Math 110.417 Partial Differential Equations

Fei Lu

Department of Mathematics, Johns Hopkins

Course Introduction

- 1. Syllabus Course Webpage
 - Office hours
 - HWs, Quizzes, Exams: in-classroom or Blackboard (Vote)
 - DRP, Youtube videos
- 2. Contents

Contents

Equations:

- Heat equation
 - IBVP, equilibrium, fundamental solutions, maximum principles
- Laplace equation
 - Sturm-Liouville eigenvalue problems, (Green's functions, Poisson's formula, maximum principles, potential theory)
- Wave equation
 - Cauchy problem, domains of influence and dependence, (Poisson's solution, energy inequalities)

Contents

Equations:

- Heat equation
 - IBVP, equilibrium, fundamental solutions, maximum principles
- Laplace equation
 - Sturm-Liouville eigenvalue problems, (Green's functions, Poisson's formula, maximum principles, potential theory)
- Wave equation
 - Cauchy problem, domains of influence and dependence, (Poisson's solution, energy inequalities)

Methods:

- separation of variables and expansions of solutions
- Fourier series (bounded domain)
- Fourier transform (infinite domain)
- Green's function / Method of characteristics (optional)
- Laplace transform (optional)

Philosophy: formulation, solution and interpretation

PDEs: equations containing partial derivatives. **Notations:**

Variables x space, t time Derivatives $\partial_t u := \frac{\partial u}{\partial t}, \partial_x u := \frac{\partial u}{\partial x}$

Review: solving ODEs