Heat.

Sound

Elastic strings, membranes
Waves

Chapter 4: Wave Equations

Fei Lu

Department of Mathematics, Johns Hopkins

Solution to the IBVP?

$$
\begin{aligned}
& \partial_{t t} u=\kappa \partial_{x x} u+Q(x, t), \quad \text { with } x \in(0, L), t \geq 0 \\
& \text { IC: } u(x, 0)=f(x), \partial_{t} u(x, 0)=g(x) \\
& \text { BC: } u(0, t)=\phi(t), u(L, t)=\psi(t)
\end{aligned}
$$

Section 4.2: Derivation of a vertically vibrating string Section 4.3: Boundary conditions Section 4.4: Vibrating string with fixed ends Section 4.5: Vibrating membrane

Outline

Section 4.2: Derivation of a vertically vibrating string

Section 4.3: Boundary conditions

Section 4.4: Vibrating string with fixed ends

Section 4.5: Vibrating membrane

Section 4.2: Derivation of a vertically vibrating string

Consider a vibrating string:

The string is on $x \in[0, L]$:

- Mass density $\rho(x)$, body force $Q(x, t)$
- Motion is entirely vertical (perfectly elastic string)
- Vertical displacement $u(x, t)$: small

Section 4.2: Derivation of a vertically vibrating string

Consider a vibrating string:

$T(x, t)$

The string is on $x \in[0, L]$:

- Mass density $\rho(x)$, body force $Q(x, t)$
- Motion is entirely vertical (perfectly elastic string)
- Vertical displacement $u(x, t)$: small

Newton's Law

$$
\begin{aligned}
F= & m a=\rho(x) \Delta x \partial_{t t} u \\
F= & \text { force }+ \text { tension }=\rho(x) \Delta x Q(x, t)+ \\
& +T(x+\Delta x, t) \sin \theta(x+\Delta x, t)-T(x, t) \sin \theta(x, t) \\
\Rightarrow & \rho(x) \partial_{t t} u=\partial_{x}[T(x, t) \sin \theta(x, t)]+\rho(x) Q
\end{aligned}
$$

Section 4.2: Derivation of a vertically vibrating string

Consider a vibrating string:

$T(x, t)$

The string is on $x \in[0, L]$:

- Mass density $\rho(x)$, body force $Q(x, t)$
- Motion is entirely vertical (perfectly elastic string)
- Vertical displacement $u(x, t)$: small

Newton's Law

$$
\begin{aligned}
F= & m a=\rho(x) \Delta x \partial_{t t} u \\
F= & \text { force }+ \text { tension }=\rho(x) \Delta x Q(x, t)+ \\
& +T(x+\Delta x, t) \sin \theta(x+\Delta x, t)-T(x, t) \sin \theta(x, t) \\
\Rightarrow & \rho(x) \partial_{t t} u=\partial_{x}[T(x, t) \sin \theta(x, t)]+\rho(x) Q
\end{aligned}
$$

Note: tangent slope $=\partial_{x} u=\tan \theta(x, t)=\frac{\sin \theta}{\cos \theta} \approx \sin \theta$ when θ small \Downarrow

$$
\rho(x) \partial_{t t} u=\partial_{x}\left[T(x, t) \partial_{x} u\right]+\rho(x) Q
$$

If $\rho(x) \equiv \rho_{0}, T(x, t) \equiv T_{0}$ and $Q(x, t)=0$, then

$$
\partial_{t t} u=c^{2} \partial_{x x} u, \quad c^{2}=\frac{T_{0}}{\rho_{0}} \quad \text { WAVE equation }
$$

$$
\begin{align*}
& \rho(x) \partial_{t t} u=T_{0} \partial_{x x} u+\rho(x) Q(x, t) \tag{4.2.7}\\
& \rho(x) \partial_{t t} u=T_{0} \partial_{x x} u \tag{4.2.9}
\end{align*}
$$

4.2.1. (a) Using Equation (4.2.7), compute the sagged equilibrium position $u_{E}(x)$ if $Q(x, t)=-g$. The boundary conditions are $u(O)=0$ and $u(L)=0$.
(b) Show that $v(x, t)=u(x, t)-u_{E}(x)$ satisfies (4.2.9).

Outline

Section 4.2: Derivation of a vertically vibrating string

Section 4.3: Boundary conditions

Section 4.4: Vibrating string with fixed ends

Section 4.5: Vibrating membrane

Section 4.3: Boundary conditions

Question: which massless string is in space (or on earth)?

Honey in space (Youtube)

More interesting: the spring's base vibrates

- $u(0, t)=y(t), u(L, t)=0$
- the spring: position $y(t)-y_{s}(t)$, equilibrium length l
- Newton + Hooke's laws

$$
m \frac{d^{2} y}{d t^{2}}=-k\left(y-y_{s}(t)-l\right)+\text { force }
$$

Figure 4.3.1 Spring-mass system with a variable support attached to a stretched string.

More interesting: the spring's base vibrates

- $u(0, t)=y(t), u(L, t)=0$
- the spring: position $y(t)-y_{s}(t)$, equilibrium length l
- Newton + Hooke's laws $m \frac{d^{2} y}{d t^{2}}=-k\left(y-y_{s}(t)-l\right)+$ force

Figure 4.3.1 Spring-mass system with a variable support attached to a stretched string.
tension: $T(0, t) \sin \theta(0, t) \approx T(0, t) \tan \theta(0, t)=T(0, t) \partial_{x} u(0, t) \Rightarrow$

$$
m \frac{d^{2} u(0, t)}{d t^{2}}=-k\left[u(0, t)-y_{s}(t)-l\right]+T(0, t) \partial_{x} u(0, t)+G(t)
$$

- when the external force $G=m g$ with $g=0$ and small mass $m=0$:

$$
k\left[u(0, t)-y_{s}(t)-l\right]=T(0, t) \partial_{x} u(0, t)
$$

\Rightarrow upwards if $\left[u(0, t)-y_{s}(t)-l\right]>0$.

More interesting: the spring's base vibrates

- $u(0, t)=y(t), u(L, t)=0$
- the spring: position $y(t)-y_{s}(t)$, equilibrium length l
- Newton + Hooke's laws $m \frac{d^{2} y}{d t^{2}}=-k\left(y-y_{s}(t)-l\right)+$ force

Figure 4.3.1 Spring-mass system with a variable support attached to a stretched string.
tension: $T(0, t) \sin \theta(0, t) \approx T(0, t) \tan \theta(0, t)=T(0, t) \partial_{x} u(0, t) \Rightarrow$

$$
m \frac{d^{2} u(0, t)}{d t^{2}}=-k\left[u(0, t)-y_{s}(t)-l\right]+T(0, t) \partial_{x} u(0, t)+G(t)
$$

- when the external force $G=m g$ with $g=0$ and small mass $m=0$:

$$
k\left[u(0, t)-y_{s}(t)-l\right]=T(0, t) \partial_{x} u(0, t)
$$

\Rightarrow upwards if $\left[u(0, t)-y_{s}(t)-l\right]>0$.
Question: what about right end point $u(L, t)$?

Question: which massless string is in space (or on earth)?

Outline

> Section 4.2: Derivation of a vertically vibrating string Section 4.3: Boundary conditions

Section 4.4: Vibrating string with fixed ends

Section 4.5: Vibrating membrane

Section 4.4: Vibrating string with fixed ends

How to solve the wave equation IBVP?

$$
\begin{aligned}
& \partial_{t t} u=c^{2} \partial_{x x} u \\
& u(0, t)=0, u(L, t)=0 \\
& u(x, 0)=f(x), \partial_{t} u(x, 0)=g(x)
\end{aligned}
$$

Separation of variables

Section 4.4: Vibrating string with fixed ends

How to solve the wave equation IBVP?

$$
\begin{aligned}
& \partial_{t t} u=c^{2} \partial_{x x} u, \\
& u(0, t)=0, u(L, t)=0 \\
& u(x, 0)=f(x), \partial_{t} u(x, 0)=g(x)
\end{aligned}
$$

Separation of variables v.s. method of eigenfunction expansion $u(x, t)=\sum_{n=0}^{\infty}\left[a_{n} \cos \frac{n \pi c t}{L}+b_{n} \sin \frac{n \pi c t}{L}\right] \sin \frac{n \pi x}{L}$

Is it a solution? conditions for TBTD

Uniqueness of solution?

Section 4.4: Vibrating string with fixed ends

$$
\begin{aligned}
& \partial_{t t} u=c^{2} \partial_{x x} u \\
& u(0, t)=0, u(L, t)=0 \\
& u(x, 0)=f(x), \partial_{t} u(x, 0)=g(x)
\end{aligned}
$$

Solution: $u(x, t)=\sum_{n=0}^{\infty}\left[a_{n} \cos \frac{n \pi c t}{L}+b_{n} \sin \frac{n \pi c t}{L}\right] \sin \frac{n \pi x}{L}$
Interpretation: musical stringed instruments

- normal modes of vibration: $\left[a_{n} \cos \frac{n \pi c t}{L}+b_{n} \sin \frac{n \pi c t}{L}\right] \sin \frac{n \pi x}{L}$
- sound intensity (amplitude): $\sqrt{a_{n}^{2}+b_{n}^{2}}$
- circular frequency $n \pi c / L$ (\# of oscillations in 2π unit time)

$$
u(x, t)=\sum_{n=0}^{\infty}\left[a_{n} \cos \frac{n \pi c t}{L}+b_{n} \sin \frac{n \pi c t}{L}\right] \sin \frac{n \pi x}{L}
$$

Standing wave: $\sin \frac{n \pi c t}{L} \sin \frac{n \pi x}{L}$
Traveling wave: the standing wave = two traveling waves

$$
\sin \frac{n \pi c t}{L} \sin \frac{n \pi x}{L}=\frac{1}{2} \underbrace{\cos \frac{n \pi}{L}(x-c t)}_{\text {wave traveling to the right }}-\frac{1}{2} \underbrace{\cos \frac{n \pi}{L}(x+c t)}_{\text {wave traveling to the left }}
$$

- Recall that: $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
- $\cos \frac{n \pi}{L}(x-c t)$: wave traveling to the right, with velocity c $\cos \frac{n \pi}{L}(x+c t)$: wave traveling to the left, with velocity c

Standing and traveling wave (Wiki)
Wave equation (Hojun Lee's simulation)
4.4.3. Consider a slightly damped vibrating string that satisfies

$$
\rho_{0} \frac{\partial^{2} u}{\partial t^{2}}=T_{0} \frac{\partial^{2} u}{\partial x^{2}}-\beta \frac{\partial u}{\partial t}
$$

(a) Briefly explain why $\beta>0$.
*(b) Determine the solution (by separation of variables) that satisfies the boundary conditions

$$
u(0, t)=0 \quad \text { and } \quad u(L, t)=0
$$

and the initial conditions

$$
u(x, 0)=f(x) \quad \text { and } \quad \frac{\partial u}{\partial t}(x, 0)=g(x)
$$

You can assume that this frictional coefficient β is relatively small $\left(\beta^{2}<4 \pi^{2} \rho_{0} T_{0} / L^{2}\right)$.
4.4.4. Redo Exercise 4.4 .3 (b) by the eigenfunction expansion method.

Question: Will there be a solution to the IBVP?

$$
\begin{aligned}
& \partial_{t t} u=c^{2} \partial_{x x} u-\beta \partial_{x} u \\
& u(0, t)=0, u(L, t)=0 \\
& u(x, 0)=f(x), \partial_{t} u(x, 0)=g(x)
\end{aligned}
$$

Outline

Section 4.2: Derivation of a vertically vibrating string Section 4.3: Boundary conditions

Section 4.4: Vibrating string with fixed ends

Section 4.5: Vibrating membrane

Section 4.5: Vibrating membrane

$$
\partial_{t t} u=c^{2} \nabla^{2} u
$$

2D wave equation: $\nabla^{2} u=\left(\partial_{x x}+\partial_{y y}\right) u$

- The derivation of the equation: similar to the 1D string.
- Boundary treatment (Stokes' theorem)

$$
\iint \nabla \times \mathbf{B} \cdot \mathbf{n} d A=\int \mathbf{B} \cdot \mathbf{t} d s
$$

where $d A$ is differential surface area, $d s$ is diff. arc length.

Figure 4.5.1 Perturbed stretched membrane with approximately constant tension T_{0}. The normal vector to the surface is \hat{n} and the tangent vector to the edge is $\hat{\boldsymbol{t}}$.

