A, built from f;’s as follows.

e Vertices are given by (ajk,....,dnk,) Where each k; = 0 or 1 (thus, the ith
term is either the source or target of f;).

e Edges are given by (1,...,1, f;,1,...,1) forsome 1 <i <n.
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Each face of this hypercube clearly commutes.

We apply F to this diagram and take the “obstruction” map induced by
the colimit over the diagram obtained by removing the terminal vertex (and all
morphisms involving it). We call this map F (f1,..., fu) in AZ; its domain is the
above colimit and its codomain is (ay1,...,dx1).

The action on morphisms is then induced in the obvious way. In fact (A) is
a pseudo-functor so preserves adjunctions. Furthermore, a straightforward but
notationally involved proof shows that (A) preserves n-variable adjunctions, as we
first learned from Dominic Verity.

Remark 4.3 Given an awfs (L, R) on a category A, we get a dual awfs (R®,L*®) on
A®. Note that

e L is acomonad on A2, so L® is a monad on (4?)°, and
e Risamonadon A2, so R® is a comonad on (42)°.

Also, given awfs (L1,R;) on A; and (L3, R,) on A, we get an awfs
(L] X Lz,Rl X Rz)

on A1 X A,.

Definition 4.4 Suppose we have for each 0 <i <n a category A; equipped with an
awfs (L;, R;). Then an n-variable adjunction of awfs

Ay X o X Ay —> A}
is given by the following.

e A functor Fy : Ay x --- x A, —> Ag equipped with n-variable right adjoints
Fi,....F,, and

e For each i a natural transformation A; as shown below

L;jiyx-+xL;_

2 2 i+1 i—1 2 2
A7 XX Ay Ay X X AT
ﬁiJ //li Lﬁl
2 2
Ai R® Ai
i

making (F;,A;) into a colax comonad map

[ ]
Liy1x-xLi_y — R’
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e As in the 1-variable case, such a A; is completely determined by a natural

transformation
AiZ+1 X"'XA?—l B e B A1 XX Ajq
ﬁi[ /Oti F;
A? D A

1

and we require the ¢; to be parametrised mates.

Example 4.5 An algebraic, or perhaps constructive, encoding of the classical result
that the simplicial hom-space from a simplicial set A to a Kan complex X is again a
Kan complex is that the tensor-hom 2-variable adjunction is a 2-variable adjunction
of awfs. This example is prototypical, so we explain it further. The sets of maps

I ={0A" — A" |n >0}

and
J={A, — A"|n>10<k <n}

generate two awfs (C, Fy) and (Cy, F) on sSet by Garner’s algebraic small object
argument [4]. A simplicial set X is a Kan complex if the unique map X —> A°
satisfies the right lifting property with respect to J.

The sets I and J determine the cofibrations and fibrations in Quillen’s model
structure on sSet, which is a monoidal algebraic model category. The key technical
step in the proof of this fact is that the 2-variable morphism

sSet” x sSet® —>  sSet?®
(Cth)X(Cl’F) — (CtvF)

induced from the cartesian product is part of a 2-variable adjunction of awfs.

The modern proof of the non-algebraic version of this result makes use of
the closure properties of left classes of weak factorisation systems and is non-
constructive; see [6]. This argument does not suffice to prove the algebraic
statement. However, the classical constructive proof does suffice: the proof given
in [23, Theorem 6.9] explicitly constructs the required lifts of Hom(A4,X) —> A°
against J, supposing that similar lifts for X — A? are given. By the main result of
[25], this argument shows that the 2-variable right adjoint

(sSet?)® x sSet>  —°m . Set?

(F:,C) x (G, F) = (Ce, F)
defines a 2-variable adjunction of awfs. By our main theorem (Theorem 3.10) this
is equivalent to the desired statement. See [25] for more details.
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An important corollary of our main theorem in this context is the following
result.

Theorem 4.6 Multivariable adjunctions of awfs compose to yield new multivari-
able adjunctions of awfs.

Proof: Multivariable colax comonad morphisms compose multicategorically. Us-
ing the notation of Definition 4.4, the composite is obtained by composing the F;
and the A; in the obvious way.

Now, by the relationship between the A; and the «;, the composite of the A;
is determined by the multicategorical composite of the «;. So we check that these
composites satisfy the mate condition required by the definition. This follows from
Theorem 3.10. O

While only 2-variable adjunctions of awfs are required to make the definition
of a monoidal algebraic model category, the higher arity versions are useful in
the following way. Enriched categories, functors, adjunctions, and 2-variable
adjunctions over a closed symmetric monoidal category V can be encoded by
an a priori unenriched tensor/hom/cotensor 2-variable adjunction together with
coherence isomorphisms. These are isomorphisms between various composite 2-
, 3- and 4-variable functors [26]. There are many equivalent ways to encode this
data having to do with choices of left and right adjoints. Our main result allows a
seamless translation between these equivalent formulations. Related considerations
arise in homotopy theory where these arguments may be used to prove that the
total derived functor of a V-functor between V-model categories admits a canonical
enrichment over the homotopy category of V.
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