
Metric Spaces Worksheet 

Topology I

With our understanding of metric spaces and sequences cemented, we’ll turn to exam-
ine a notion which is supported by every metric space, and in some ways subsumes the
concepts we have seen so far.
Definition  (open ball). Let (X,d) be a metric space, x ∈ X a point and r ∈ (,∞) a non-
negative real number. The open ball of radius r centred on x, written Br(x), is the subset
Br(x) :≡ {y ∈ X | d(x,y) < r} ⊆ X.

We now calculate open balls in Euclidean metric spaces. To describe open balls in the
Euclidean line, we need the notion of an open interval in R. For any a,b ∈ R, with a < b, let

(a,b) :≡ {z ∈ R | a < z < b}.

Example  (open balls in Euclidean spaces)

. In the Euclidean metric space R, the open ball Br(x) = {y ∈ R | |x − y| < r} is the
open interval (x − r,x + r). Conversely, every open interval (a,b) for a < b ∈ R, is
an open ball of some radius r = b−a

 centred about the midpoint a+b
 .

. In the Euclidean metric space R, the open ball

Br((u,u)) = {(v,v) ∈ R | (u − v) + (u − v) < r}

is comprised of all points inside the circle of radius r centred at the point (u,u).
This explains the name “open ball” given to the sets Br(x) in general metric
spaces.

Question . What are the possible open balls in a discrete metric space (X,d)?

Complete the proof here
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Definition  (open set). A subset U ⊆ X in a metric space (X,d) is open if for every u ∈ U
there exists an ε ∈ (,∞) such that Bε(u) ⊆U .

Example  (an open set in the Euclidean space R)

For any a ∈ R, the open ray
(a,∞) :≡ {x ∈ R | a < x}

is an open set.
To see this we must prove, for every point u ∈ (a,∞), that there exists some ε ∈

(,∞) such that Bε(u) ⊆ (a,∞). To that end, consider a point u ∈ (a,∞). We know that
u − a > , so we may choose ε to be any real number so that  < ε < u − a. (For sake of
concreteness, we might pick ε = u−a

 , but it’s also not necessary to specify a concrete
value of ε.)

Now if x ∈ Bε(u), then by example  item , u − ε < x < u + ε. Since u − ε > a we
conclude that x > a so x ∈ (a,∞). Since we’ve shown that ∀x ∈ Bε(u), x ∈ (a,∞) this
demonstrates that Bε(u) ⊆ (a,∞) as required. Thus (a,∞) is an open set.

Non-example  (sets which are not open in the Euclidean space R)

. The set {} ⊆ R is not open because there is no ε small enough so that Bε() ⊂ {}.

. For any a ∈ R, the closed ray

[a,∞) :≡ {x ∈ R | a ≤ x}

is not an open set. The argument given in example  proves that for every u ∈
[a,∞) if a , u then there exists ε ∈ (,∞) so that Bε(u) ⊂ [a,∞). However, there is
no open ball that contains the point a and is contained within [a,∞).

To see this, take ε ∈ (,∞). Then by example  item  the point a− ε
 ∈ Bε(a). But

since a− ε
 < a, a− ε

 < [a,∞). Thus Bε(a)* [a,∞).

Question . What are the open sets in a discrete metric space (X,d)?

Complete the proof here
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As we might hope, the subsets we were calling open balls are indeed open.

Proposition  (open balls are open sets). Let (X,d) be a metric space, x ∈ X be a point,
r ∈ (,∞) be a non-negative real number. The subset Br(x) ⊆ X is open.

Complete the proof here
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Corollary  (open intervals are open sets). In the Euclidean metric spaceR, all open intervals
(a,b) are open.

Complete the proof here
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It turns out that open sets can be combined in certain ways and the result is always
again an open set.

Theorem  (open set laws). In a metric space (X,d),

. X and ∅ are open sets.

. If F is a family of open sets in X then ∪U∈F U is open.

. If U,V ⊆ X are open sets then U ∩V is open.

Complete the proof here
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Surprise  (intersection of opens is not generally open)

In the Euclidean metric space R, the subset I :≡
⋂
n∈N

(
,

n+ 
n+ 

)
⊆ R is not open.

Compute I and prove this fact.

Complete the proof here
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