(). idergroil
$[5,8]$

$$
\begin{aligned}
& \text { PDE } H w g \\
& \frac{\partial x}{\partial t}=\left\{\begin{array}{l}
\partial_{+} u=k \partial_{x}^{2} u \\
u 10+1=0, \partial_{x} u(L, t)=-h u(L, t) \\
u(x, 0)=f(x)
\end{array}\right.
\end{aligned}
$$

(2)Solve if $h L=-1$

Sel: Let $u(x, t)=X(x) T(t)$ then ue get $\left\{\begin{array}{l}X^{\prime \prime}(x)+\lambda X(x)=0 \\ X(0)=0 \\ X^{\prime}(L)=-h X(L)\end{array} \quad T^{\prime}(t)+\lambda k T(t)=0\right.$

$$
\begin{aligned}
& \Rightarrow X(x)=C_{1} \cos (\sqrt{\lambda} x)+C_{2} \sin (\sqrt{\lambda} x) \\
& \omega X(0)=0 \Rightarrow C_{1}=0 \\
& \Rightarrow X(x)=C_{2} \sin (\sqrt{\lambda} x) \\
& X^{\prime}(L)=-h X(L) \\
& \Rightarrow \otimes \sqrt{\lambda} \cos (\sqrt{\lambda} L)=-h \sin .(\sqrt{\lambda} L) \\
& \Rightarrow \tan (\sqrt{\lambda L})=-\frac{\sqrt{\lambda}}{h}=\sqrt{\lambda} L \\
& \Rightarrow \lambda_{n} \sim\left(\frac{\left(n+\frac{1}{2}\right) \pi}{L}\right)^{2}(n \operatorname{large}) \\
& X_{n}(x)=\sin \left(\frac{\left(n+\frac{1}{2}\right) \pi}{L} x\right)
\end{aligned}
$$

$$
\longrightarrow_{a}^{\infty}\left(x_{i}+1\right) \approx \sum_{n \geqslant 1} e^{-\lambda_{n} h t} \operatorname{Tn}_{n}(0) X_{n}(x)
$$

Ther pluy in $t=0$ ae can solve Trico from $f(x)$.
8. Consider

$$
\left\{\begin{array}{l}
\frac{d^{2} \phi+\lambda \phi}{d x^{2}}=0 \\
\phi(0)=\frac{d \phi}{d x}(0) \\
\phi(1)=-\frac{d \phi}{d x}(1) .
\end{array}\right.
$$

(1) Show thot $\lambda>0$.

Proof: By Rayleigh quotient,

$$
\lambda=-\frac{\left.\phi \phi^{\prime}\right|_{0} ^{1}+\int_{0}^{1}\left|\phi^{\prime}(x)\right|^{2} d x}{\int|\phi|^{2}} d x \geqslant 0
$$

If λ to ther $\phi(0)=\phi(1)=0 \Rightarrow \phi^{\prime}(0=0 \Rightarrow \psi$ is identically 0
$\sin \lambda>0$
(2). Proe that eigerfucction correspandig ta different eigunvalues are arthoyonal

㫙: $L(\psi)=\psi^{\prime \prime}(x)$

$$
\begin{aligned}
& L(\psi)=\psi(x) \\
& \text { so } \quad \int_{0}^{1}\left(\phi_{n} L\left(\phi_{m}\right)-L\left(\phi_{n}\right) \phi_{n}\right) d x \triangleq \lambda \phi \\
&=\left.\left(\phi_{n} \phi_{m}^{\prime}-\phi_{m} \phi_{n}^{\prime}\right)\right|_{0} ^{1}=0
\end{aligned}
$$

So for distinet eigenvalues $\lambda_{n} \cdot \lambda_{m} \theta, \int_{0}^{1} \phi_{n} \phi_{m}=0$. \Rightarrow orthogaral.
(3) Show that. $\tan \sqrt{\lambda}=\frac{2 \sqrt{\lambda}}{\lambda-1}$

$$
x>0 \Rightarrow \phi(x)=C_{1} \cos (\sqrt{\lambda} x)+C_{2} \sin (\sqrt{\lambda} x)
$$

Combining with bounday cundutions, we have

$$
\begin{gathered}
c_{1}=C_{2} \sqrt{\lambda} \\
c_{1} \cos \sqrt{\lambda}+c_{2} \sin \sqrt{\lambda}=c_{1} \sqrt{\lambda} \operatorname{Cpg} \sqrt{\lambda}-C_{2} \sqrt{\lambda} \cos \sqrt{\lambda} \\
\text { eliminate } C_{1} \\
\Rightarrow C_{2}((\lambda-1) \sin \sqrt{\lambda}-2 \sqrt{\lambda} \cos \sqrt{\lambda}) \rightarrow \\
\Rightarrow \tan \sqrt{\lambda}=\frac{2 \sqrt{\lambda}}{\lambda-1} \rightarrow 0 \text { as } \lambda \rightarrow \infty
\end{gathered}
$$

(4) Solve, $\partial_{t}^{2} u{ }_{2} \partial_{x}^{2} u \quad$ soli Let $X u(x+t)=X(x) T(t)$

$$
\Rightarrow \begin{array}{ll}
T_{n}(t)=e^{-\lambda_{n} t} \\
& u_{n}\left(x,+1=X_{0}(x) \sum_{n \geqslant 1} A_{n} X_{n}\left(x e^{\tan t}\right.\right. \\
& u(x, 0)=f(x) \rightarrow A_{n}=\frac{\int_{0}^{1} f X_{n}}{\int_{0} X_{n}^{2}(n d x} d x
\end{array}
$$

9. Consider $\frac{d^{2} \phi}{d x^{2}}+\lambda \phi=0$

Fops what values of β is $\lambda=0$ an eigenvalue
SX: From Rayleigh quotient,

$$
\begin{gathered}
\lambda=\frac{\ldots \phi^{\prime}(1) \phi(1)+\phi^{\prime}(v) \phi(v)+\int_{0}^{1}\left(\phi^{\prime}\right)^{2} d x}{\int_{0}^{1} \phi^{2} d x} \\
\lambda=0 \cdot i f-\phi^{\prime}(v) \phi(1)+\phi^{\prime}(v) \phi(v)+\int_{0}^{1}\left(\phi^{\prime}\right)^{2} d x=0 \\
\phi(0)=\phi \phi^{\prime}(v) \quad \phi(1)=\beta \phi^{\prime}(1) \\
\left.\Rightarrow \beta \phi^{\prime}(1)\right)^{2}=\phi^{\prime}(0)^{2}+\int_{0}^{1}\left(\phi^{\prime}\right)^{2} d x \\
\\
\Rightarrow \beta=\frac{\left(\phi^{\prime}(0)\right)^{2}+\int_{0}^{1}\left(\phi^{\prime}\right)^{2} d x}{\left(\phi^{\prime}(1)\right)^{2}} \\
{[5,9] 1 . \quad \frac{d}{d x}\left(p(x) \frac{d \phi}{d x}\right)+(\lambda \sigma(x)+q(x)) \phi=0 .}
\end{gathered}
$$

Estimate the lang eigenvalues

$$
\begin{aligned}
& \text { (1) } \phi^{\prime}(v)=0 \cdot \phi^{\prime}(L)=0 \\
& \begin{array}{l}
\phi(x) \sim(0 p)^{-\frac{1}{4}} \cos \left(\sqrt{\lambda^{\frac{1}{x}}} \int_{0}^{x}\left(\frac{\sigma}{p}\right)^{\frac{1}{2}} d x_{0}\right) \\
\frac{d \phi}{d x}(L)=0
\end{array} \quad-\left.(0 p)^{-\frac{1}{4}} \sin \left(\sqrt{\pi} \int_{0}^{k}\left(\frac{\sigma}{p}\right)^{\frac{1}{2}} d x_{0}\right) \lambda^{\frac{1}{2}}\left(\frac{\sigma}{p}\right)^{\frac{1}{2}}\right|_{x=L}=u \\
& \\
& \left.\Rightarrow \sqrt{\lambda} \int_{0}^{L} \frac{\sigma}{p}\right)^{\frac{1}{2}} d x_{0} \approx n \pi \\
& \\
&
\end{aligned}
$$

(3) Use the sane method as in (1)

$$
\lambda_{n} \sim\left(\frac{\left(n+\frac{1}{i}\right) n}{\int_{0}^{2}\left(\frac{n}{p}\right)^{\frac{1}{2}} d x_{0}}\right)^{2}
$$

$[5,10]$ 2. Obtain a formulas for an infinite series using parseval
(h) Fourier series of $f(x)=1$ on $[0, L]$

The fourier series is

$$
1 \sim \sum_{n=1}^{\infty} a_{n} \sin \frac{n \pi r}{L} \quad a_{n}= \begin{cases}\frac{4}{1 \pi} & n \text { odd } \\ 0 & n \text { even } .\end{cases}
$$

By Parseral's identity, we hare

$$
\begin{aligned}
& \quad L=\sum_{n \text { old d }}\left(\frac{4}{n \pi}\right)^{2} \cdot \frac{L}{2}=\sum_{n=1}^{\infty} \frac{8 L}{(2 n-1)^{2} \pi^{2}} \\
& \Rightarrow \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}
\end{aligned}
$$

3. Consider $f(x)$ un $[a, h]$ Approximate $f(x)$ by a cost.

Show that the best const is the average of $\mathrm{ff}(\mathrm{x})$ in $[a, h]$
Pf: Let $E(t)=\int_{a}^{b}(f(x)-t)^{2} d x$

$$
E^{\prime}(-1)=0 \Rightarrow t=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

and $E^{\prime \prime}\left(t_{0}\right)>0$.
Rink, The background is: Best approximator in L^{2} norm is Fourior serie If we restrict the approximator to bea aconst, then (Bessel inge) it means we only ap proximate fromflo by the fir t function in the which wee only cont term in Fouler series. orthonormal has is $\{(1), \sin x, \cos x, \sin 2 x \cos 2 x, \ldots$

