Chapter 1: Heat equation

Fei Lu
Department of Mathematics, Johns Hopkins

$$
\partial_{t} u=\partial_{x x} u+Q(x, t)
$$

Section 1.2: Conduction of heat
Section 1.3: Initial boundary conditions
Section 1.4: Equilibrium
Section 1.5 Heat equation in 2D and 3D

Outline

Section 1.2: Conduction of heat

Section 1.3: Initial boundary conditions

Section 1.4: Equilibrium

Section 1.5 Heat equation in 2D and 3D

Section 1.2: Conduction of heat How does heat "move"?

Consider the thermal energy in an ideal 1D rod:

Figure 1.2.1 One-dimensional rod with heat energy flowing into and out of a thin slice.

$$
\begin{equation*}
\underbrace{e(x, t)}_{\text {Energy density }}=\underbrace{u(x, t)}_{\text {Temperature }} c(x) \rho(x) \tag{1}
\end{equation*}
$$

- $c(x)=$ heat capacity
heat energy for 1 unit mass to raise the temperature 1 unit
- $\rho(x)=$ mass density
- total energy in a slice $(x, x+\Delta x): \int_{x}^{x+\Delta x} e(z, t) d z$
\Rightarrow study heat conduction via temperature evolution

Section 1.2: Conduction of heat How does heat "move"?

Conservation of energy (rate of change in-time in $(x, x+\Delta x)$)

$$
\begin{align*}
\text { total energy } & =\text { flow in-out }+ \text { generated } \tag{2}\\
\frac{d}{d t} \int_{x}^{x+\Delta x} e(z, t) d z & =\phi(x, t)-\phi(x+\Delta x, t)+\int_{x}^{x+\Delta x} Q(z, t) d z \tag{3}
\end{align*}
$$

$\Delta x \rightarrow 0$, (Recall FTC: $\frac{1}{\Delta x} \int_{x}^{x+\Delta x} f(y) d y \rightarrow f(x)$ for $f \in C([x, x+b])$)

$$
\begin{equation*}
\partial_{t} e=-\partial_{x} \phi+Q(x, t) \tag{4}
\end{equation*}
$$

Recall $e(x, t)=u(x, t) c(c) \rho(x)$, and
Fourier's law: $\phi=-K_{0} \partial_{x} u$ i.e., the heat flow depends linearly on $\partial_{x} u$

$$
\partial_{t} u c(x) \rho(x)=K_{0} \partial_{x x} u+Q(x, t)
$$

If uniform rod: $c(x) \equiv c_{0}, \rho(x) \equiv \rho_{0} \rightarrow \kappa=\frac{K_{0}}{c_{0} \rho_{0}}$; no source $Q=0$; then

$$
\text { Heat Equation: } \quad \partial_{t} u=\kappa \partial_{x x} u
$$

Heat/Diffusion Equation:

$$
\partial_{t} u=\kappa \partial_{x x} u
$$

Diffusion: spread of heat/chemical/...

- diffusion of heat
- $u(x, t)$ temperature; κ thermal diffusivity
- Conservation of energy; Fourier's law
- diffusion of chemicals (perfumes or pullutants)
- $u(x, t)$ concentration density; κ chemical diffusivity;
- Conservation of mass; Fick's law

Diffusion
Source: Wiki
Reading: Diffusion (wiki); Brownian motion (Wiki)

Outline

Section 1.2: Conduction of heat

Section 1.3: Initial boundary conditions

Section 1.4: Equilibrium

Section 1.5 Heat equation in 2D and 3D

Initial and boundary conditions

Heat Equation:
 $$
\partial_{t} u=\kappa \partial_{x x} u
$$

Any solution to it? Infinitely many
Constant

$$
\begin{aligned}
& u_{0}(x, t) \equiv 1 \\
& u_{1}(x, t)=x \\
& u_{2}(x, t)=\frac{1}{2 \pi \sqrt{t}} e^{-\frac{t^{2}}{2 t}}
\end{aligned}
$$

Linear in x

- Any linear combination of those (principle of superposition)

$$
u(x, t)=c_{0} u_{0}+c_{1} u_{1}+c_{2} u_{2}
$$

for any constant $c_{0}, c_{1}, c_{2} \in \mathbb{R}$
To determine a solution, need to specify initial boundary conditions

Initial and boundary conditions

Heat Equation:
 $$
\partial_{t} u=\kappa \partial_{x x} u
$$

How many initial boundary conditions do we need?
Recall ODE: for $t \geq t_{0}$

- $y^{\prime}(t)=f(y, t)$, with $y\left(t_{0}\right)=y_{0}$;
- $\frac{d^{k}}{d k^{k}} y=f\left(y, y^{(1)}, \ldots, y^{(k-1)}, t\right)$, with $y\left(t_{0}\right), y^{\prime}\left(t_{0}\right), \ldots, y^{(k)}\left(t_{0}\right)$;
(Exe: what condition do we need on the k-ICs? How about IBVP?)
Domain of equation

$$
t \geq t_{0}, x \in D, \text { with } D=\mathbb{R}^{d} \text { or } D=(0, L) .
$$

Initial condition for HE

$$
u\left(x, t_{0}\right)=f(x), \text { for all } x \in D
$$

- when $D=\mathbb{R}^{d}$: IC determines the solution
- when $D=(0, L)$: need Boundary conditions

IVBP

Heat equation on a bounded interval

$$
\partial_{t} u=\kappa \partial_{x x} u, \quad \text { with } x \in(0, L), t \geq 0
$$

Initial condition $u(x, 0)=f(x), x \in[0, L]$
Boundary conditions boundaries $x=0, x=L$
Dirichlet $\quad u(0, t)=\phi(t), u(L, t)=\psi(t) \quad$ prescribed tempt.
Neumann $\quad \partial_{x} u(0, t)=\phi(t), \partial_{x} u(L, t)=\psi(t) \quad$ heat flux $\partial_{x} u(0, t)=\partial_{x} u(L, t)=0 \quad$ insulated bd

Robin $a_{1} \partial_{x} u(0, t)+a_{0} u(0, t)=\phi(t)$

Newton's law of cooling
mixed $b_{1} \partial_{x} u(L, t)+b_{0} u(L, t)=\psi(t)$

Exe: read Section 1.3.

Outline

Section 1.2: Conduction of heat
 Section 1.3: Initial boundary conditions

Section 1.4: Equilibrium

Section 1.5 Heat equation in 2D and 3D

Equilibrium Temperature Distribution

Q: What is Equilibrium and why?
The steady state; a state of rest or balance due to equal action of opposing forces.
Recall ODE: $y^{\prime}=f(y)$, how to find its equilibrium? Stability?
Reading for fun: Equilibrium of dynamics systems

1. Prescribed Temperature Consider the IBVP

$$
\begin{aligned}
& \partial_{t} u=\kappa \partial_{x x} u, \quad \text { with } x \in(0, L), t \geq 0 \\
& u(x, 0)=f(x) \\
& u(0, t)=\phi(t), u(L, t)=\psi(t)
\end{aligned}
$$

At equilibrium: $\partial_{t} \widetilde{u}=0, \widetilde{u}(0, t)=\phi(t) \equiv T_{1}, \widetilde{u}(L, t)=\psi(t) \equiv T_{2}$:

$$
\begin{aligned}
\partial_{x x} \widetilde{u} & =0, \\
\widetilde{u}(0) & \equiv T_{1}, \widetilde{u}(L) \equiv T_{2}
\end{aligned}
$$

A 2nd order ODE! (What about the IC?)

Solution:

$$
\widetilde{u}(x)=T_{1}+\frac{T_{2}-T_{1}}{L} x
$$

Approach to equilibrium

$$
\lim _{t \rightarrow \infty} u(t, x)=\widetilde{u}(x)
$$

2. Insulated BC

$$
\begin{aligned}
& \partial_{t} u=\kappa \partial_{x x} u, \quad \text { with } x \in(0, L), t \geq 0 \\
& u(x, 0)=f(x) \\
& \partial_{x} u(0, t)=0, \partial_{x} u(L, t)=0
\end{aligned}
$$

At equilibrium:

$$
\begin{aligned}
& \partial_{x x} \widetilde{u}=0, \\
& \partial_{x} \widetilde{u}(0)=\partial_{x} \widetilde{u}(L)=0
\end{aligned}
$$

Solution:

$$
\widetilde{u}(x)=C
$$

Arbitrary C ?
Figure?

3. Mixed BC

$$
\begin{aligned}
& \partial_{t} u=\kappa \partial_{x x} u, \quad \text { with } x \in(0, L), t \geq 0 \\
& u(x, 0)=f(x) \\
& u(0, t)=T, u(L, t)+\partial_{x} u(L, t)=0
\end{aligned}
$$

At equilibrium: $\partial_{x x} \widetilde{u}=0, \widetilde{u}(0)=T, \partial_{x} \widetilde{u}(L)+\partial_{x} \widetilde{u}(L)=0$.
Solution:

$$
\widetilde{u}(x)=T\left(1-\frac{x}{1+L}\right)
$$

Figure?

Exe1.4.11

1.4.11. Suppose $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+x, u(x, 0)=f(x), \frac{\partial u}{\partial x}(0, t)=\beta, \frac{\partial u}{\partial x}(L, t)=7$.
(a) Calculate the total thermal energy in the one-dimensional rod (as a function of time).
(b) From part (a), determine a value of β for which an equilibrium exists. For this value of β, determine $\lim _{t \rightarrow \infty} u(x, t)$.
Hint:

Outline

Section 1.2: Conduction of heat
Section 1.3: Initial boundary conditions
Section 1.4: Equilibrium

Section 1.5 Heat equation in 2D and 3D

Heat equation in 2D and 3D:

$$
c \rho \partial_{t} u=\nabla \cdot\left(K_{0} \nabla u\right)+Q, \quad x \in D \subset \mathbb{R}^{d}
$$

Laplace's equation (potential equation)

$$
\nabla^{2} u=0
$$

Polar and cylindrical coordinates

$$
\begin{gathered}
x=r \cos \theta ; \quad y=r \sin \theta, \quad z=z \\
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}+\frac{\partial^{2} u}{\partial z^{2}}
\end{gathered}
$$

Spherical coordinates

$$
\begin{gathered}
x=\rho \sin \phi \cos \theta ; \quad y=\rho \sin \phi \sin \theta, \quad z=\rho \cos \phi \\
\nabla^{2} u=\frac{1}{\rho^{2}} \frac{\partial}{\partial \rho}\left(\rho^{2} \frac{\partial u}{\partial \rho}\right)+\frac{1}{\rho^{2} \sin \phi} \frac{\partial}{\partial \phi}\left(\sin \phi \frac{\partial u}{\partial \phi}\right)+\frac{1}{\rho^{2} \sin ^{2} \phi} \frac{\partial^{2} u}{\partial \theta^{2}}
\end{gathered}
$$

1.2.9. Consider a thin one-dimensional rod without sources of thermal energy whose lateral surface area is not insulated.
(a) Assume that the heat energy flowing out of the lateral sides per unit surface area per unit time is $w(x, t)$. Derive the partial differential equation for the temperature $u(x, t)$.
(b) Assume that $w(x, t)$ is proportional to the temperature difference between the rod $u(x, t)$ and a known outside temperature $\gamma(x, t)$. Derive that

$$
\begin{equation*}
\mathrm{c} \rho \frac{\partial u}{\partial t}=\frac{\partial}{\partial x}\left(K_{0} \frac{\partial u}{\partial x}\right)-\frac{P}{A}[u(x, t)-\gamma(x, t)] h(x) \tag{1.2.15}
\end{equation*}
$$

where $h(x)$ is a positive x-dependent proportionality, P is the lateral perimeter, and A is the cross-sectional area.
(c) Compare (1.2.15) to the equation for a one-dimensional rod whose lateral surfaces are insulated, but with heat sources.
(d) Specialize (1.2.15) to a rod of circular cross section with constant thermal properties and 0° outside temperature.

Part(a): \quad total energy $=$ flow in-out + generated $(Q=0)$

$$
\frac{d}{d t} \int_{x}^{x+\Delta x} e(z, t) d z A=A[\phi(x, t)-\phi(x+\Delta x, t)]-P \int_{x}^{x+\Delta x} w(z, t) d z
$$

