Metric Spaces Worksheet 5

Topology I

With our understanding of metric spaces and sequences cemented, we'll turn to examine a notion which is supported by every metric space, and in some ways subsumes the concepts we have seen so far.

Definition 1 (open ball). Let (X, d) be a metric space, $x \in X$ a point and $r \in (0, \infty)$ a nonnegative real number. The *open ball of radius r centred on x*, written $B_r(x)$, is the subset $B_r(x) :\equiv \{y \in X \mid d(x, y) < r\} \subseteq X$.

We now calculate open balls in Euclidean metric spaces. To describe open balls in the Euclidean line, we need the notion of an *open interval* in \mathbb{R} . For any $a, b \in \mathbb{R}$, with a < b, let

$$(a, b) := \{ z \in \mathbb{R} \mid a < z < b \}.$$

Example 2 (open balls in Euclidean spaces)

- 1. In the Euclidean metric space \mathbb{R} , the open ball $B_r(x) = \{y \in \mathbb{R} \mid |x y| < r\}$ is the open interval (x r, x + r). Conversely, every open interval (a, b) for $a < b \in \mathbb{R}$, is an open ball of some radius $r = \frac{b-a}{2}$ centred about the midpoint $\frac{a+b}{2}$.
- 2. In the Euclidean metric space \mathbb{R}^2 , the open ball

$$B_r((u_1, u_2)) = \{(v_1, v_2) \in \mathbb{R}^2 \mid (u_1 - v_1)^2 + (u_2 - v_2)^2 < r^2\}$$

is comprised of all points inside the circle of radius r centred at the point (u_1, u_2) . This explains the name "open ball" given to the sets $B_r(x)$ in general metric spaces.

Question 3. What are the possible open balls in a discrete metric space (X, d)? *Complete the proof here*

Definition 4 (open set). A subset $U \subseteq X$ in a metric space (X, d) is *open* if for every $u \in U$ there exists an $\varepsilon \in (0, \infty)$ such that $B_{\varepsilon}(u) \subseteq U$.

Example 5 (an open set in the Euclidean space \mathbb{R})

For any $a \in \mathbb{R}$, the open ray

$$(a, \infty) := \{ x \in \mathbb{R} \mid a < x \}$$

is an open set.

To see this we must prove, for every point $u \in (a, \infty)$, that there exists some $\varepsilon \in (0, \infty)$ such that $B_{\varepsilon}(u) \subseteq (a, \infty)$. To that end, consider a point $u \in (a, \infty)$. We know that u - a > 0, so we may choose ε to be any real number so that $0 < \varepsilon < u - a$. (For sake of concreteness, we might pick $\varepsilon = \frac{u-a}{2}$, but it's also not necessary to specify a concrete value of ε .)

Now if $x \in B_{\varepsilon}(u)$, then by example 2 item 1, $u - \varepsilon < x < u + \varepsilon$. Since $u - \varepsilon > a$ we conclude that x > a so $x \in (a, \infty)$. Since we've shown that $\forall x \in B_{\varepsilon}(u), x \in (a, \infty)$ this demonstrates that $B_{\varepsilon}(u) \subseteq (a, \infty)$ as required. Thus (a, ∞) is an open set.

Non-example 6 (sets which are not open in the Euclidean space \mathbb{R})

- 1. The set $\{o\} \subseteq \mathbb{R}$ is not open because there is no ε small enough so that $B_{\varepsilon}(o) \subset \{o\}$.
- 2. For any $a \in \mathbb{R}$, the closed ray

$$[a,\infty) :\equiv \{x \in \mathbb{R} \mid a \le x\}$$

is not an open set. The argument given in example 5 proves that for every $u \in [a, \infty)$ if $a \neq u$ then there exists $\varepsilon \in (0, \infty)$ so that $B_{\varepsilon}(u) \subset [a, \infty)$. However, there is no open ball that contains the point *a* and is contained within $[a, \infty)$.

To see this, take $\varepsilon \in (0, \infty)$. Then by example 2 item 1 the point $a - \frac{\varepsilon}{2} \in B_{\varepsilon}(a)$. But since $a - \frac{\varepsilon}{2} < a$, $a - \frac{\varepsilon}{2} \notin [a, \infty)$. Thus $B_{\varepsilon}(a) \nsubseteq [a, \infty)$.

Question 7. What are the open sets in a discrete metric space (*X*, *d*)?

Complete the proof here

As we might hope, the subsets we were calling *open* balls are indeed open.

Proposition 8 (open balls are open sets). Let (X,d) be a metric space, $x \in X$ be a point, $r \in (0,\infty)$ be a non-negative real number. The subset $B_r(x) \subseteq X$ is open.

Complete the proof here

Corollary 9 (open intervals are open sets). *In the Euclidean metric space* \mathbb{R} *, all open intervals* (a, b) *are open.*

Complete the proof here

It turns out that open sets can be combined in certain ways and the result is always again an open set.

Theorem 10 (open set laws). *In a metric space* (*X*,*d*),

- 1. X and \emptyset are open sets.
- 2. If \mathcal{F} is a family of open sets in X then $\cup_{U \in \mathcal{F}} U$ is open.
- *3. If* $U, V \subseteq X$ *are open sets then* $U \cap V$ *is open.*

Complete the proof here

Surprise 11 (intersection of opens is not generally open)

In the Euclidean metric space \mathbb{R} , the subset $I := \bigcap_{n \in \mathbb{N}} \left(0, \frac{n+2}{n+1} \right) \subseteq \mathbb{R}$ is not open.

Compute *I* and prove this fact.

Complete the proof here