Chapter 8: Non-homogeneous Equations

Fei Lu

Department of Mathematics, Johns Hopkins

Solution to the IBVP?

$$
\begin{aligned}
& \partial_{t} u=\kappa \partial_{x x} u+Q(x, t), \quad \text { with } x \in(0, L), t \geq 0 \\
& u(x, 0)=f(x) \\
& \mathrm{BC}: u(0, t)=\phi(t), u(L, t)=\psi(t)
\end{aligned}
$$

Section 8.2: Heat flow with source and non-homo BC Section 8.3: Methods of eigenfunction expansion (homo-BC) Section 8.4: MEE (non-homo BC): after Chp5
Section 8.5: Forced vibrating membrane and Resonance Section 8.6: Poisson's Equition

Outline

Section 8.2: Heat flow with source and non-homo BC

> Section 8.3: Methods of eigenfunction expansion (homo-BC)

> Section 8.4: MEE (non-homo BC): after Chp5

> Section 8.5: Forced vibrating membrane and Resonance

> Section 8.6: Poisson's Equition

Section 8.2: Heat flow with source and non-homo BC

1. Time-independent BC

Consider first

$$
\begin{aligned}
& \partial_{t} u=\kappa \partial_{x x} u, \quad \text { with } x \in(0, L), t>0 \\
& u(x, 0)=f(x) \\
& \mathrm{BC}: u(0, t)=A, u(L, t)=B
\end{aligned}
$$

1> Equilibrium solu $u_{E}(x)=A+\frac{x}{L}(B-A)$.

Section 8.2: Heat flow with source and non-homo BC

1. Time-independent BC

Consider first

$$
\begin{aligned}
& \partial_{t} u=\kappa \partial_{x x} u, \quad \text { with } x \in(0, L), t>0 \\
& u(x, 0)=f(x) \\
& \text { BC: } u(0, t)=A, u(L, t)=B
\end{aligned}
$$

1> Equilibrium solu $u_{E}(x)=A+\frac{x}{L}(B-A)$.
2> Displacement from Equilibrium

$$
\begin{aligned}
& \partial_{t} v=\kappa \partial_{x x} v \\
& v(x, 0)=f(x)-u_{E}(x) \\
& v(0, t)=0, v(L, t)=0
\end{aligned}
$$

$$
v(x, t)=\sum_{n=0}^{\infty} a_{n} e^{-\kappa \lambda_{n} t} \sin \frac{n \pi}{L} x
$$

$$
v(x, t)=u(x, t)-u_{E}(x)
$$

Section 8.2: Heat flow with source and non-homo BC

1. Time-independent BC

Consider first

$$
\begin{aligned}
& \partial_{t} u=\kappa \partial_{x x} u, \quad \text { with } x \in(0, L), t>0 \\
& u(x, 0)=f(x) \\
& \text { BC: } u(0, t)=A, u(L, t)=B
\end{aligned}
$$

1> Equilibrium solu $u_{E}(x)=A+\frac{x}{L}(B-A)$.
2> Displacement from Equilibrium

$$
\begin{aligned}
& \partial_{t} v=\kappa \partial_{x x} v \\
& v(x, 0)=f(x)-u_{E}(x) \\
& v(0, t)=0, v(L, t)=0
\end{aligned}
$$

$$
v(x, t)=\sum_{n=0}^{\infty} a_{n} e^{-\kappa \lambda_{n} t} \sin \frac{n \pi}{L} x
$$

$$
v(x, t)=u(x, t)-u_{E}(x)
$$

Extension (exe): steady source

$$
\begin{aligned}
& \partial_{t} u=\kappa \partial_{x x} u+Q(x) \\
& u(x, 0)=f(x) \\
& u(0, t)=A, u(L, t)=B
\end{aligned}
$$

2. Time-dependent non-homo PDE\&BC

$$
\begin{aligned}
& \partial_{t} u=\kappa \partial_{x x} u+Q(x, t) \\
& u(x, 0)=f(x) \\
& u(0, t)=A(t), u(L, t)=B(t)
\end{aligned}
$$

1> Homogenization:

- Equilibrium solu?
- May NOT be able o reduce both PDE and BC to homo. choose one: PDE or BC?

2. Time-dependent non-homo PDE\&BC

$$
\begin{aligned}
& \partial_{t} u=\kappa \partial_{x x} u+Q(x, t) \\
& u(x, 0)=f(x) \\
& u(0, t)=A(t), u(L, t)=B(t)
\end{aligned}
$$

1> Homogenization:

- Equilibrium solu?
- May NOT be able o reduce both PDE and BC to homo. choose one: PDE or BC?
\Rightarrow reference solution $r(x, t)$ s.t.

$$
r(0, t)=A(t) ; r(L, t)=B(t)
$$

- any $r^{* * *}$
- $r(x, t)=A(t)+\frac{x}{L}[B(t)-A(t)]$.

2. Time-dependent non-homo PDE\&BC

2> Displacement solution

$$
\begin{aligned}
& \partial_{t} u=\kappa \partial_{x x} u+Q(x, t) \\
& u(x, 0)=f(x) \\
& u(0, t)=A(t), u(L, t)=B(t)
\end{aligned}
$$

$$
v(x, t)=u(x, t)-r(x, t)
$$

$$
\begin{aligned}
& \partial_{t} v=\kappa \partial_{x x} v+\bar{Q}(x, t) \\
& v(x, 0)=f(x)-r(x, 0) \\
& v(0, t)=0, v(L, t)=0
\end{aligned}
$$

- Equilibrium solu?
- May NOT be able o reduce both PDE and BC to homo. choose one: PDE or BC?
\Rightarrow reference solution $r(x, t)$ s.t.

$$
r(0, t)=A(t) ; r(L, t)=B(t)
$$

- any $r^{* * *}$
- $r(x, t)=A(t)+\frac{x}{L}[B(t)-A(t)]$.
- $\bar{Q}=?:^{* * *}$
- can we use separation of variables? $v(x, t)=h(t) \phi(x)$ \bar{Q} and no POS.
- Fourier series
$v(x, t) "=" \sum_{n=0}^{\infty} a_{n}(t) \sin \frac{n \pi}{L} x$
$\bar{Q}(x, t) "=" \sum_{n=0}^{\infty} q_{n}(t) \sin \frac{n \pi}{L} x$
\rightarrow method of eigenfunction expansion \downarrow

Outline

Section 8.2: Heat flow with source and non-homo BC

Section 8.3: Methods of eigenfunction expansion (homo-BC)

Section 8.4: MEE (non-homo BC): after Chp5

Section 8.5: Forced vibrating membrane and Resonance

Section 8.6: Poisson's Equition

Section 8.3: Methods of eigenfunction expansion

separation of variables: homo PDE + homo BC
generalize \rightarrow non-homo PDE + homogeneous BC Seek solution of the form

$$
u(x, t)=\sum_{n=0}^{\infty} a_{n}(t) \cos \frac{n \pi}{L} x+b_{n}(t) \sin \frac{n \pi}{L} x
$$

- homo BC determines the eigenfunctions to use (sine/cosine/both, denote by $\phi_{n}(x)$)
- works for equation with source $\partial_{t} u=\kappa \partial_{x x} u+Q(x, t)$
- solve $a_{n}(t), b_{n}(t)$ from the PDE + IC (use TBTD, under conditions)

Method of eigenfunction expansion

$$
\begin{aligned}
& \partial_{t} v=\kappa \partial_{x x} v+\bar{Q}(x, t) \\
& v(x, 0)=g(x) \\
& v(0, t)=0, v(L, t)=0
\end{aligned}
$$

$$
\phi_{n}(x)=\sin \frac{n \pi}{L} x
$$

$$
\begin{aligned}
v(x, t) " & =" \sum_{n=0}^{\infty} b_{n}(t) \phi_{n}(x), \quad\left(b_{n} \text { TBD } \downarrow\right) \\
g(x) " & =" \sum_{n=0}^{\infty} b_{n}(0) \phi_{n}(x), \quad b_{n}(0)=? \\
\bar{Q}(x, t) " & =" \sum_{n=0}^{\infty} \overline{q_{n}}(t) \phi_{n}(x)
\end{aligned}
$$

Method of eigenfunction expansion

$$
\begin{aligned}
& \partial_{t} v=\kappa \partial_{x x} v+\bar{Q}(x, t) \\
& v(x, 0)=g(x) \\
& v(0, t)=0, v(L, t)=0
\end{aligned}
$$

$$
\phi_{n}(x)=\sin \frac{n \pi}{L} x
$$

$$
\begin{aligned}
v(x, t) " & =" \sum_{n=0}^{\infty} b_{n}(t) \phi_{n}(x), \quad\left(b_{n} \mathrm{TBD} \downarrow\right) \\
g(x) " & =" \sum_{n=0}^{\infty} b_{n}(0) \phi_{n}(x), \quad b_{n}(0)=? \\
\bar{Q}(x, t) " & =" \sum_{n=0}^{\infty} \overline{q_{n}}(t) \phi_{n}(x)
\end{aligned}
$$

TBTD $\partial_{t} v, \partial_{x x} v$ PS; $v, \partial_{x} v$ continuous; (BC?) \Rightarrow

- $\partial_{t} v=\sum_{n=0}^{\infty} b_{n}^{\prime}(t) \phi_{n}(x)$

$$
\kappa \partial_{x x} v+\bar{Q}(x, t)=\sum_{n=0}^{\infty}\left[-\lambda_{n} \kappa b_{n}(t)+\overline{q_{n}}(t)\right] \phi_{n}(x)
$$

$$
\Rightarrow b_{n}^{\prime}+\lambda_{n} \kappa b_{n}(t)=\overline{q_{n}}(t)
$$

$$
b_{n}(t)=b_{n}(0) e^{-\kappa \lambda_{n} t}+\int_{0}^{t} e^{-\kappa \lambda_{n}(t-s)} \overline{q_{n}}(s) d s
$$

- Check: if $\bar{Q}(x, t)=0: b_{n}(t)=b_{n}(0) e^{-\kappa \lambda_{n} t}$.

Example

Find a solution of

$$
\begin{aligned}
& \partial_{t} u=\kappa \partial_{x x} u+e^{-t} \sin 3 x \\
& u(x, 0)=f(x) \\
& u(0, t)=0, u(\pi, t)=1
\end{aligned}
$$

Example

Find a solution of

$$
\begin{aligned}
& \partial_{t} u=\kappa \partial_{x x} u+e^{-t} \sin 3 x \\
& u(x, 0)=f(x) \\
& u(0, t)=0, u(\pi, t)=1 \\
& L=\pi, \lambda_{n}=n^{2} ; \\
& 1>\text { reference solution: } \\
& r(x, t)=0+\frac{x}{\pi}(1-0)=\frac{x}{\pi}
\end{aligned}
$$

Example

 Find a solution of$2>$ let $v(x, t)=u(x, t)-r(x, t)$

$$
\begin{aligned}
& \partial_{t} u=\kappa \partial_{x x} u+e^{-t} \sin 3 x \\
& u(x, 0)=f(x) \\
& u(0, t)=0, u(\pi, t)=1
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{t} v=\kappa \partial_{x x} v+\bar{Q}(x, t), \\
& v(x, 0)=f(x)-r(x, 0) \\
& v(0, t)=0, v(L, t)=0
\end{aligned}
$$

$$
L=\pi, \lambda_{n}=n^{2} ;
$$

$1>$ reference solution:

- $\bar{Q}(x, t)=e^{-t} \sin 3 x+0$
$r(x, t)=0+\frac{x}{\pi}(1-0)=\frac{x}{\pi}$
- $\mathrm{BC} \Rightarrow \phi_{n}(x)=\sin n x$

Seek $v(x, t)=\sum_{n=0}^{\infty} b_{n}(t) \phi_{n}(x)$

Example

 Find a solution of$$
\begin{aligned}
& \partial_{t} u=\kappa \partial_{x x} u+e^{-t} \sin 3 x \\
& u(x, 0)=f(x) \\
& u(0, t)=0, u(\pi, t)=1
\end{aligned}
$$

$$
L=\pi, \lambda_{n}=n^{2} ;
$$

1> reference solution:

$$
r(x, t)=0+\frac{x}{\pi}(1-0)=\frac{x}{\pi}
$$

$$
\begin{aligned}
& \partial_{t} v=\kappa \partial_{x x} v+\bar{Q}(x, t), \\
& v(x, 0)=f(x)-r(x, 0) \\
& v(0, t)=0, v(L, t)=0
\end{aligned}
$$

- $\bar{Q}(x, t)=e^{-t} \sin 3 x+0$
- $\mathrm{BC} \Rightarrow \phi_{n}(x)=\sin n x$

$$
\text { Seek } v(x, t)=\sum_{n=0}^{\infty} b_{n}(t) \phi_{n}(x)
$$

TBTD $\partial_{t} v, \partial_{x x} v$ PS; $v, \partial_{x} v$ continuous; \Rightarrow

- $b_{n}(t)=b_{n}(0) e^{-\kappa \lambda_{n} t}+\int_{0}^{t} e^{-\kappa \lambda_{n}(t-s)} \overline{q_{n}}(s) d s$

$$
u(x, t)=v(x, t)+\frac{x}{\pi}
$$

Outline

Section 8.2: Heat flow with source and non-homo BC

 Section 8.3: Methods of eigenfunction expansion (homo-BC)

 Section 8.3: Methods of eigenfunction expansion (homo-BC)}

Section 8.4: MEE (non-homo BC): after Chp5

Section 8.5: Forced vibrating membrane and Resonance

Section 8.6: Poisson's Equition

In the method of eigenfunction expansion, what if

- TBTD conditions not satisfied
- More general equations $\partial_{x x} \rightarrow \frac{d}{d x}\left(p(x) \frac{d}{d x}\right)$

Back to it after chapter 5.

Outline

Section 8.2: Heat flow with source and non-homo BC

 Section 8.3: Methods of eigenfunction expansion (homo-BC)

 Section 8.3: Methods of eigenfunction expansion (homo-BC)
 Section 8.4: MEE (non-homo BC): after Chp5

Section 8.5: Forced vibrating membrane and Resonance

Section 8.6: Poisson's Equition

Outline

Section 8.2: Heat flow with source and non-homo BC
 Section 8.3: Methods of eigenfunction expansion (homo-BC)
 Section 8.4: MEE (non-homo BC): after Chp5
 Section 8.5: Forced vibrating membrane and Resonance

Section 8.6: Poisson's Equition

