L5. §2.3 Modeling w/ 1st order DEs

§2.4 Linear vs. Nonlinear Equations

Mathematical modeling

1. Construct a model
2. Analysis of the model
3. Comparison w/ Experiment or Observation

Recent research trend: infer a model from data based on analysis

Eve 8. A young person w/ no initial capital invests k per year at an annual return rate of r. Assume that investments are made continuously & the return is compounded continuously.

(a) Der. the sum $S(t)$ at any time t.

(b) If $r = 7.5\%$, determine k so that $1m$ will be achieved in 40 years.

(c) If $r = 2$ K/year, determine the return rate k that must be obtained to have $1m$ available in 40 years.

Solu.

(a) \[\frac{dS}{dt} = rS + k \quad \Rightarrow \quad S(0) = \frac{-k}{r} + (S_0 + \frac{k}{r}) e^{rt} \]

(b) $r = 0.075$,

\[S(40) = \frac{k}{0.075} (e^{0.075 \times 40} - 1) > 10^6 \Rightarrow k > \frac{10^6 \times r}{e^{rt} - 1} = \frac{7.5 \times 10^4}{e^{0.075 \times 40} - 1} \approx 3930. \]

(c) $S(40) = \frac{k}{r} (e^{10x} - 1) > 10^6$

\[e^{10x} > 10^6 \Rightarrow x \geq \log_{10} 10^6 \]

\[x > 6 \]

\[r > \log_{10} 1.0977. \]
Section 4. Linear vs. Nonlinear Equ.

Existence & Uniqueness (∃!)

Theorem 2.4.1. If \(p(t) \) and \(g(t) \) are continuous on an open interval \(I = (a, b) \)
and the initial time to \(\in (a, b) \), then \(\exists ! \) solution \(y = y(t) \) s.t.

\[
\begin{align*}
y'(t) + p(t)y &= g(t), & t \in I, \\
y(t_0) &= y_0, & \text{where } y_0 \text{ is an arbitrary value}
\end{align*}
\]

Proof: Following the method of Integrating Factor, we have that

\[
y(t) = \frac{1}{\mu(t)} \left[\int_{t_0}^{t} \mu(s) g(s) \, ds + \psi(t) \right].
\]

\[
\mu(t) = e^{\int_{t_0}^{t} p(s) \, ds}
\]

satisfies the IVP. \(\Rightarrow \) Existence of solution.

Furthermore, any solution \(y(t) \) can be written as above \(\Rightarrow ! \) #

Theorem 2.4.2 (Nonlinear) Let \(f(t, y) \), \(\frac{df}{dy} (y) \) be continuous in a rectangle \((a, b) \times (Y, S) \)
containing \((t_0, y_0) \). Then \(\exists! \) an interval \((t_h - h, t_h + h) \subseteq (a, b) \)
so there is a unique soln. to

\[
\begin{align*}
y' &= f(t, y) \\
y(t_0) &= y_0
\end{align*}
\]

1. Rank about prof. by Implicit function theorem.
2. Rank on the The. Solution exists in a neighborhood of \((t_0, y_0) \). Not everywhere. In the \((a, b) \times (Y, S) \)
 - a sufficient but NOT necessary condition.
Example 1: Determine (without solving the problem) an interval on which \(\exists ! \) soln to the IVP

\[
\begin{align*}
 ty' + 2y &= 4t^2 \\
 y(1) &= 2
\end{align*}
\]

Solution:

\[
\begin{align*}
 y' + \frac{2}{t}y &= 4t \\
 y(1) &= 2
\end{align*}
\]

By theorem 2.4.1, soln \(\exists ! \) in either \((-\infty, 0)\) or \((0, \infty)\).

Since \(y(1) = 2 \), \(t = 1 \), the interval should be \((0, \infty)\).

Example 2: Solve the IVP and determine how the interval the soln exists depends on the critical value \(y_0 \):

\[
\begin{align*}
 y' &= 4t/y; \quad y(0) = y_0 \quad \frac{1}{2}y^2 = -2t^2 + c \\
 y_0 &< 0: \text{No}
\end{align*}
\]

Example 3:

\[
\begin{align*}
 y' &= y^{1/3}, \quad t \geq 0 \\
 y(0) &= 0
\end{align*}
\]

Solution:

\[
y^{-1/3} \, dy = dt \quad \Rightarrow \quad \frac{3}{2} y^{\frac{2}{3}} = t + C
\]

\[
y = \left(\frac{2}{3} (t + C) \right)^{3/2}
\]

\(y(0) = 0 \quad \Rightarrow \quad C = 0 \quad \Rightarrow \quad y(t) = \left(\frac{3}{2} t \right)^{3/2}, \quad t \geq 0.
\]

Other solutions:

\[
y = -\left(\frac{3}{2} t \right)^{3/2}
\]

(\(\infty \)-many solutions)

\[
y \equiv 0
\]

\[
y = 1, \quad \text{if } 0 \leq t < t_1
\]

\[
y = -\left(\frac{3}{2} (t - t_0) \right)^{3/2}, \quad t \geq t_0
\]

If \(y(t_0) = y_0 \), \(t_0 > 0 \), \(y(t) \rightarrow \infty \)

Near \((t_0, y_0)\), \(\exists ! \) soln.