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Abstract. The aim is to study the paper “∞-operads as analytic monads” by David Gepner,
Rune Haugseng, and Joachim Kock.
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0. Does knowledge of 1-category theory provide morally sufficient grounds
upon which to fake knowledge of ∞-category theory? — Emily Riehl

This talk will proffer an ethical tactic for engaging with ∞-categories as
a non-expert. It will start by explaining exactly what an ∞-category is
from the point of view of much of the literature that works with them.
Along the way, it will also illustrate the similarities and differences between
1-categories and ∞-categories by giving an in-depth discussion of one of
the equivalences between ∞-categories that is used without comment in
[GHK].

Q. What is an ∞-category?

A 1-category has a collection of objects and then a collection of morphisms between any
ordered pair of objects, with an associative and unital binary composition operation defined
whenever co/domains align. An equivalence of 1-categories need not induce a bijection on ob-
jects, so in some sense “the set of objects” in a category is not really well-defined when working
with categorical constructions up to equivalence. An equivalence does define a local bijection
on collections of morphisms with fixed co/domains and a global bijection on isomorphism
classes of objects.

An ∞-category has a collection of objects and then a space of morphisms between any or-
dered pair objects, with a weakly associate and weakly unital composition operation defined
up to a contractible space of choices whenever co/domains align. The homotopy category of
an ∞-category is a 1-category obtained by replacing each mapping space with its set of path
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2 NOTES BY EMILY RIEHL

components. An equivalence of ∞-categories induces a local equivalence of mapping spaces
and a global bijection on isomorphism classes of objects in the homotopy category. So nei-
ther the set of objects in an ∞-category nor the space of morphisms between two objects is
well-defined — though the homotopy types of mapping spaces are preserved by equivalences.

This sketch of the idea of an ∞-category as a “category weakly enriched in spaces” can be
made precise by various models, to which we now turn.

Q. What are the “shortcomings …afflicting topological categories when viewed as a model for
…∞-categories”?

We’ve just declared that an ∞-category is a category weakly enriched in spaces. Somewhat
surprisingly, and certainly non-obviously, every ∞-category can be modeled by a category
strictly enriched in space, i.e., by either a topological category or by a simplicial category.
This result can be interpreted as some sort of coherence theorem for ∞-categories.

However, it is not the case that any functor between ∞-categories can be represented by a
topologically-enriched functor between the topological categories that represent its domain
and codomain: ∞-functors correspond to “homotopy coherent” functors, with the strictly
enriched functors being a special case.

And more generally one would like to access the space or even better the ∞-category of
∞-functors between a fixed pair of ∞-categories. This can be constructed for topologically
enriched categories¹ but not natural with respect to composition of∞-functors. This is related
to properties of Bergner’s model structure for simplicial categories [Ber], which is not cartesian
closed and in which relatively few objects are both fibrant and cofibrant.

Q. What is a “better-behaved model for ∞-categories”?

The most popular model of ∞-categories, because it is the simplest to get up and running,
is the aforementioned weak Kan complexes, now called quasi-categories.

defn. A quasi-category is a “simplicial set with composition”: a simplicial set𝐴 in which every
inner horn can be filled to a simplex.

Λ𝑘[𝑛] 𝐴

Δ[𝑛]

𝑛 ≥ 2, 0 < 𝑘 < 𝑛

Note that this is weaker than the lifting property which characterizes Kan complexes. In
particular, Kan complexes are examples of quasi-categories, as ∞-groupoids are instances of
∞-categories.

The vertices of a quasi-category represent its objects, as an ∞-category, and the edges rep-
resents its 1-arrows. By extending along the horn inclusion Λ1[2] ↪ Δ[2], any composable
pair of arrows admits a composite, with each composition relation witnessed by a 2-simplex;
degenerate 2-simplices can be used to witness the identity axioms. The higher horn filling
conditions imply that this operation is associative and homotopically unique: the fibers of the
right-hand vertical map

• 𝐴Δ[2]

Δ[0] 𝐴Λ1[2]

⌟

(𝑔,𝑓)

¹One of the earliest examples of an ∞-category was the “weak Kan complex” of homotopy coherent functors
studied by Boardman and Vogt [BV].
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are contractible Kan complexes: hence any composable pair of arrows (𝑔, 𝑓) has a unique
composite, up to homotopy.

Arbitrary maps of simplicial sets 𝐴 → 𝐵 preserve objects, arrows, and composition, and
hence are regarded as ∞-functors between ∞-categories. The nerve of a 1-category 𝐽 always
defines a quasi-category; since the nerve embedding is fully faithful, it is increasingly common
to use the same notation for the 1-category and the corresponding ∞-category. By examina-
tion, the data involved in a simplicial map 𝐽 → 𝐴 assembles into a “homotopy coherent
diagram of shape 𝐽 in 𝐴.” If 𝐴 is a quasi-category and 𝐽 is any simplicial set, then the internal
hom Fun(𝐽 , 𝐴) ≔ 𝐴𝐽 is again a quasi-category, defining a natural model for the ∞-category
of ∞-functors from 𝐽 to 𝐴.²

Q. How should one approach ∞-categories assuming only a background in 1-categories?

In an ideal world, where every mathematician had an unlimited amount of unencumbered
free time and could pause any conversation or research project to go read all the relevant
literature, we would quote a theorem that we didn’t know how to prove. But in the real
world, it’s desirable to figure out a way to interact with new technology without necessarily
understanding how everything works under the hood.

In this vein, many learners, users, or experts in abstract homotopy theory are wondering
to what extent their familiarity with 1-category theory can serve as a proxy for understand-
ing of ∞-category theory. In the interest of welcoming as many people as possible into the
conversation, I think it’s important to avoid having too high a cost of admission into this new
direction the field is taking.

I’d advocate approaching ∞-categories with a mix of confidence (that the theorems and
constructions that you know and love from 1-category theory likely extend fully faithfully
to ∞-categories) and humility (that if you don’t happen to know the details of a particular
extension, it’s likely the case that someone has had or will have to work quite hard to nail
them down). In particular, it does not help the field advance if you write a paper asserting
that some ∞-categorical fact is analogous to the corresponding 1-categorical fact if you have
no idea how one would prove the ∞-categorical version of the theorem you’d like to use.

In talks, the ethical standard is somewhat different, because when trying to tell a coherent
story in a constrained amount of time it’s often advisable to suppress certain details. Here I
see no issue with arguing by analogy with 1-categories — provided that in doing so you do no
harm. In this context, harm is caused by intimidating members of the audience into thinking
that they’re the only ones who don’t understand what’s going on, for instance by parroting
stuff that you don’t understand either. If you tend to be under-confident when sketching
mathematical proofs then it’s likely that your use of language when discussing ∞-categories
will naturally be reassuring. But if you tend to be over-confident, you should take care to
make sure you don’t inadvertently put people off.³

Q. How does ∞-categorical methodology differ from 1-categorical methodology?

Part of what confuses readers familiar with 1-categories when reading papers that use
∞-categories is that the arguments that appear seem less rigorous, or at least less explicit.
Some of this is because it is considerably more difficult to give “full details” in a new area
whose foundations haven’t been fully streamlined and sublimated, but some of this is due to
a genuine methodological difference in working model-independently with ∞-categories vs
working with a theory of 1-categories ultimately grounded in set theory, as we now explain.

²It is convenient to consider quasi-category-valued diagrams indexed by an arbitrary simplicial set, like it can be
convenient to consider category-valued diagrams indexed by a directed graph.

³I.e., try not to become one of what I’ve heard to referred to as “infinity blah blah blah” people.
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Some definitions and constructions in 1-category theory are “evil,” failing to be invariant
under equivalences of categories. To be justifiably considered as an aspect of “∞-category
theory” (rather than “quasi-category theory” or “complete Segal space theory”) a construction
must be invariant under equivalence of ∞-categories because the various “change-of-model
functors” only respect equivalence classes of ∞-categories. So, for instance, any particular
∞-category may be introduced by specifying a member of the correct equivalence class, in
any model, as we shall now do.

Q. What is S?

By convention S denotes “the” ∞-category of spaces, well-defined up to equivalence. This
mostly naturally arises as a topologically enriched category, or for technical reasons, by con-
sidering the full Kan-complex-enriched subcategory of small Kan complexes in the category
of simplicial sets. The homotopy coherent nerve of this then defines a large quasi-category
which we denote by S. Objects of S are Kan complexes and morphisms are simplicial func-
tors. Higher simplices represent homotopy coherent diagrams of Kan complexes.

Q. For 𝑓∶ 𝐼 → 𝐽 in S how is

S/𝐼 S/𝐽 equivalent to Fun(𝐼, S) Fun(𝐽 , S) ?

𝑓!
⊥

𝑓∗
⊥
𝑓∗

lan𝑓
⊥

ran𝑓
⊥

𝑓∗

The equivalence S/𝐽 ≃ Fun(𝐽 , S) is very special to the∞-category S as we shall explain. It is
most easily described when the∞-category of spaces S is modeled as a quasi-category, defined
as the homotopy coherent nerve of the category of Kan complexes. An element 𝐽 ∈ S is then
a small Kan complex.

Since 𝐽 and S are both simplicial sets (with 𝐽 being small and S being large), the quasi-
category Fun(𝐽 , S) ≔ S𝐽 may be defined as above: objects are simplicial maps 𝐽 → S, mor-
phisms are simplicial natural transformations 𝐽×Δ[1] → S, and higher simplices are diagrams
𝐽 × Δ[𝑛] → S.

The quasi-category S/𝐽 is defined by Joyal’s slice construction [Joy], which can be imple-
mented for any vertex in any simplicial set. Objects in S/𝐽 are edges in S with codomain 𝐽.
In general, 𝑛-simplices in S/𝐽 are 𝑛 + 1-simplices in S with final vertex 𝐽. Since S is a homo-
topy coherent nerve, this can be unpacked further: objects in S/𝐽 are maps of Kan complexes
𝑋 → 𝐽, while an arrow is comprised of a diagram

𝑋 𝑌

𝐽
⇗

given by a trio of simplicial maps forming the boundary of a simplicial natural transformation
𝑋 × Δ[1] → 𝐽.

It’s not obvious from these explicit descriptions how these quasi-categories are equivalent.
The relevant 1-categorical theorem is:

Theorem. For any 1-category 𝐽, there is an equivalence of categories

Fun(𝐽 ,Set) ≃ DLFib/𝐽 ⊂ Cat/𝐽
between the category of functors 𝐽 → Set and the category of discrete left fibrations over 𝐽, a full
subcategory of Cat/𝐽.
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A discrete left fibration is a functor 𝑝∶ 𝐸 → 𝐽 with the unique right lifting property

𝟙 𝐸

𝟚 𝐽
dom 𝑝

∃!

The corresponding maps of quasi-categories are called left fibrations by Joyal [Joy], which are
maps of simplicial sets 𝑝∶ 𝐸 → 𝐽 characterized by the right lifting property

Λ𝑘[𝑛] 𝐸

Δ[𝑛] 𝐽

𝑝
∃

𝑛 ≥ 1, 0 ≤ 𝑘 < 𝑛

which in the case Λ0[1] ↪ Δ[1] represents the inclusion of the domain of an arrow. The
higher left horn fillers make up for the lack of uniqueness of lifts.

By repeated attaching fillers for left horns to 𝑋, any map of Kan complexes 𝑋 → 𝐽 can
be replaced by a left fibration 𝑋̃ → 𝐽 related via an equivalence 𝑋 ≃ 𝑋̃ over 𝐽. Thus S/𝐽 is
equivalent to the full subcategory spanned by the left fibrations over 𝐽. Since all of∞-category
is equivalence invariant, there is no need to replace S/𝐽 by this subcategory. Instead, we are
free to consider S/𝐽 itself as the∞-category of left fibrations over 𝐽.

By a theorem of Joyal [Joy], the fibers of a left fibration 𝑝∶ 𝑋 → 𝐽 are Kan complexes.
Thus 𝑝 may be regarded as a 𝐽-indexed family of Kan complexes. Moreover, the fact that
𝑝 is a left fibration implies that these fibers vary covariantly functorially in morphisms in
the ∞-category 𝐽. In this way, a left fibration over 𝐽 morally corresponds to a ∞-functor
𝐽 → S. The ∞-groupoid variant of the straightening-unstraightening theorem of Lurie [L1]
then establishes an equivalence

S/𝐽 ≃ Fun(𝐽 , S),

which can be understood in a very explicit way. Cisinski [Cis] proves that there is a universal
left fibration𝑢∶ S∗ → S using techniques similar to those used to establish universal fibrations
in presheaf models of homotopy type theory. Here S∗ is the∞-category of pointed spaces and
𝑢 is the evident forgetful functor. From right to left, the “unstraightening” of an ∞-functor
𝐹∶ 𝐽 → S is given by forming the pullback

∫𝐹 S∗

𝐽 S

⌟
𝑢

𝐹

of quasi-categories. See [RV] for more details about how this mapping on objects is extended
to an ∞-functor.

Finally, note that the construction of the unstraightening of a functor 𝐽 → S is natural
in the indexing category, with the unstraightening of a composite diagram 𝐹𝑓∶ 𝐼 → 𝐽 → S

formed by pulling back∫𝐹 → 𝐽 along 𝑓. Thus, the equivalence S/𝐽 ≃ Fun(𝐽 , S) identifies the
pullback and pre-composition functors 𝑓∗ and − ∘ 𝑓 appearing in the middle of the triple of
adjoints. An adjoint to an ∞-functor is well-defined up to natural isomorphism, so it follows
that 𝑓! is equivalent to lan𝑓 and 𝑓∗ is equivalent to ran𝑓.
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1. Introduction — Noah Chrein

The notion of an operad has been around for decades now, going back to
May in the 70s. They are used to capture the computational combinatorics
of algebraic structures in various situations. Classically, operads are de-
fined using symmetric sequences of sets, these sequences give rise to “ana-
lytic endofunctors” which are monads when the symmetric sequence is an
operad. For sets, there is an equivalence between the notion of an algebra
on an operad and the algebra on its associated monad. Lifting to operads
defined as sequences of spaces, this algebraic equivalence is lost in general.
Gepner, Haugseng, and Kock notice this problem has to do with higher
structures and so devise a definition of an ∞-operad as an analytic monad
to recover an analog of the algebraic equivalence in the setting of higher
category theory. Several other equivalent models of ∞-operads exist, for
example as dendroidal Segal spaces by Cisinski and Moerdijk. GHK’s fi-
nal result proves their analytic model of infinity operads is equivalent to
the dendroidal Segal spaces. This introduction will focus on the main con-
structions and results of the paper that this seminar aims to study in detail
during the remainder of the semester.

defn. A symmetric sequence in 𝐶 is a functor 𝑂∶ Fin → 𝐶, where Fin is the ∞-category of
finite sets and bijections.

From a symmetric sequence one can define an endofunctor 𝑇∶ 𝐶 → 𝐶 by

𝑇(𝑋) ≔ 􏾢
𝑛

𝑂(𝑛) ×Σ𝑛 𝑋
𝑛,

assuming 𝐶 has these limits and colimits, and when 𝑂 is an operad, 𝑇 is a monad. Moreover,
algebras for the operad, objects 𝑉 ∈ 𝐶 with structure maps 𝑂(𝑛) × 𝑉𝑛 → 𝑉 correspond to
algebras for the monad, which have structure maps 𝛼∶ 𝑇(𝑉) → 𝑉.

When 𝐶 = Set, we can recover the operad𝑂 from from the category of algebras for 𝑇, but
this isn’t true when 𝐶 = Spaces.

The main result of this paper is that ∞-operads are analytic monads, that is analytic mon-
ads are equivalent to the exist models of∞-operads due to Lurie and due to Cisinski-Moerdijk
(as dendroidal Segal spaces).

Now let’s give an overview of the sections of the paper.⁴

1.2. Polynomial functors. Let S be the ∞-category of spaces, or of ∞-groupoids. Some key
facts:

• S is an ∞-topos
• S is locally cartesian closed as an ∞-category, meaning for every 𝑓∶ 𝐼 → 𝐽 in S there exists

an adjoint triple

S/𝐼 S/𝐽

𝑓!
⊥

𝑓∗
⊥
𝑓∗

Let 𝑓∶ 𝐼 → 𝐽 be a morphism in S.

⁴The content of the talk has been reordered somewhat to optimize for note-taking.



∞-OPERADS AS ANALYTIC MONADS 7

defn. A polynomial functor 𝑃∶ S/𝐼 → S/𝐽 is a functor that arises as 𝑃 = 𝑡!𝑝∗𝑠∗ for some
polynomial

𝐼 𝐸 𝐵 𝐽𝑠 𝑝 𝑡

in S.

There is a geometric realization functor |−| ∶ Cat∞ → S from the∞-category of∞-categories
to the ∞-category of spaces that freely inverts all of the morphisms in 𝐶. An ∞-category 𝐶 is
weakly contractible if |𝐶| is weakly contractible.

Theorem. For a functor 𝐹∶ S/𝐼 → S/𝐽, the following are equivalent:
(i) 𝐹 is a polynomial functor
(ii) 𝐹 is accessible and preserves weakly contractible limits
(iii) 𝐹 is a local right adjoint.

defn. A functor 𝐹∶ 𝐶 → 𝐷 is a local right adjoint if for all 𝑥 ∈ 𝐶 the functor 𝐹/𝑥 ∶ 𝐶/𝑥 → 𝐷/𝑥
is a right adjoint for all 𝑥 ∈ 𝐶.

Remark. By the adjoint functor theorem, a functor between locally presentable∞-categories
is a left adjoint if and only if it preserves colimits and is a right adjoint if and only if it is
accessible and preserves limits.

For any 𝐼, 𝐽 ∈ S, there is an ∞-category PolyFun(𝐼, 𝐽) whose objects are polynomial func-
tors from 𝐼 to 𝐽 and whose morphisms are cartesian natural transformations, natural trans-
formations whose naturality squares are pullback squares.

Lemma. If 𝜂∶ 𝐹 → 𝑃 is a cartesian natural transformation whose codomain 𝑃 is a polynomial
functor, then 𝐹 is a polynomial functor.

The definition of the ∞-category PolyFun of polynomial functors with varying endpoints
is somewhat complicated.

The category Poly is defined as a subcategory of diagrams of shape • ← • → • → • in S

containing all objects and only those morphisms whose “middle square” as below is a pullback

• • • •

• • • •

⌟

Theorem. The∞-categories Poly and PolyFun are equivalent.

1.3. Analytic functors.

defn. An analytic functor 𝐹∶ S/𝐼 → S/𝐽 preserves weakly contractible limits and sifted colim-
its.

This is a strengthening of the second characterization of polynomial functors in the theo-
rem above, since filtered colimits are sifted.⁵ Consequently:

Corollary. Analytic functors are polynomial functors.

Theorem. Analytic functors are those polynomial functor represented by polynomials

𝐼 𝐸 𝐵 𝐽𝑠 𝑝 𝑡

in which 𝑝 has finite discrete fibers.

⁵Filtered colimits commute with finite limits; sifted colimits commute with finite products.
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Proposition. Letℱ be a “bounded local class of morphisms” in S with classifying family𝑈 ′
ℱ → 𝑈ℱ,

and let 𝐹∶ S → S be the polynomial functor corresponding to this map. Then the forgetful functor

PolyFun/𝐹 PolyFun

is fully faithful and its image is the full subcategory PolyFun/ℱ of polynomial functors represented by
polynomials whose middle map is in the class ℱ.

An example is the family ℱ of maps whose fibers are finite sets. Then by the previous the-
orem, AnFun ≃ PolyFun/ℱ ≃ PolyFun/𝐸 where 𝐸 is the polynomial functor with polynomial

∗ 𝜄Fin∗ 𝜄Fin ∗

Here Fin is the category of finite sets and all maps while 𝜄Fin is its maximal subgroupoid, the
category of finite sets and isomorphisms. This proves:

Theorem. If 𝐹 is analytic then its polynomial is a pullback

𝐼 𝐸 𝐵 𝐽

∗ 𝜄Fin∗ 𝜄Fin ∗

𝑠
⌟

𝑝 𝑡

Consequently
𝐹(𝑋) = 􏾢

𝑛
(𝐵𝑛 ×Σ𝑛 𝑋

𝑛)

where the 𝐵𝑛 are the fibers of 𝐵 → 𝜄Fin.

1.4. Initial Algebras and Free Monads. Let 𝑃 be an endofunctor of some ∞-category C. A
𝑃-algebra is a pair (𝐴, 𝑎) with 𝑎 ∶ 𝑃𝐴 → 𝐴. Similarly a 𝑃-coalgebra is a pair (𝐶, 𝑐) where
𝑐 ∶ 𝐶 → 𝑃𝐶.

For any 𝑃-coalgebra one can define the colimit

Ω𝐶 = colim( 𝐶 𝑃𝐶 𝑃2𝐶 ⋯𝑐 𝑃𝑐 ).
It turns out that Ω𝐶 is a 𝑃-algebra so this defines a functor

Ω∶ Coalg𝑃(C) → Alg𝑃(C).
Dually one defines

𝐵∶ Alg𝑃(C) → Coalg𝑃(C),
and these are adjoint Ω ⊣ 𝐵, defining the bar-cobar adjunction.

The category of 𝑃-algebras has a free-forgetful adjunction inducing a monad 𝑃̄ on C, and
this defines a functor

Fr ∶ End(C) → Mon(C),
by Fr(𝑃) = 𝑃̄.

When this construction applied to analytic endofunctors it gives an analytic monad, and
this defines a left adjoint to the inclusion

AnEnd(𝐼) AnMnd(𝐼)

Fr

⊥

𝑈

Moreover this adjunction is monadic.
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Consequently, the category of analytic monads is equivalent to the category of algebras for
the monad 𝑈Fr on the category of endofunctors. What this means in practice is that from an
algebra on an analytic endofunctor we can recover our analytic monad.

1.5. Analytic monads and∞-operads. In the final section they show that analytic monads are
Segal presheaves on the category of trees. This is the Cisinski-Moerdijk notion of ∞-operad.

2. Polynomial Functors — Martina Rovelli

The main character is S, the ∞-category of spaces. For 90% of what follows, you can also
take S to be the category of sets.

For any 𝐼 ∈ S you can construct the slice ∞-category S/𝐼 whose objects are 𝑓∶ 𝑋 → 𝐼.
Note that S/𝐼 has a terminal element, namely the identity at 𝐼.

Each 𝑓∶ 𝐼 → 𝐽 ∈ S gives rise to an adjoint triple

S/𝐼 S/𝐽

𝑓!
⊥

𝑓∗
⊥
𝑓∗

The left adjoint 𝑓! is composition with 𝑓 aka the dependent sum Σ𝑓. The middle functor 𝑓∗
is pullback along 𝑓. The right adjiont 𝑓∗ is called the dependent product and also denoted by
Π𝑓. As a right adjoint 𝑓∗(id𝐼) = id𝐽.

defn. A polynomial is a diagram

𝐼 𝐸 𝐵 𝐽𝑠 𝑝 𝑡

To each polynomial you can associate a functor

𝑃∶ S/𝐼 S/𝐸 S/𝐵 S/𝐽
𝑠∗ 𝑝∗ 𝑡!

Q. When does 𝐹∶ S/𝐼 → S/𝐽 arise in this manner?

The following theorem characterizes polynomial functors.

Theorem. For 𝐹∶ S/𝐼 → S/𝐽 TFAE

(i) 𝐹 = 𝑡!𝑝∗𝑠∗ for some polynomial.
(ii) 𝐹 is accessible and preserves weakly contractible limits.
(iii) 𝐹 is a local right adjoint: meaning functors induced by 𝐹 on slices over an object in S/𝐼 are right

adjoints.

A functor is accessible if it preserves𝜅-filtered colimits for some regular cardinal𝜅. Weakly
contractible limits are limits indexed by categories whose geometric realization is weakly
equivalent to a point.

A related result will help prove the main theorem.

Theorem. For 𝐹∶ S/𝐼 → S/𝐵 TFAE

(i) 𝐹 = 𝑝∗𝑠∗ for some polynomial.
(ii) 𝐹 is accessible and preserves all limits.
(iii) 𝐹 is a right adjoint.
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Proof. The equvialence (𝑖𝑖) ⇔ (𝑖𝑖𝑖) is the adjoint functor theorem. Clearly (𝑖) ⇒ (𝑖𝑖𝑖).
For (𝑖𝑖𝑖) ⇒ (𝑖) the assignment (𝐼 𝑠←− 𝐸

𝑝
−→ 𝐵) ↦ (S/𝐼

𝑠∗−→ S/𝐸
𝑝∗←− S/𝐵) is part of an

equivalence and can be described as the following:

S/𝐼×𝐵 ≃ Fun(𝐼 × 𝐵, S) ≃ Fun(𝐵,Fun(𝐼, S)) ≃ Fun𝐿(Fun(𝐵, S),Fun(𝐼, S)),

where this last equivalence expresses the universal property of the free colimit completion
よ ∶ 𝐵 → Fun(𝐵, S), ignoring ops (since 𝐵 is a space), and then since Fun(𝐼, S) ≃ S/𝐼 we have

≃ Fun𝐿(S/𝐵, S/𝐼) ≃ Fun𝑅(S/𝐼, S/𝐵). �

Proof of the main theorem. (i)⇒(ii) is a direct verification. (ii)⇒(iii) again involves the adjoint
functor theorem.

The interesting implication is (iii)⇒(i). Suppose 𝐹∶ S/𝐼 → S/𝐽 is a local right adjoint. Now
consider the sliced functor

S/𝐼 ≃ (S/𝐼)/id𝐼 (S/𝐽)/𝐹(id𝐼)
𝐹/id𝐼

If 𝐹(id𝐼) = 𝑌 → 𝐽 then we have an equivalence between the double slice and the single slice:

S/𝐼 ≃ (S/𝐼)/id𝐼 (S/𝐽)/𝐹(id𝐼) ≃ S/𝑌 S/𝐽
𝐹/id𝐼

𝑅
⊥

𝐹(id𝐼)!

By the previous result 𝑅 has the form 𝑝∗𝑠∗. So now this composite, which is 𝐹 again, is 𝑡!𝑝∗𝑠∗.
�

Composition of polynomial functors. By the second condition of the theorem, the composite
of polynomial functors is a polynomial functor. But what is the composite polynomial? There
are two main tools we’ll use to answer this question.

defn (Beck-Chevalley transformations). Given a square

𝐴 𝐵

𝐶 𝐷

𝑢

𝑔 𝑓

𝑣

we can construct

S/𝐴 S/𝐵

S/𝐶 S/𝐷

𝑢∗

𝑔∗

𝑣∗

𝑓∗

Pasting with the counit of 𝑢! ⊣ 𝑢∗ and 𝑣! ⊣ 𝑣∗ we get

S/𝐴 S/𝐵

S/𝐶 S/𝐷

𝑢!

⇘𝑔∗

𝑣!

𝑓∗
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and dually

S/𝐴 S/𝐵

S/𝐶 S/𝐷

𝑔∗ ⇖

𝑢∗

𝑓∗

𝑣∗

Lemma. The original square is cartesian if and only if these induced transformations are invertible.

The upshot is that you can always push a lower shrieck to the left of an upper star by taking
the pullback of the cospan to form the cartesian square. Dually, you can always move a lower
star to the right of an upper star.

What’s missing is a way to swap (−)∗ and (−)!. The answer is not as good but almost: you
get an extra term which is an upper star, but this is okay because you know how to handle
them.

Lemma (distributivity). Given 𝐸
𝑔
−→ 𝑋

𝑓
−→ 𝑌 you can form a diagram

𝐸 𝐸′ 𝐸″

𝑋 𝑌

𝑞𝜖

𝑝

by forming 𝑓∗(𝑔) and then 𝑓∗𝑓∗(𝑔) so that

S/𝐸 S/𝐸′ S/𝐸″

S/𝑋 S/𝑌

𝑔∗

𝜖∗ 𝑞!

𝑝∗

𝑓!

commutes.

Now we can compute the composite. Given

𝐸 𝐵 𝐹 𝐶

𝐼 𝐽 𝐾

build

𝐺 𝑋 𝐷

𝑌 𝐵 ×𝐽 𝐹

𝐸 𝐵 𝐹 𝐶

𝐼 𝐽 𝐾

⌟

⌟
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Then

S/𝐺 S/𝑋 S/𝐷

S/𝑌 S/𝐵×𝐽𝐹

S/𝐸 S/𝐵 S/𝐹 S/𝐶

S/𝐼 S/𝐽 S/𝐾

⌟

⌟

The dashed composites are the three components of the composite polynomial functor.

Morphisms of polynomials. A natural transformation

S/𝐼 S/𝐽

𝐹

𝐺

⇓ 𝛼

is cartesian if all naturality squares are pullback squares. Equivalently, for all 𝑓∶ 𝑋 → 𝐼 in S/𝐼
the square

𝐹𝑓 𝐺𝑓

𝐹id𝐼 𝐺id𝐼

⌟

is a pullback.
Why cartesian morphisms are cool:

• 𝛼 is an equivalence if and only if 𝛼id𝐼 is an equivalence.
• Given 𝛼∶ 𝐹 ⇒ 𝐺 and 𝛽∶ 𝐾 ⇒ 𝐺 such that 𝛼id𝐼 ≃ 𝛽id𝐼 then 𝛼 ≃ 𝛽 which implies in

particular that 𝐹 ≃ 𝐾.
• Cartesian natural transformations are the cartesian edges for the cartesian fibration

cod ∶ Fun(S/𝐼, S/𝐽) → S/𝐽

defn. The∞-categoryPolyFun(𝐼, 𝐽) of polynomial functors from 𝐼 to 𝐽 is the sub∞-category
of Fun(S/𝐼, S/𝐽) whose objects are the polynomial functors S/𝐼 → S/𝐽 and whose morphisms
are the cartesian morphisms (and with all higher cells between them).

Our next aim is to show that the ∞-category PolyFun(𝐼, 𝐽) is equivalent to an ∞-category
Poly(𝐼, 𝐽) that we’ll now introduce.

defn. The ∞-category of polynomials from 𝐼 to 𝐽 is approximately

S/𝐼 ×S Fun(𝟚, S) ×S S/𝐽

where the pullbacks says that the source of the middle arrow is the source of the arrow whose
codomain is 𝐽 and that the target of middle arrow is the source of the arrow whose codomain
is 𝐼.
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Unpacking this, we see that the morphisms have the form

𝐼 𝐸 𝐵 𝐽

𝐼 𝐸′ 𝐵′ 𝐽

except this isn’t quite right. In the definition above, you want the middle square to be a
pullback

𝐼 𝐸 𝐵 𝐽

𝐼 𝐸′ 𝐵′ 𝐽

⌟

which you get by taking Funcart(𝟚, S) ↪ Fun(𝟚, S) is the subcategory whose morphisms are
pullback squares. In fact define

Poly(𝐼, 𝐽) ≔ S/𝐼 ×S Funcart(𝟚, S) ×S S/𝐽.

We now how to take a polynomial to a polynomial functor but to define𝜙𝐼,𝐽 ∶ Poly(𝐼, 𝐽) →
PolyFun(𝐼, 𝐽) we also need to take morphisms of polynomials to cartesian transformations.
Given a square as above you get a pasting “composite” of two Beck-Chevalley transformations

S/𝐼 S/𝐸 S/𝐵 S/𝐽

S/𝐼 S/𝐸′ S/𝐵′ S/𝐽

⇖ ⇘

which looks like it shouldn’t compose but since the middle square was a pullback the middle
map is invertible.

Theorem. The map 𝜙𝐼,𝐽 ∶ Poly(𝐼, 𝐽) → PolyFun(𝐼, 𝐽) is an equivalence of∞-categories.

Why should this be true? We’ve seen that the objects are the same. Given a cartesian
transformation

S/𝐸 S/𝐵

S/𝐼 S/𝐽

S/𝐸′ S/𝐵′

⇓ 𝛼

Observe that the component 𝛼id𝐼 gives a map of the form 𝐵 → 𝐵′ over 𝐽. Define 𝑃 to be the
pullback and define a map 𝑃 → 𝐸′ → 𝐼 as the composite.

This gives a diagram of the correct type to define a morphism𝐴 inPoly(𝐼, 𝐽) but its source
isn’t quite right because it involves the object 𝑃 rather than 𝐸. Observe however that 𝜙𝐼,𝐽(𝐴)
and 𝛼 are cartesian maps between polynomial functors with the same target and the same
component at id𝐼 so by the fact above 𝜙(𝐴) ≃ 𝛼.

This heuristic argument effectively shows that the∞-categoriesPoly(𝐼, 𝐽) andPolyFun(𝐼, 𝐽)
have the same homotopy category but isn’t enough to show that the ∞-categories are equiva-
lent. We’ll now give the ingredients of the full proof.

Proof. There are maps

Poly(𝐼, 𝐽) S/𝐽 PolyFun(S/𝐼, S/𝐽)
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defined in the first case by taking the component 𝐵 → 𝐽 of a polynomial 𝐼 ← 𝐸 → 𝐵 → 𝐽
and defined in the second case by evaluating 𝐹∶ S/𝐼 → S/𝐽 at id𝐼. Both functors turn out to be
right fibrations.

The map 𝜙𝐼,𝐽 commutes with the maps to S/𝐽 so it is enough to show that it is an equiv-
alence on fibers over each object 𝑌 → 𝐽. For Poly(𝐼, 𝐽) → S/𝐽 the fiber looks like S/𝐼×𝑌
on objects but not on morphisms: we need to impose the condition that the square on the
right is a pullback. But here we’re pulling back an identity so that’s the same as restricting to
the groupoid core (S/𝐼×𝑌)≃. On the other side, by our first theorem characterizing truncated
polynomial functors the fiber Fun𝑅,cart(S/𝐼, S/𝑌) is given by functors that are right adjoints, to-
gether with cartesian transformations between them. This map is a restriction of the equiva-
lence S/𝐼×𝑌 ≃ Fun𝑅(S/𝐼, S/𝑌). This is a bit surprising because it suggests that Fun𝑅,cart(S/𝐼, S/𝑌)
is an∞-groupoid but you can see this by appealing to one of the cartesian transformation facts
above: a cartesian transformation is invertible iff its component at the terminal object is in-
vertible and since the domains and codomains are right adjoints they preserve this terminal
object, so that component is indeed invertible. �

Morphisms of polynomial functors with varying domains and codomains. Recall

Poly(𝐼, 𝐽) ≔ S/𝐼 ×S Funcart(𝟚, S) ×S S/𝐽.
So to define a corresponding ∞-category with varying endpoints define

Poly ≔ Fun(𝟚, S) ×S Funcart(𝟚, S) ×S Fun(𝟚, S).
Objects are polynomials as before, while morphisms now look like

𝐼 𝐸 𝐵 𝐽

𝐼 ′ 𝐸′ 𝐵′ 𝐽 ′
𝑎

⌟
𝑏

Similarly, we can define an ∞-category PolyFun whose objects are polynomial functors
S/𝐼 → S/𝐽 for varying 𝐼 and 𝐽 and morphisms look like

S/𝐼 S/𝐽

S/𝐼′ S/𝐽′

𝐹

⇘𝑎∗

𝐹′

𝑏∗

Here we’re suppressing many details because we haven’t explained what the higher cells are.
You can define𝜙∶ Poly → PolyFun as before, sending the morphism of polynomials above

to
S/𝐼 S/𝐸 S/𝐵 S/𝐽

S/𝐼′ S/𝐸′ S/𝐵′ S/𝐽′

⇖ ⇘

Theorem. The map 𝜙∶ Poly → PolyFun is an equivalence.

Proof. The endpoint evaluation maps

Poly S × S PolyFun

are cartesian fibrations and 𝜙 is a cartesian functor between them. Fiberwise it precisely
induces the map 𝜙𝐼,𝐽 which we’ve shown is an equivalence. �
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This covers the first four of six sections in this part. We’ll just state the results from the
remaining two sections.

Colimits of polynomials. The ∞-categories Poly ≃ PolyFun and Poly(𝐼, 𝐽) ≃ PolyFun(𝐼, 𝐽)
are cocomplete and colimits are computed in “easier” ∞-categories:

Theorem. The following functors create colimits:
(i) Poly → Fun(• ← • → • → •, S), forgetting that the middle square is cartesian.
(ii) Poly(𝐼, 𝐽) → Fun(𝟚, S) that carries a polynomial to the middle map 𝐸 → 𝐵.
(iii) PolyFun(𝐼, 𝐽) → Fun(S/𝐼, S/𝐽) forgetting that your functors are polynomial and your trans-

formations are cartesian.

Slices of PolyFun. The category PolyFun is not well-behaved because it is not accessible (if
it were, it would be presentable by the just-established cocompleteness). However, when you
take slices over a fixed polynomial functor, then PolyFun/𝑃 is an ∞-topos.

Key facts:
• S is an ∞-topos.
• Diagrams, such as Fun(𝟚, S), valued in an ∞-topos is an ∞-topos.
• Slices of an ∞-topos is an ∞-topos.
• The pullback of an ∞-topos along left exact left adjoints is an ∞-topos.

Proof. Consider the slice Poly/𝔻 over a polynomial 𝔻 = 𝐼 𝑠←− 𝐸
𝑝
−→ 𝐵 𝑡−→ 𝐽. Then

Poly/𝔻 ≃ Fun(𝟚, S)/𝑠 ×S/𝐸 Funcart(𝟚, S)/𝑝 ×S/𝐵 Fun(𝟚, S)/𝑡
Since morphisms in Funcart(𝟚, S) are pullback squares Funcart(𝟚, S)/𝑝 ≃ S/𝐵. So

Poly/𝔻 ≃ Fun(𝟚, S)/𝑠 ×S/𝐸 S/𝐵 ×S/𝐵 Fun(𝟚, S)/𝑡
and since these objects are ∞-topoi and the functors are left exact left adjoints, Poly/𝔻 is an
∞-topos.

Similarly
Poly(𝐼, 𝐽)/𝔻 ≃ ⋯ ≃ S/𝐵

is an ∞-topos. �

Finally, you can define polynomial endofunctors

PolyEnd Poly

S S × S

⌟

Δ

and again PolyEnd/𝔻 is an ∞-topos.

Remark. Note that Poly ≃ PolyFun doesn’t have a terminal object because if it did the slice
over it would be an ∞-topos and so Poly would be too.

3. Analytic Functors — David Myers

Generating functorology. tslil told us that sets are numbers: 𝑛 ∈ ℕ corresponds to {1, … , 𝑛};
+ is disjoint union; × is cartesian product; and exponentiation corresponds to the set of func-
tions. Note this seems like we’re moving from concrete to abstract but really the historical
move was in the other direction: from a set of things to the abstract concept of number. What
follows will be less historical.
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Q. How do we divide sets?

One way to think about division has to do with partitioning sets (into equal size subsets).
To that end, suppose a group 𝐺 acts on a set 𝑋 freely. Then the set 𝑋/𝐺 of orbits satisfies
|𝑋/𝐺| = |𝑋|/|𝐺|. Eg 3 coins = 6 coin faces/2 symmetries.

Now suppose one coin has just one face: 5 coin faces/2 symmetries = 2.5 coins. (Of course
this action is no longer free but in math we often like to preserve the formula by modifying
the meaning of the terms.) We can think of this 2.5 coins as 1 + 1 + 1/2 where in each case we
are adding 1 over the size of the stabilizer of that element.

We can think of this count as having something to do with a groupoid: the action groupoid
𝑋//𝐺 of the action whose objects are 𝑋 and which has an arrow 𝑔∶ 𝑥 → 𝑦 iff 𝑔 ⋅ 𝑥 = 𝑦. Note
𝜋0(𝑋//𝐺) = 𝑋/𝐺.

defn. The cardinality of a finite groupoid 𝐺 is

#𝐺 = 􏾜
𝑥∈𝜋0𝐺

1
#Aut(𝑥)

.

Remark. Apparently the Euler characteristic of an ∞-groupoid can be defined similarly but
now the formula above should be interpreted coinductively: Aut(𝑥) is the automorphism
∞-groupoid.

Lemma. #(𝑋//𝐺) = #𝑋/#𝐺.

For instance 𝐺 acts on a singleton, so #(∗//𝐺) = 1/#𝐺.
The nerve of ∗//𝐺 is often called 𝐵𝐺, which here we take as a simplicial set:

∗ 𝐺 𝐺 × 𝐺 ⋯
We can calculate its Euler characteristic as the alternating sum over the non-degenerate sim-
plices in each dimension:

𝜒(𝐵𝐺) = 1 − (#𝐺 − 1) + (#𝐺 − 1)2 −⋯ =
1

1 + (#𝐺 − 1)
=

1
#𝐺

.

So the groupoid cardinality is related to the Euler characteristic.
Let Fin be the groupoid of finite sets. Then 𝜋0Fin = ℕ and #Aut{1, … , 𝑛} = 𝑛!. And the

groupoid cardinality is

#Fin = 􏾜
𝑛∈ℕ

1
𝑛!

= 𝑒.

Aside. So why are so many probabilities 1/𝑒? Well the average size of a finite set is 𝑒 so the
probability of picking out a thing from that finite set is 1/𝑒.

defn. A type of stuff you can put on a finite set is a functor Fin → S which sends 𝑋 to the
homotopy type of 𝐹-stuff on 𝑋.

Eg 𝐹(𝑋) = 𝑋 or 𝐹(𝑋) = bracketings of elements of 𝑋 or 𝐹(𝑋) = Aut(𝑋) or 𝐹(𝑋) =
groupoid simple rings with underlying set 𝑋 or 𝐹(𝑋) = binary trees whose edge set is labelled
by 𝑋 (same as bracketings).

defn. Define a formal power series #𝐹(𝑥) = ∑
𝑛∈ℕ #𝐹(𝑥)⋅ 𝑥

𝑛

𝑛! using the∞-groupoid cardinality.

For 𝐹(𝑋) = Aut(𝑋). This gives 1
1−𝑥 . For the simple rings and a different definition

of groupoid cardinality this gives the Riemann-Zeta function. For the bracketings you get
∑𝑐𝑛𝑥𝑛 where 𝑐𝑛 are the Catalan numbers.
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Q. #𝐹(#𝑋) = #𝐹(𝑋)?

Take the left Kan extension lan𝐹∶ S → S of 𝐹 along the inclusion Fin ↪ S to interpret
the above. Then

lan𝐹(𝑋) = 􏾜
𝑛∈ℕ

𝐹(𝑛) × 𝑋𝑛//Σ𝑛

and you can read off from the formula that the cardinalities come out right.
What do we call functions that are determined by their power series? Answer: analytic.

So functors that are determined by the power series of their stuff types are analytic functors.
The functor 𝐼 ∶ Fin ↪ S mapping 𝑋 to 𝑋 corresponds to a fibration Fin∗ → Fin by

𝑋 Fin∗

∗ Fin

⌟
𝑢

𝑋

where Fin∗ the groupoid of finite point sets. This is the universal fibration with finite fibers:

𝐸 Fin∗

𝐵 Fin

𝜋

∃1
⌟

𝑢

∃!

So what if the middle map 𝑝∶ 𝐸 → 𝐵 of a polynomial has finite fibers. Then you get a diagram

𝐼 𝐸 𝐵 𝐽

∗ Fin∗ Fin ∗

⌟

𝑢

So this tells us that the slice of polynomials over this canonical polynomial 𝑢∶ Fin∗ → Fin
corresponds to polynomials whose middle map has finite fibers.

What’s the polynomial functor of the bottom thing?

𝑋 ↦ (𝑋 ∣ 𝐹 ∈ Fin, 𝑝 ∈ 𝐹) ↦ (􏾟
𝑝∈𝐹

𝑋 ∣ 𝑋 ∈ Fin) ↦ 􏾜
𝑋∈Fin

􏾟
𝑝∈𝐹

𝑋.

Then
􏾜

𝑋∈Fin
􏾟
𝑝∈𝐹

𝑋 = 􏾜
𝑛∈ℕ

􏾜
𝑝∈𝐵Σ𝑛

𝑋𝑛 = 􏾜
𝑛∈ℕ

𝑋𝑛//Σ𝑛 ≕ 𝑒𝑋.

Note all polynomial functors are analytic functors: polynomial functors are much more
general. Being analytic is a finiteness condition on polynomials (which is crazy).

Analytic functors. Recall that a polynomial

𝐼 𝐸 𝐵 𝐽
𝑝

is analytic if 𝑝 has finite fibers which is equivalent to saying that this polynomial admits a
morphism to 𝑒𝑋, the polynomial

∗ Fin∗ Fin ∗𝑢

So AnFun = PolyFun/ exp is an ∞-topos.
Can we characterize analytic functors intrinsically?
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defn. 𝑋 ∈ S is compact if S(𝑋, −) preserves filtered colimits and projective if S(𝑋, −) pre-
serves geometric realizations. 𝑋 ∈ S is finite if S(𝑋, −) is compact and also projective, which
is the case iff S(𝑋, −) preserves sifted colimits.

A proof of that equivalence is in [L1]. Note 𝑋 ∈ S is finite iff 𝑋 is a finite set.

Lemma. 𝑓∶ 𝑋 → 𝑌 is finite in S/𝑌 iff 𝑋 is finite in S.

Proof. For any diagram 𝑝∶ 𝐽 → S/𝑌 we have a commutative diagram

colimS/𝑌(𝑋, 𝑝) S/𝑌(𝑋, colim𝑝) {𝑓}

colimS(𝑋, 𝑝) S(𝑋, colim𝑝) S(𝑋, 𝑌)

⌟

The right-hand square is a pullback by definition and the outer rectangle is also since colimits
in S are universal (commuting with pullback, since pullback has a right adjoint). So the left-
hand square is a pullback and in particular if the lower left horizontal is an equivalence the
upper left one is as well.

For the other direction of the implication note

S(𝑋, colim𝑝) = S/𝑌(𝑋, 𝑌 × colim𝑝) ≅ S/𝑌(𝑋, colim(𝑌 × 𝑝)).

�

Lemma. If we have a span

𝐼 𝑋 ∗
𝑓 𝑞

then 𝑞∗𝑓∗ preserves sifted colimits iff 𝑋 is finite.

So finally:

Proposition. 𝐹∶ S/𝐼 → S/𝐽 is analytic iff 𝐹 preserves weakly contractible limits and sifted colimits.

NB: the paper does this the other way around, taking the above as a definition and deducing
the characterization as polynomials for which 𝑝 has finite fibers.

Recall from the pretalk that a stuff type is 𝐹∶ Fin → S (see page 27) and the induced
analytic functor is defined by taking the left Kan extension. I can think of the stuff type
as a symmetric sequence of homotopy types — the homotopy invariant notion of symmetric
sequence.

This connects to material from Joachim Kock’s previous paper [Koc].

defn. A tree is a diagram of finite sets

𝐴 𝑀 𝑁 𝐴𝑠 𝑝 𝑡

so that 𝑡 is injective, 𝑠 is injective with a unique element 𝑅 ∈ 𝐴 not in its image, and if we
define 𝜎∶ 𝐴 → 𝐴 by 𝜎(𝑅) = 𝑅 and for 𝑒 ∈ 𝑠(𝑀) then 𝜎(𝑒) = 𝑡𝑝𝑠−1(𝑒) then for all 𝑒 there
exists 𝑘 ∈ ℕ, 𝜎𝑘(𝑒) = 𝑅.

Why is this a tree? Think of 𝐴 as a set of arcs, 𝑁 is the set of notes, and 𝑀 is the set of
nodes paired with one of their input arcs. Then 𝑠 and 𝑝 are the projections, which 𝑡 sends each
node to its unique output. The root is the element 𝑅. The function 𝜎 walks to the root (along
arcs, passing at each step through one node).
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ex (elementary trees). For a tree with a single arc but no nodes you have

∗ ∅ ∅ ∗𝑠 𝑝 𝑡

which we call 𝜂. For the 𝑛-corolla

𝑛 + 1 𝑛 1 𝑛 + 1𝑠 ! 1

which we call 𝐶𝑛

Why do we care about these trees? They represent important analytic functors. Note that
the hom-space AnEnd/ exp(𝜂, 𝑃) between

∗ ∅ ∅ ∗

𝐼 𝐸 𝐵 𝐼

⌟

𝑝

recovers the space 𝐼; note that in the category of analytic endofunctors you require the outside
maps ∗ → 𝐼 to be the same.

Similarly, you only get a map

𝑛 + 1 𝑛 ∗ 𝑛 + 1

𝐼 𝐸 𝐵 𝐼

!
⌟

𝑏
𝑝

if 𝑝 has 𝑛-elements in the fiber over 𝑏. Here the outside maps are determined.
Note you have maps 𝜂 → 𝐶𝑛 which pick out the colors or sorts in the set 𝑛 + 1 of arcs.

There are maps 𝐶𝑛 → 𝐶𝑛 which permute the 𝑛 elements.
By the first mapping space thing, we think of 𝜂 as the homotopy type of colors, while𝐶𝑛 is

the homotopy type of 𝑛-ary operations. The category of these elementary trees is called ΩEl.
Without 𝜂, ΩEl = Fin but we throw in this additional object and some maps.

Theorem. The restricted Yoneda embedding defines an equivalence

AnEnd ≃ PolyEnd/ exp
∼−→ Psh(ΩEl).

In particular, a map between analytic functors is an equivalence iff it looks like it when
mapping out of 𝜂 or the 𝐶𝑛.

This is getting very close to operads since the presheaf representation identifies the colors,
maps 𝜂 → 𝐹, and the 𝑛-ary operations, maps 𝐶𝑛 → 𝐹, for all 𝑛.

Note we can compose analytic endofunctors.
There’s a larger category of treesΩint built by gluing together the elementary trees inΩel.⁶

Dendroidal sets are presheaves on this. Then Segal presheaves satisfy a further condition.

4. Initial Algebras and Free Monads — Naruki Masuda

In the theory of classical operads you start with a symmetric sequence {𝑀(𝑛)}. From this
you can construct a “Schur functor” 𝑋 ↦ ∐𝑀(𝑛) ⊗𝑋⊗𝑛

/Σ𝑛
. In our language this is an analytic

endofunctor.

⁶The “int” refers to inert maps of the inert-active factorization. If maps of trees are like diagrams of polynomials
(with the middle map a pullback) you get an embedding of trees, I think.
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Now an operad structure on a symmetric sequence corresponds to a monad structure on
this endofunctor. There is a free operad construction, producing the free operad on a sym-
metric sequence, using trees of generating operations. Today we’ll discuss this analog at the
level of of endofunctors, building the free monad on an endofunctor.

Another classical tool from operad theory is the bar - cobar adjunction. The transposing
arrows under these adjoints can be modeled more elementarily as twisting morphisms, giving
a natural isomorphism:

Homalg(Ω𝐶,𝐴) ≃ Tw(𝐶,𝐴) ≃ Homcoalg(𝐶, 𝐵𝐴).
Our aim today is to develop this in the ∞-categorical setting.

Lambek algebras. Let C be an ∞-category and let 𝑃 ∈ End(C). Then a Lambek 𝑃-algebra is
given by 𝜇∶ 𝑃𝐴 → 𝐴 in C. Lambek 𝑃-coalgebras are defined dually by 𝛿∶ 𝐶 → 𝑃𝐶. The
corresponding ∞-categories are defined by pullback

alg𝑃C C𝟚

C C × C

𝑈
⌟

(dom,cod)

𝑃×id

The ∞-category coalg𝑃C is defined similarly.
Assume C is a category with filtered colimits and 𝑃 preserves them.

Goal. If furthermore C has coproducts then 𝑈 is monadic. if 𝑃̄ is the corresponding monad
then we get an equivalence of ∞-categories alg𝑃C ≃ Alg𝑃̄C over C.

To construct the left adjoint 𝐹, recall 𝐹 ⊣ 𝑈 iff 𝐹 is the absolute right Kan extension of the
identity along 𝑈.⁷ We can define the value of 𝐹 at 𝑥 ∈ C as the limit of the diagram indexed
by a comma ∞-category:

𝑋/alg𝑃C alg𝑃C alg𝑃C

Δ[0] C

⇗ 𝑈

𝑋

𝐹
⇑

If 𝑋/alg𝑃C has an initial object then the limit exists and 𝐹𝑋 is defined by evaluation at this
initial object.

defn. If C has binary coproducts, then we have a composite functor

𝑋/C C C 𝑋/C
forget 𝑃 𝑋∐−

This functor sends 𝑋 → 𝑌 to 𝑋 → 𝑋∐𝑃𝑌 (forgetting the map).

Note that 𝑋/C has filtered colimits and 𝑃𝑋 preserves them (as a composite of functors that
do with a left adjoint). Note also that id𝑋 ∈ 𝑋/C is initial.

An object in alg𝑃𝑋
is a pair (𝑋 → 𝑌, 𝑃𝑌 → 𝑌), so this is equivalent to the comma

∞-category 𝑋/alg𝑃C constructed above.
It suffices to construct an initial 𝑃𝑋-algebra under these conditions, but we’ll postpone it

for now, since this uses bar-cobar duality and twisting morphisms.

⁷This is true in any 2-category; in particular, in the 2-category of∞-categories,∞-functors, and∞-natural trans-
formations.
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Monadicity.

Theorem (Barr-Beck-Lurie [L2, 4.7.3.5]). An adjunction 𝐹 ⊣ 𝑈∶ alg𝑃C → C is monadic iff

(i) 𝑈 is conservative and
(ii) alg𝑃 has colimits of 𝑈-split simplicial diagrams and 𝑈 preserves them.

What𝑈-split means is that your simplicial object extends as indicated by the dashed arrow

𝚫op alg𝑃C

𝚫op
+ ≅ (𝚫op)▷

𝚫op
⊥ C

𝐴

𝑈

The image of 𝚫op
+ ↪ 𝚫op

⊥ is an absolute colimit cone, so this gives a colimit for 𝑈𝐴 in C.
To say that alg𝑃C has and 𝑈 preserves these colimits is to say that this colimit cone lifts to a
colimit cone in alg𝑃C.

Conservativity of 𝑈 is easy to verify: if 𝑓∶ 𝑋 → 𝑌 has an equivalence inverse 𝑔∶ 𝑌 → 𝑋
this lifts to algebras.

To see that 𝑈-split colimits are created consider the defining pullback

alg𝑃C C𝟚

C C × C

𝑈
⌟

(dom,cod)

𝑃×id

By co/monadicity, CΔ[1] → C × C preserves and reflects colimits. Since 𝑈𝐴 is absolute, 𝑃
preserves it, as does the identity functor. So now the pullback ∞-category possesses and the
functors preserve the colimit of 𝐴∶ 𝚫op → alg𝑃C.

Twisting morphisms.

Goal. For a category C with filtered colimits and an endofunctor 𝑃 that preserevs them then
there exists a functor Ω = Ω𝑃 ∶ coalg𝑃 → alg𝑃. If dually C has cofiltered limits and 𝑃
preserves them, then there exists a functor 𝐵 = 𝐵𝑃 ∶ alg𝑃 → coalg𝑃 so that

Homalg(Ω𝐶,𝐴) ≃ Tw(𝐶,𝐴) ≃ Homcoalg(𝐶, 𝐵𝐴).

To start, what is Tw(𝐶,𝐴)?
For C an ∞-category, the twisted arrow ∞-category is characterized by the pullback

TwC S∗

Cop × C S

⌟
𝑈

Map(−,−)

where 𝑈 is the universal left fibration.
So an object in TwC is a morphism 𝑓∶ 𝑋 → 𝑌 in C. A morphism from 𝑓 to 𝑓′ ∶ 𝑋′ → 𝑌′

is given by a pair of maps 𝑥∶ 𝑋′ → 𝑋 and 𝑦∶ 𝑌 → 𝑌′ so that 𝑓′ = 𝑦 ∘ 𝑓 ∘ 𝑥.
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Note 𝑃op × 𝑃 acts on Cop × C. Form the pullback

Tw𝑃(𝐶,𝐴) alg
Tw𝑃 (TwC)𝟚

Δ[0] (coalg𝑃)
op × alg𝑃 ≃ alg𝑃op×𝑃 (Cop × C)𝟚

⌟ ⌟

(𝐶,𝐴)

Explicitly, a twisting morphism 𝑓 ∈ Tw𝑃(𝐶,𝐴) is 𝑓∶ 𝐶 → 𝐴 so that

𝑃𝐶 𝐶

𝑃𝐴 𝐴

𝑃𝑓 ≃

𝛿

𝑓

𝜇

This can also be expressed as an equalizer

Tw𝑃(𝐶,𝐴) Map
C
(𝐶,𝐴) Map

C
(𝐶,𝐴)

of the identity with 𝜇 ∘ − ∘ 𝛿.

Remark. Classically if 𝑃 is a dg-algebra and 𝐶 is a dg-coalgebra then 𝑓∶ 𝐶 → 𝑃 is a twisting
morphism if when you define the convolution product 𝑓 ⋆ 𝑓 ≔ 𝜇 ∘ 𝑓 ⊗ 𝑓 ∘ 𝛿 then the
Maurer-Cartan equation is satisfied 𝑓 ⋆ 𝑓 + 𝜕𝑓 = 0.

Cobar construction. The functor Tw𝑃(−,𝐴) ∶ Cop → S is representable. For a 𝑃-coalgebra
𝛿∶ 𝐶 → 𝑃𝐶 define

𝑃∞𝐶 ≔ colim𝑛→∞(𝐶
𝛿−→ 𝑃𝐶 𝑃𝛿−−→ 𝑃2𝐶 𝑃2𝛿−−−→ ⋯)

Since 𝑃 preserves filtered colimits, 𝑃∞𝐶 ≃ 𝑃 ∘ 𝑃∞𝐶 so this defines both a 𝑃-coalgebra
𝑢∶ 𝑃∞𝐶 → 𝑃𝑃∞𝐶 and a 𝑃-algebra 𝑣∶ 𝑃𝑃∞𝐶 → 𝑃∞𝐶. Denote this 𝑃-algebra by Ω𝐶 ∈
alg𝑃C.

Proposition. For all (𝐴, 𝜇) ∈ alg𝑃C, Tw𝑃(𝐶,𝐴) ≃ Map
alg
(Ω𝐶,𝐴).

Proof. Recall the equalizer

Tw𝑃(𝑃∞𝐶,𝐴) Map
C
(𝑃∞𝐶,𝐴) Map

C
(𝑃∞𝐶,𝐴)

lim𝑛→∞ Tw𝑃(𝑃𝑛𝐶,𝐴) lim𝑛→∞Map
C
(𝑃𝑛𝐶,𝐴) lim𝑛→∞Map

C
(𝑃𝑛𝐶,𝐴)

≃ ≃ ≃

Commuting limits we get this dashed equivalence. So you just need to show that there is an
equivalence lim𝑛→∞ Tw𝑃(𝑃𝑛𝐶,𝐴) ≃ Tw𝑃(𝐶,𝐴).

Note also that if we have inverse equivalences 𝑢∶ 𝑈 → 𝑃𝑈 and 𝑣∶ 𝑃𝑈 → 𝑈 then
Map

alg
(𝑈,𝐴) ≃ Tw𝑃(𝑈,𝐴) by comparing commutative squares. For the final step, the map

𝛿∗ ∶ Tw𝑃(𝑃𝐶,𝐴) → Tw𝑃(𝐶,𝐴) given by 𝑔 ↦ 𝑔 ∘ 𝛿 is an equivalence with inverse given by
𝑓 ↦ 𝜇 ∘ 𝑃𝑓. �

Finally if C has an initial object ∅, then from this adjunction we have

∗ ≃ Map
C
(∅,𝐴) ≃ Tw𝑃(∅,𝐴) ≃ Map

alg
(Ω∅,𝐴)

so Ω∅ is the initial 𝑃-algebra that we wanted to construct.
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Free monads. Now, if C has and 𝑃 preserves filtered colimits, we have a monadic adjunction

C alg𝑃C
𝐹

⊥
𝑈

Write 𝑃̄ for the induced monad. Monadicity gives an equivalence alg𝑃C ≃ Alg𝑃̄C.
We claim that

Proposition. 𝑃̄ is a free monad on C: i.e., 𝑃 ↦ 𝑃̄ constructs a left adjoint to the forgetful functor
from finitary monads on C to finitary endofunctors of C.

Proof. We want to show that 𝑃̄ is the initial monad with a natural transformation 𝑃 → 𝑃̄. Let
𝑇 = 𝑅𝐿 be the monad associated to a monadic adjunction

C Alg𝑇C
𝐿

⊥
𝑅

Then
Map

Mnd(C)(𝑃̄, 𝑇) ≃ Map
Cat∞/C(Alg𝑇,Alg𝑃̄) ≃ Map

Cat∞/C(Alg𝑇, alg𝑃).

Since alg𝑃 is defined by a pullback,

Map
Cat∞/C(Alg𝑇, alg𝑃) ≃ Map

C×C((𝑃𝑅, 𝑅) ∶ Alg𝑇 → C × C,C𝟚 → C × C)

≃ Nat(𝑃𝑅, 𝑅) ≃ Map
End(C)(𝑃, 𝑅𝐿 = 𝑇). �

Recall that for 𝑋 ∈ C,
𝑃̄(𝑋) ≃ 𝑈 lim(𝑋/alg𝑃 → alg𝑃),

and this limit is computed by evaluating at the initial object of 𝑋/alg𝑃, which is constructed
by applying the cobar construction Ω𝑃𝑋 to the initial object 𝑋 = 𝑋 in 𝑋/C.

Explicitly,

Ω𝑃𝑋(𝑋 = 𝑋) = colim(𝑋 ↪ 𝑋􏾢𝑃𝑋 ↪ 𝑋􏾢𝑃(𝑋􏾢𝑃𝑋) ↪ ⋯).

defn. Define 𝑃0 = id and inductively define 𝑃𝑛+1 = id∐𝑃 ∘ 𝑃𝑛 together with natural
transformations 𝑓0 ∶ 𝑃0 → 𝑃1 = id∐𝑃 given by inclusion into the first component and
𝑓𝑛+1 = id∐𝑃(𝑓𝑛). Then

𝑃̄𝑋 ≃ (colim𝑃𝑛)𝑋.

Remark. The free operad construction from a symmetric sequence {𝑀(𝑛)} is {𝑇𝑀(𝑛)} where
𝑇𝑀(𝑛) is trees with 𝑛 leaves with nodes labeled by operations in 𝑀 of the appropriate arity.

In the context of symmetric sequences the identity corresponds to the symmetric sequence
{𝐼(𝑛)} which is 1 if 𝑛 = 1 and 0 otherwise.

Then
𝑇𝑀 ≔ colim(𝐼 ↪ 𝐼􏾢𝑀 ↪ 𝐼􏾢𝑀 ∘ (𝐼􏾢𝑀) ↪ ⋯)

and each stage of this colimit adds trees of height at most 𝑛.
So these explicit constructions are totally analogous.

Note this gives an equivalence of endofunctors but not yet an equivalence of monads. You
need to put a monoid structure on the colimits. This can be done in a straightforward way by
taking colimits of the composition 𝜇𝑛,𝑚 ∶ 𝑃𝑛 ∘ 𝑃𝑚 → 𝑃𝑛+𝑚. These maps can again be defined
recursively:
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• 𝜇0,𝑚 ∶ id ∘ 𝑃𝑚 = 𝑃𝑚

• 𝜇𝑛+1,𝑚 ∶ 𝑃𝑛+1 ∘ 𝑃𝑚 = 𝑃𝑚∐𝑃 ∘ 𝑃𝑛 ∘ 𝑃𝑚
id∐𝑃𝜇𝑛,𝑚−−−−−−−−−→ 𝑃𝑚∐𝑃 ∘ 𝑃𝑛+𝑚 ↪ 𝑃𝑛+𝑚+1

Since 𝑃 commutes with filtered colimits so does 𝑃𝑛 so we can compute the colimits in any
order.

Parametrized version. When C has sifted colimits and 𝑃 preserves them and C has coproduct,
then the free monad on an endofunctor adjunction restricts to

End𝜎(C) Mnd𝜎(C)

𝐹

⊥

𝑈

where these are the∞-categories of∞-categories with and functors preserving sifted colimits.
This adjunction in fact is monadic. Then End𝜎(C) is presentable at least when C is sifted

presentable. This means that there exists a small ∞-category C0 with coproducts so that C is
equivalent to𝑃Σ(C0), presheaves that carry (finite?) coproducts to products. So thenMnd𝜎(C)
is again presentable.

What we want is a free operad construction

AnMnd AnEnd

S

⊥

which fiberwise would have the form

AnMnd(𝐼) AnEnd(𝐼)
⊥

where the left-hand side corresponds to “operads” and the right-hand side corresponds to
“symmetric sequences.”

This will be obtained by pulling back something very complicated to obtain

Mndcolax,op Endcolax,op

Catop∞
Fiberwise over C ∈ Cat∞ this gives Mnd(C) and End(C). This functor over Catop∞ is con-
structed by a universal property, so it seems reasonable that it would correspond fiberwise to
the forgetful functor Mnd(C) → End(C) but the authors don’t verify this (see Warning B.3.1).

Theorem. The forgetful functorMndcolax,op → Endcolax,op has a left adjoint and is monadic.

5. Analytic Monads and ∞-Operads — Daniel Fuentes-Keuthan
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