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Section 1.2: Conduction of heat
How does heat “move”?

Consider the thermal energy in an ideal 1D rod:

2 Chapter 1. Heat Equation

basic processes take place in order for thermal energy to move: conduction and con-
vection. Conduction results from the collisions of neighboring molecules in which
the kinetic energy of vibration of one molecule is transferred to its nearest neighbor.
Thermal energy is thus spread by conduction even if the molecules themselves do
not move their location appreciably. In addition, if a vibrating molecule moves from
one region to another, it takes its thermal energy with it. This type of movement
of thermal energy is called convection. In order to begin our study with relatively
simple problems, we will study heat flow only in cases in which the conduction of
heat energy is much more significant than its convection. We will thus think of
heat flow primarily in the case of solids, although heat transfer in fluids (liquids
and gases) is also primarily by conduction if the fluid velocity is sufficiently small.

1.2 Derivation of the Conduction of Heat
in a One-Dimensional Rod

Thermal energy density. We begin by considering a rod of constant cross-
sectional area A oriented in the x-direction (from x = 0 to x = L) as illustrated in
Fig. 1.2.1. We temporarily introduce the amount of thermal energy per unit volume
as an unknown variable and call it the thermal energy density:

e(x, t) __ thermal energy density.

We assume that all thermal quantities are constant across a section; the rod is one-
dimensional. The simplest way this may be accomplished is to insulate perfectly
the lateral surface area of the rod. Then no thermal energy can pass through the
lateral surface. The dependence on x and t corresponds to a situation in which
the rod is not uniformly heated; the thermal energy density varies from one cross
section to another.

O(x,t)
7T) 0

z

V U 1
x=0 x x+Ox x=L
Figure 1.2.1 One-dimensional rod with heat energy flowing into
and out of a thin slice.

Heat energy. We consider a thin slice of the rod contained between x and x+
Ox as illustrated in Fig. 1.2.1. If the thermal energy density is constant throughout
the volume, then the total energy in the slice is the product of the thermal energy

e(x, t)︸ ︷︷ ︸
Energy density

= u(x, t)︸ ︷︷ ︸
Temperature

c(x)ρ(x) (1)

I c(x) = heat capacity
heat energy for 1 unit mass to raise the temperature 1 unit

I ρ(x) = mass density
I total energy in a slice (x, x + ∆x):

∫ x+∆x
x e(z, t)dz

⇒ study heat conduction via temperature evolution
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Section 1.2: Conduction of heat
How does heat “move”?

Conservation of energy (rate of change in-time in (x, x + ∆x))

total energy = flow in-out + generated (2)

d
dt

∫ x+∆x

x
e(z, t)dz = φ(x, t)− φ(x + ∆x, t) +

∫ x+∆x

x
Q(z, t)dz (3)

∆x→ 0, ( Recall FTC: 1
∆x

∫ x+∆x
x f (y)dy→ f (x) for f ∈ C([x, x + b]))

∂te = −∂xφ+ Q(x, t) (4)

Recall e(x, t) = u(x, t)c(c)ρ(x), and
Fourier’s law: φ = −K0∂xu i.e., the heat flow depends linearly on ∂xu

∂tuc(x)ρ(x) = K0∂xxu + Q(x, t)

If uniform rod: c(x) ≡ c0, ρ(x) ≡ ρ0 → κ = K0
c0ρ0

; no source Q = 0; then

Heat Equation: ∂tu = κ∂xxu
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Heat/Diffusion Equation: ∂tu = κ∂xxu

Diffusion: spread of heat/chemical/...
I diffusion of heat

– u(x, t) temperature; κ thermal diffusivity
– Conservation of energy; Fourier’s law

I diffusion of chemicals (perfumes or pullutants)
– u(x, t) concentration density; κ chemical diffusivity;
– Conservation of mass; Fick’s law

Source: Wiki

Reading: Diffusion (wiki); Brownian motion (Wiki)
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Initial and boundary conditions

Heat Equation: ∂tu = κ∂xxu

Any solution to it? Infinitely many
I

Constant u0(x, t) ≡ 1
Linear in x u1(x, t) = x

Gaussian density u2(x, t) =
1

2π
√

t
e−

x2
2t

I Any linear combination of those (principle of superposition)

u(x, t) = c0u0 + c1u1 + c2u2,

for any constant c0, c1, c2 ∈ R
To determine a solution, need to specify initial boundary conditions
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Initial and boundary conditions

Heat Equation: ∂tu = κ∂xxu

How many initial boundary conditions do we need?

Recall ODE: for t ≥ t0
I y′(t) = f (y, t), with y(t0) = y0;
I dk

dtk y = f (y, y(1), . . . , y(k−1), t), with y(t0), y′(t0), . . . , y(k)(t0);
(Exe: what condition do we need on the k-ICs? How about IBVP? )

Domain of equation

t ≥ t0, x ∈ D, with D = Rd or D = (0,L).

Initial condition for HE

u(x, t0) = f (x), for all x ∈ D

I when D = Rd: IC determines the solution
I when D = (0,L): need Boundary conditions
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IVBP

Heat equation on a bounded interval

∂tu = κ∂xxu, with x ∈ (0,L), t ≥ 0

Initial condition u(x, 0) = f (x), x ∈ [0,L]

Boundary conditions boundaries x = 0, x = L

Dirichlet u(0, t) = φ(t), u(L, t) = ψ(t) prescribed tempt.

Neumann ∂xu(0, t) = φ(t), ∂xu(L, t) = ψ(t) heat flux
∂xu(0, t) = ∂xu(L, t) = 0 insulated bd

Robin a1∂xu(0, t) + a0u(0, t) = φ(t) Newton’s law of cooling
mixed b1∂xu(L, t) + b0u(L, t) = ψ(t)

Exe: read Section 1.3.
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Equilibrium Temperature Distribution

Q: What is Equilibrium and why?
The steady state; a state of rest or balance due to equal action of opposing forces.

Recall ODE: y′ = f (y), how to find its equilibrium? Stability?
Reading for fun: Equilibrium of dynamics systems

Section 1.4: Equilibrium 11
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1. Prescribed Temperature Consider the IBVP

∂tu = κ∂xxu, with x ∈ (0,L), t ≥ 0
u(x, 0) = f (x)

u(0, t) = φ(t), u(L, t) = ψ(t)

At equilibrium: ∂tũ = 0, ũ(0, t) = φ(t) ≡ T1, ũ(L, t) = ψ(t) ≡ T2:

∂xxũ = 0,
ũ(0) ≡ T1, ũ(L) ≡ T2

A 2nd order ODE! (What about the IC?)

Solution:

ũ(x) = T1 +
T2 − T1

L
x.

16 Chapter 1. Heat Equation

can determine the two arbitrary constants, C1 and C2, by applying the boundary
conditions, u(O) = T1 and u(L) = T2:

u(O) = T1 implies T1 = C2
u(L)=T2 implies T2 = C1L + C2.

(1.4.7)

It is easy to solve (1.4.7) for the constants C2 = T1 and C1 = (T2 - T1)/L. Thus,
the unique equilibrium solution for the steady-state heat equation with these fixed
boundary conditions is

u(x)=Ti+T2LT1 X.

T1

T2

i
I Figure 1.4.1 Equilibrium temperature

x = 0 x = L distribution.

(1.4.8)

Approach to equilibrium. For the time-dependent problem, (1.4.1) and
(1.4.2), with steady boundary conditions (1.4.5), we expect the temperature distri-
bution u(x, t) to change in time; it will not remain equal to its initial distribution
f (x). If we wait a very, very long time, we would imagine that the influence of the
two ends should dominate. The initial conditions are usually forgotten. Eventually,
the temperature is physically expected to approach the equilibrium temperature
distribution, since the boundary conditions are independent of time:

slim u(x, t) = u(x) = T1 + T2 L T1
00

(1.4.9)

In Sec. 8.2 we will solve the time-dependent problem and show that (1.4.9) is
satisfied. However, if a steady state is approached, it is more easily obtained by
directly solving the equilibrium problem.

1.4.2 Insulated Boundaries
As a second example of a steady-state calculation, we consider a one-dimensional
rod again with no sources and with constant thermal properties, but this time with
insulated boundaries at x = 0 and x = L. The formulation of the time-dependent

Approach to equilibrium

lim
t→∞

u(t, x) = ũ(x).
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2. Insulated BC

∂tu = κ∂xxu, with x ∈ (0,L), t ≥ 0
u(x, 0) = f (x)

∂xu(0, t) = 0, ∂xu(L, t) = 0

At equilibrium:

∂xxũ = 0,
∂xũ(0) = ∂xũ(L) = 0

Solution:
ũ(x) = C

Arbitrary C?
Figure?
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3. Mixed BC

∂tu = κ∂xxu, with x ∈ (0,L), t ≥ 0
u(x, 0) = f (x)

u(0, t) = T, u(L, t) + ∂xu(L, t) = 0

At equilibrium: ∂xxũ = 0, ũ(0) = T, ∂xũ(L) + ∂xũ(L) = 0.

Solution:

ũ(x) = T(1− x
1 + L

) Figure?
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Exe1.4.11

20 Chapter 1. Heat Equation

(a) Show mathematically that there does not exist any equilibrium tem-
perature distribution. Briefly explain physically.

(b) Calculate the total thermal energy in the entire rod.

1.4.7. For the following problems, determine an equilibrium temperature distri-
bution (if one exists). For what values of ,3 are there solutions? Explain
physically.

z
+ 1 0 = A )( At 1 t) = Q(L* (a) ,at 8xz u x, X ,) ) = ,8x ,a

(b)
au 192U

= 0) = f (( )
au t) = 1(0

8u
t) = Q(L

)(

8xz ,

& =
02U

+

u ,x, x

0) = P(

, ,ax

t = 08 (0

,ax

= 0L tc z u x, X), ), , , )8x (

1.4.8. Express the integral conservation law for the entire rod with constant ther-
mal properties. Assume the heat flow is known to be different constants at
both ends By integrating with respect to time, determine the total thermal
energy in the rod. (Hint: use the initial condition.)

(a) Assume there are no sources.
(b) Assume the sources of thermal energy are constant.

1.4.9. Derive the integral conservation law for the entire rod with constant thermal
properties by integrating the heat equation (1.2.10) (assuming no sources).
Show the result is equivalent to (1.2.4).

1.4.10. Suppose = e + 4, u(x, 0) = f (x), Ou (0, t) = 5, "u (L, t) = 6. Calculate
the total thermal energy in the one-dimensional rod (as a function of time).

1.4.11. Suppose = s + x, u(x, 0) = f (x), Ou (0, t) = Q, &u (L, t) = 7.

(a) Calculate the total thermal energy in the one-dimensional rod (as a
function of time).

(b) From part (a), determine a value of Q for which an equilibrium exists.
For this value of Q, determine lim u(x, t).t00

1.4.12. Suppose the concentration u(x, t) of a chemical satisfies Fick's law (1.2.13),
and the initial concentration is given u(x, 0) = f (x). Consider a region
0 < x < L in which the flow is specified at both ends -kOu (0, t) = a and
-kOu (L, t) _ 0. Assume a and # are constants.
(a) Express the conservation law for the entire region.
(b) Determine the total amount of chemical in the region as a function of

time (using the initial condition).

Hint:
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Heat equation in 2D and 3D:

cρ∂tu = ∇· (K0∇u) + Q, x ∈ D ⊂ Rd

Laplace’s equation (potential equation)

∇2u = 0.

Polar and cylindrical coordinates

x = r cos θ; y = r sin θ, z = z

∇2u =
1
r
∂

∂r

(
r
∂u
∂r

)
+

1
r2

∂2u
∂θ2 +

∂2u
∂z2

Spherical coordinates

x = ρ sinφ cos θ; y = ρ sinφ sin θ, z = ρ cosφ

∇2u =
1
ρ2

∂

∂ρ

(
ρ2 ∂u
∂ρ

)
+

1
ρ2 sinφ

∂

∂φ

(
sinφ

∂u
∂φ

)
+

1
ρ2 sin2 φ

∂2u
∂θ2
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1.2 Conduction of Heat in One-Dimension 11

1.2.4. Derive the diffusion equation for a chemical pollutant.

(a) Consider the total amount of the chemical in a thin region between x
and x + Ax.

(b) Consider the total amount of the chemical between x = a and x = b.

1.2.5. Derive an equation for the concentration u(x, t) of a chemical pollutant if
the chemical is produced due to chemical reaction at the rate of au(,3 - u)
per unit volume.

1.2.6. Suppose that the specific heat is a function of position and temperature,
c(x, u).

(a) Show that the heat energy per unit mass necessary to raise the temper-
ature of a thin slice of thickness Ax from 0° to u(x, t) is not c(x)u(x, t),
but instead fo c(x, u) du.

(b) Rederive the heat equation in this case. Show that (1.2.3) remains
unchanged.

1.2.7. Consider conservation of thermal energy (1.2.4) for any segment of a one-
dimensional rod a < x < b. By using the fundamental theorem of calculus,

a
ab

jb
f (x) dx = f (b),

derive the heat equation (1.2.9).

*1.2.8. If u(x, t) is known, give an expression for the total thermal energy contained
in a rod (0 < x < L).

1.2.9. Consider a thin one-dimensional rod without sources of thermal energy
whose lateral surface area is not insulated.

(a) Assume that the heat energy flowing out of the lateral sides per unit
surface area per unit time is w(x, t). Derive the partial differential
equation for the temperature u(x, t).

(b) Assume that w(x, t) is proportional to the temperature difference be-
tween the rod u(x, t) and a known outside temperature -y(x, t). Derive
that

cp at ax (Koe/ - A [u(x, t) - y(x, t))h(x), (1.2.15)

where h(x) is a positive x-/dependent proportionality, P is the lateral
perimeter, and A is the cross-sectional area.

(c) Compare (1.2.15) to the equation for a one-dimensional rod whose
lateral surfaces are insulated, but with heat sources.

(d) Specialize (1.2.15) to a rod of circular cross section with constant ther-
mal properties and 0° outside temperature.

2 Chapter 1. Heat Equation

basic processes take place in order for thermal energy to move: conduction and con-
vection. Conduction results from the collisions of neighboring molecules in which
the kinetic energy of vibration of one molecule is transferred to its nearest neighbor.
Thermal energy is thus spread by conduction even if the molecules themselves do
not move their location appreciably. In addition, if a vibrating molecule moves from
one region to another, it takes its thermal energy with it. This type of movement
of thermal energy is called convection. In order to begin our study with relatively
simple problems, we will study heat flow only in cases in which the conduction of
heat energy is much more significant than its convection. We will thus think of
heat flow primarily in the case of solids, although heat transfer in fluids (liquids
and gases) is also primarily by conduction if the fluid velocity is sufficiently small.

1.2 Derivation of the Conduction of Heat
in a One-Dimensional Rod

Thermal energy density. We begin by considering a rod of constant cross-
sectional area A oriented in the x-direction (from x = 0 to x = L) as illustrated in
Fig. 1.2.1. We temporarily introduce the amount of thermal energy per unit volume
as an unknown variable and call it the thermal energy density:

e(x, t) __ thermal energy density.

We assume that all thermal quantities are constant across a section; the rod is one-
dimensional. The simplest way this may be accomplished is to insulate perfectly
the lateral surface area of the rod. Then no thermal energy can pass through the
lateral surface. The dependence on x and t corresponds to a situation in which
the rod is not uniformly heated; the thermal energy density varies from one cross
section to another.

O(x,t)
7T) 0

z

V U 1
x=0 x x+Ox x=L
Figure 1.2.1 One-dimensional rod with heat energy flowing into
and out of a thin slice.

Heat energy. We consider a thin slice of the rod contained between x and x+
Ox as illustrated in Fig. 1.2.1. If the thermal energy density is constant throughout
the volume, then the total energy in the slice is the product of the thermal energy

w(x,t)

w(x,t)

Part(a): total energy = flow in-out + generated (Q = 0)

d
dt

∫ x+∆x

x
e(z, t)dzA = A[φ(x, t)− φ(x + ∆x, t)]− P

∫ x+∆x

x
w(z, t)dz
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