Chapter 5: Sturm-Liouville Eigenvalue Problem

Fei Lu

Department of Mathematics, Johns Hopkins

Solution to the IBVP?

$$
\begin{aligned}
& c(x) \rho(x) \partial_{t} u=K_{0} \partial_{x x} u+Q(x, t), \quad \text { with } x \in(0, L), t \geq 0 \\
& \text { IC: } u(x, 0)=f(x), \\
& \text { BC: } u(0, t)=\phi(t), u(L, t)=\psi(t)
\end{aligned}
$$

Section 5.1-2* Introduction and motivation Section 5.3: Sturm-Liouville Eigenvalue Problem Section 5.4: Example: heat flow in a non-uniform rod Extra: Numerical solution to SLEP

Outline

Section 5.1-2* Introduction and motivation

Section 5.3: Sturm-Liouville Eigenvalue Problem

Section 5.4: Example: heat flow in a non-uniform rod

Extra: Numerical solution to SLEP

Review: Eigenvalue problems in PDE

Recall that for Heat Equation and Wave Equation,

$$
\begin{array}{lll}
\mathrm{HE} & \partial_{t} u=\partial_{x x} u & \phi^{\prime \prime}(x)=-\lambda \phi \\
\mathrm{WE} & \partial_{t t} u=\partial_{x x} u & \mathrm{BC}: \phi(a), \phi^{\prime}(a), / \text { mixed } \\
\mathrm{BC} & u(a, t), \partial_{x} u(a, t), / \text { mixed } & \\
(a=0, L,-L) & \lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \phi_{n}(x)=\sin \sqrt{\lambda_{n}} x, \cos \sqrt{\lambda_{n}} x \text {, or both }
\end{array}
$$

Quiz: which did we use in eigenfunction expansion method?
$\mathrm{A} \infty$ many eigenvalues $\lambda_{n} \in \mathbb{R}$
B $\left\{\phi_{n}\right\}$ are orthogonal
C $\left\{\phi_{n}\right\}$ are complete (Fourier Theorem)
D TBTD conditions on u

Review: Eigenvalue problems in PDE

Apply it for non-constant coefficient equations?
Heat Flow in a non-uniform rod

$$
c(x) \rho(x) \partial_{t} u=\partial_{x}\left(K_{0} \partial_{x} u\right)+\alpha u
$$

symmetry heat flow

$$
\partial_{t} u=k_{r}^{1} \frac{\partial}{\partial_{r}}\left(r \partial_{r} u\right)
$$

Separation of variables \rightarrow eigenvalue problems

$$
\begin{array}{lll}
u(x, t)=h(t) \phi(x) & \rightarrow \quad\left(K_{0} \phi^{\prime}\right)^{\prime}+\alpha \phi=-\lambda c(x) \rho(x) \phi \quad \text { BC matters! } \\
u(r, t)=h(t) \phi(r) & \rightarrow \quad\left(r \phi^{\prime}\right)^{\prime}=-\lambda \phi &
\end{array}
$$

\rightarrow Sturm-Liouville Eigenvalue Problems(SLEP)

$$
\begin{aligned}
& \left(p(x) \phi^{\prime}\right)^{\prime}+q(x) \phi=-\lambda \sigma \phi \\
& \beta_{1} \phi(a)+\beta_{2} \phi^{\prime}(a)=0 ; \\
& \beta_{3} \phi(b)+\beta_{4} \phi^{\prime}(b)=0 ; \text { other BC }
\end{aligned}
$$

When does this SLEP has eigenfunctions orthogonal and complete?

Outline

Section 5.1-2* Introduction and motivation

Section 5.3: Sturm-Liouville Eigenvalue Problem

Section 5.4: Example: heat flow in a non-uniform rod

Extra: Numerical solution to SLEP

Section 5.3: Sturm-Liouville Eigenvalue Problem

Regular SLEP:

$$
\begin{aligned}
& \left(p(x) \phi^{\prime}\right)^{\prime}+q(x) \phi=-\lambda \sigma \phi \\
& \beta_{1} \phi(a)+\beta_{2} \phi^{\prime}(a)=0 ; \\
& \beta_{3} \phi(b)+\beta_{4} \phi^{\prime}(b)=0 ;
\end{aligned}
$$

$$
\begin{aligned}
& p^{\prime}, q, \sigma \in C[a, b] \\
& p(x)>0, \sigma(x)>0, \forall x \in[a, b] \\
& \beta_{1}^{2}+\beta_{2}^{2}>0, \beta_{3}^{2}+\beta_{4}^{2}>0
\end{aligned}
$$

Theorem (Sturm-Liouville Theorems)

A regular SLEP has eigenvalues and eigenfunctions $\left\{\left(\lambda_{n}, \phi_{n}\right)\right\}$ s.t.
1-2 $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ are real and strictly increasing to ∞
$3 \phi_{n}$ is the unique (up to a *factor) solution to λ_{n}; ϕ_{n} has $n-1$ zeros
$4\left\{\phi_{n}\right\}_{n=1}^{\infty}$ is complete. That is, any piecewise smooth f can be represented by a generalized Fourier series

$$
f(x) \sim \sum_{n=1}^{\infty} a_{n} \phi_{n}(x)=\frac{1}{2}\left[f\left(x_{-}\right)+f\left(x_{+}\right)\right]
$$

$5\left\{\phi_{n}\right\}_{n=1}^{\infty}$ are orthogonal: $\left\langle\phi_{n}, \phi_{m}\right\rangle_{\sigma}=0$ if $n \neq m ;\left\langle\phi_{n}, \phi_{n}\right\rangle_{\sigma}>0$
6 Rayleigh quotient $\lambda_{n}=-\frac{\left\langle\mathbf{L} \phi_{n}, \phi_{n}\right\rangle}{\left\langle\phi_{n}, \phi_{n}\right\rangle_{\sigma}}$;

$$
\langle f, g\rangle:=\int_{a}^{b} f(x) g(x) d x ; \quad\langle f, g\rangle_{\sigma}:=\int_{a}^{b} f(x) g(x) \sigma(x) d x
$$

Section 5.3: Sturm-Liouville Eigenvalue Problem

Regular SLEP:

$$
\begin{aligned}
& \left(p(x) \phi^{\prime}\right)^{\prime}+q(x) \phi=-\lambda \sigma \phi \\
& \beta_{1} \phi(a)+\beta_{2} \phi^{\prime}(a)=0 ; \\
& \beta_{3} \phi(b)+\beta_{4} \phi^{\prime}(b)=0 ;
\end{aligned}
$$

$$
\begin{aligned}
& p^{\prime}, q, \sigma \in C[a, b] \\
& p(x)>0, \sigma(x)>0, \forall x \in[a, b] \\
& \beta_{1}^{2}+\beta_{2}^{2}>0, \beta_{3}^{2}+\beta_{4}^{2}>0
\end{aligned}
$$

Suppose $x \in(0, L)$, we have studied SLEP $\phi^{\prime \prime}=-\lambda \phi$: $p(x) \equiv 1, q(x) \equiv 0, \sigma(x) \equiv 1$. Are they regular?

$$
\begin{aligned}
& \text { A } \phi(0)=\phi(L)=0 \\
& \text { B } \phi^{\prime}(0)=\phi^{\prime}(L)=0 \\
& \text { C } \phi(0)+\phi^{\prime}(a)=0 ; \phi(L)+\phi^{\prime}(L)=0 \\
& \text { D } \phi(-L)=\phi(L), \phi^{\prime}(-L)=\phi^{\prime}(L)
\end{aligned}
$$

Section 5.3: Sturm-Liouville Eigenvalue Problem

Suppose $x \in(0, L)$, we have studied SLEP $\phi^{\prime \prime}=-\lambda \phi$: $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}, \phi_{n}(x)=\sin \sqrt{\lambda_{n}} x, \cos \sqrt{\lambda_{n}} x$, or both, depending on BC.

Do we have the properties in the SL theorem?
1-2 $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ are real and increasing to ∞
$3 \phi_{n}$ is the unique (up to a *factor) solution to λ_{n}; ϕ_{n} has $n-1$ zeros
$4\left\{\phi_{n}\right\}_{n=1}^{\infty}$ is complete
$5\left\{\phi_{n}\right\}_{n=1}^{\infty}$ are orthogonal
6 Rayleigh quotient $\lambda_{n}=-\frac{\left\langle\mathbf{L}_{n}, \phi_{n}\right\rangle}{\left\langle\phi_{n}, \phi_{n}\right\rangle_{\sigma}}$

Transform to SLEP form

Example1 Change the equation to the form of SLEP

$$
\phi^{\prime \prime}(x)+\alpha(x) \phi^{\prime}+[\lambda \beta(x)+\gamma(x)] \phi=0
$$

Transform to SLEP form

Example2 Exe.5.3.9. Consider the BVP:

$$
\begin{aligned}
& x^{2} \phi^{\prime \prime}+x \phi^{\prime}+\lambda \phi=0, \quad x \in(1, b) \\
& \phi(1)=0 ; \phi(b)=0
\end{aligned}
$$

(a) Write the equation in the SLE form.
(b) Show that $\lambda \geq 0$ for all (λ, ϕ) that solves the BVP.
(c) Determine all positive eigenvalues. Is $\lambda=0$ an eigenvalue?

Outline

Section 5.1-2* Introduction and motivation

Section 5.3: Sturm-Liouville Eigenvalue Problem

Section 5.4: Example: heat flow in a non-uniform rod

Extra: Numerical solution to SLEP

Heat flow in a non-uniform rod

$c(x) \rho(x) \partial_{t} u=K_{0} \partial_{x x} u, \quad$ with $x \in(0, L), t>0$
IC: $u(x, 0)=f(x)$,
BC: $u(0, t)=0, \partial_{x} u(L, t)=0$
Find the solution (by eigenfunction expansion):

- separation of variables \rightarrow eigenvalue problem $u(x, t)=h(t) \phi(x) \rightarrow\left(K_{0} \phi^{\prime}\right)^{\prime}=-\lambda c(x) \rho(x) \phi$
- Solve the IBVP.

Heat flow in a non-uniform rod

$c(x) \rho(x) \partial_{t} u=K_{0} \partial_{x x} u$,

Solution

IC: $u(x, 0)=f(x)$,

$$
u(x, t)=\sum_{i=1}^{\infty} a_{n} \phi_{n}(x) e^{-\lambda_{n} t}
$$

$\mathrm{BC}: u(0, t)=0, \partial_{x} u(L, t)=0$
What is the large time behavior? $\left(\lim _{t \rightarrow \infty} u(x, t)\right.$? $)$

- if $\lambda_{n}>0$ for all n
- if $\lambda_{n}=0$ for some n
can it happen?
- if $\lambda_{n}<0$?

Heat flow in a non-uniform rod

$c(x) \rho(x) \partial_{t} u=K_{0} \partial_{x x} u$,
IC: $u(x, 0)=f(x)$,

Solution

$$
u(x, t)=\sum_{i=1}^{\infty} a_{n} \phi_{n}(x) e^{-\lambda_{n} t}
$$

$\mathrm{BC}: u(0, t)=0, \partial_{x} u(L, t)=0$
What does the solution look like? Numerical solution represent the solution at discrete space-time grids:

$$
\begin{gathered}
x \in[0, L] \rightarrow 0=x_{0}<x_{1}<\cdots<x_{d+1}=L, \quad x_{i}=i L / d \\
t \in[0, T] \rightarrow 0=t_{0}<t_{1}<\cdots<t_{N+1}=T, \quad t_{j}=j T / N
\end{gathered}
$$

- Find $\left(\lambda_{n}, \phi_{n}\right) ;\left(K_{0} \phi^{\prime}\right)^{\prime}=-\lambda c(x) \rho(x) \phi \downarrow$
- Find a_{n} from IC
- $u\left(x_{i}, t_{j}\right)$

Outline

Section 5.1-2* Introduction and motivation
 Section 5.3: Sturm-Liouville Eigenvalue Problem
 Section 5.4: Example: heat flow in a non-uniform rod

Extra: Numerical solution to SLEP

Numerical solution to SLEP

$$
\begin{aligned}
\left(K_{0}(x) \phi^{\prime}\right)^{\prime}=-\lambda c(x) \rho(x) \phi, & \phi(0)=\phi(L)=0 \\
\mathbf{L} \phi=\lambda \phi \text { with BC } & \rightarrow \quad \mathbf{A y}=\lambda \mathbf{y} \\
\text { SLEP } & \rightarrow \quad \text { Linear algebra eigenvalue problem }
\end{aligned}
$$

What is A? Function \leftrightarrow vector?

$$
x_{i}=i \Delta x, i=0, \ldots, d+1 . \rightarrow \quad \mathbf{y}=\left(\phi\left(x_{1}\right), \ldots, \phi\left(x_{d}\right)\right)
$$

