1. Motwaring Examples

Example The Largedin Eq.
$$\vec{q} = -\nabla V(q_{1}) - V \vec{q} + \sqrt{2\eta} \vec{p} \cdot \vec{w}$$

Agy = $\vec{p} \cdot dt$
Assume V is a confirming potential $(e^{-pV}e_{1}^{i}, \lim_{m_{1}} w_{1}v_{2} = iw)^{-1} dR_{1} = -\nabla V(k) dt - V \vec{p}_{1} dt + n \overline{\epsilon} \vec{r} \vec{p} \, dW_{1}$
 \Rightarrow Egridie uv stationary distr. $f_{10}(p,q) \propto e^{-pH(p,q)}$, $H(p,q) = \frac{1}{2}p^{2} + V(q)$.
 $@$ Perturb the digt: $E_{1}p^{q}\cdot \vec{3}$
 $dR_{1} = -\nabla V(k) dt - V \vec{p}_{1} dt + \ell \vec{e} \vec{f}(k) + n \overline{\epsilon} \vec{r} \vec{p} \, dW_{1}$
 $\&$ Perturb the temperature (diffuen) $E_{2}p^{q}\cdot \vec{4}$
 $dP_{1} = -\nabla V(k) dt - V \vec{p}_{1} dt + n \overline{\epsilon} \vec{r} \vec{f}(H + e \vec{f}(k)) \, dW_{1}$
 \bigotimes Uestimine : How will an observable change ? observable : a function of (p,q) . $L^{2}(f_{1} - M + q) = \frac{1}{2}R^{2} \rightarrow R$
In general : $dK_{1} = h(X_{1}) dt + \sigma (K_{1}) dW_{1}$ ergedie & stationary (SPE)
 $dX_{1}^{k} = h(K_{2}) dt + \sigma (K_{2}) dW_{1}$ or $(\vec{g}(K_{1}) t \in F_{1}) dW_{2}$.
(SDE)
What is the change in mean ? $A_{1} = \langle A(K_{2}^{0}) - \langle A(K_{2}) \rangle = -\langle A(K_{2}) \rangle = \langle E[A(K_{2})] = IE[A(K_{2})]$

z. Linear response theory

Let Xt denote a stationary dynamical system is invariant measure
$$\mathcal{M}(dX) = f_{10}(X)dX$$
; $f_{t} = f_{10}$
Let Xt^E denote the perturbed system, is density f_{t}^{E} .
Assume that f_{t}^{E} satisfies a linear kinetic equ.: $J_{t} f_{t}^{E} = L^{*,E} f_{t}^{E}$; $f_{t_{0}}^{E} = f_{00}$
 $L^{*E}f = - \nabla(hf) + \frac{1}{2} \nabla^{2}: (\nabla \nabla^{T}f) - \mathcal{E}F(t) \cdot \nabla f$
 $L^{*E}_{t} = F(0 \cdot D)$, $D = -\nabla$.
 $= L^{*}f + \mathcal{E}L^{*}_{1}f$
 $L^{*E}_{t} = L^{*} + \mathcal{E}L^{*}_{1}$
Note that some Xt is ergodu: $L^{*}f_{t_{0}} = 0$ and for us the unique solu. to $L^{*}f = 0$.

. In the case of temperature perturbation
$$\beta = \varphi \beta^{+} \Delta p$$
.

Let
$$f_t^{\mathcal{E}} = f_t^{\mathfrak{o}} + \mathcal{E} f_t^{\mathfrak{l}} + \cdots$$
. Then $\partial_t f_t^{\mathcal{E}} = \partial_t f_t^{\mathfrak{o}} + \mathcal{E} \partial_t f_t^{\mathfrak{l}} + \cdots$ $\mathcal{V}_{\mathcal{E}} < \mathcal{I}_{\mathcal{I}}$
 $(f_{\mathfrak{o}}^{\mathfrak{o}} = f_{\mathfrak{o}}), f_{\mathfrak{o}}^{\mathfrak{o}} \equiv \mathfrak{o}, \cdots)$
 $\downarrow_{\mathcal{H}^{\mathfrak{o}}}^{\mathfrak{l}} f_t^{\mathcal{E}} = \mathcal{L}^{\mathfrak{e}} (f_t^{\mathfrak{o}} + \mathcal{E} f_t^{\mathfrak{o}} + \mathcal{E} f_t^{\mathfrak{$

Then, we can compute the change in mean of observable as.

$$IE[A(k^{b})] - IE[A(k^{b})] = \int A(x) [f^{E}(x) - f_{w}(x)] dx$$

$$= \varepsilon \int A(x) \int_{0}^{t} e^{L^{2}(t+s)} F(s) D f_{w}(x) ds ds + O(\varepsilon).$$
Assume integrability conditions.

$$= \varepsilon \int_{0}^{t} \int A(x) e^{L^{2}(t+s)} F(s) D f_{w}(x) dx ds + O(\varepsilon)$$
Define the Response function:

$$R_{L,k}(t) = \int A(x) e^{L^{2}} D f_{w}(x) dx \qquad Liniear response$$
we have:

$$IE[A(k^{b})] - IE[A(k^{c})] = \varepsilon \int_{0}^{t} R_{L,k}(t-s) F(s) ds + O(\varepsilon).$$
Note that:

$$R_{L,k}(t) = \int A(x) e^{L^{2}} D f_{w}(x) dx = \int e^{L^{2}} A(x) D f_{w}(x) - \frac{f_{w}}{f_{w}}} dx$$

$$= IE [IE^{K_{c}}[A(k^{c})] D f_{w}(f_{s})] f_{s}(k^{c})] = IE[A(k^{c})] = \varepsilon \int_{0}^{t} IE[A(k^{c})] = \varepsilon \int_{0}^{t} IE[A(k^{c})] = IE[A(k^{c})] =$$

"It forms one of the cornerstones of nonequilibrium statistical mechanics. In particular, it enables us to calculate equilibrium correlation functions by measuring the response of the system to a weak external forcing."