Chapter 5: Sturm-Liouville Eigenvalue Problem

Fei Lu

Department of Mathematics, Johns Hopkins

Solution to the IBVP?

$$
\begin{aligned}
& c(x) \rho(x) \partial_{t} u=K_{0} \partial_{x x} u+Q(x, t), \quad \text { with } x \in(0, L), t \geq 0 \\
& \text { IC: } u(x, 0)=f(x), \\
& \text { BC: } u(0, t)=\phi(t), u(L, t)=\psi(t)
\end{aligned}
$$

Section 5.5 Self-adjoint operator and Sturm-Liouville Eigenvalue Section 5.6 Rayleigh quotient Section 5.7: Vibrations of a non-uniform String Section 5.8: BC of the 3rd kind

Outline

Section 5.5 Self-adjoint operator and Sturm-Liouville Eigenvalue

Section 5.6 Rayleigh quotient

Section 5.7: Vibrations of a non-uniform String

Section 5.8: BC of the 3rd kind

Section 5.5: Sturm-Liouville Eigenvalue Problem

Regular SLEP:

$\left(p(x) \phi^{\prime}\right)^{\prime}+q(x) \phi=-\lambda \sigma \phi$
$\beta_{1} \phi(a)+\beta_{2} \phi^{\prime}(a)=0 ;$
$\beta_{3} \phi(b)+\beta_{4} \phi^{\prime}(b)=0 ;$

$$
\begin{aligned}
& p^{\prime}, q, \sigma \in C[a, b] \\
& p(x)>0, \sigma(x)>0, \forall x \in[a, b] \\
& \beta_{1}^{2}+\beta_{2}^{2}>0, \beta_{3}^{2}+\beta_{4}^{2}>0
\end{aligned}
$$

Theorem (Sturm-Liouville Theorems)

A regular SLEP has eigenvalues and eigenfunctions $\left\{\left(\lambda_{n}, \phi_{n}\right)\right\}$ s.t.
1-2 $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ are real and strictly increasing to ∞
$3 \phi_{n}$ is the unique (up to a *factor) solution to λ_{n}; ϕ_{n} has $n-1$ zeros
$4\left\{\phi_{n}\right\}_{n=1}^{\infty}$ is complete. That is, any piecewise smooth f can be represented by a generalized Fourier series

$$
f(x) \sim \sum_{n=1}^{\infty} a_{n} \phi_{n}(x)=\frac{1}{2}\left[f\left(x_{-}\right)+f\left(x_{+}\right)\right]
$$

$5\left\{\phi_{n}\right\}_{n=1}^{\infty}$ are orthogonal: $\left\langle\phi_{n}, \phi_{m}\right\rangle_{\sigma}=0$ if $n \neq m ;\left\langle\phi_{n}, \phi_{n}\right\rangle_{\sigma}>0$
6 Rayleigh quotient $\lambda_{n}=-\frac{\left\langle L \phi_{n}, \phi_{n}\right\rangle}{\left\langle\phi_{n}, \phi_{n}\right\rangle_{\sigma}}$;
$\langle f, g\rangle:=\int_{a}^{b} f(x) g(x) d x ; \quad\langle f, g\rangle_{\sigma}:=\int_{a}^{b} f(x) g(x) \sigma(x) d x$. TO PROVE: 5136.
5. orthogonality: $\left\langle\phi_{n}, \phi_{m}\right\rangle_{\sigma}=0$ if $n \neq m ;\left\langle\phi_{n}, \phi_{n}\right\rangle_{\sigma}>0$ Denote: $L \phi=\left(p \phi^{\prime}\right)^{\prime}+q \phi=-\lambda \sigma \phi$. A linear operator.
Recall: $\left\langle\phi_{n}, \phi_{m}\right\rangle_{\sigma}=\int_{a}^{b} \sigma(x) \phi_{n}(x) \phi_{m}(x) d x$.
Proof: Let $\left(\lambda_{n}, \phi_{n}\right)$ and $\left(\lambda_{m}, \phi_{m}\right)$ solve the SLEP with $\lambda_{n} \neq \lambda_{m}$. Then

$$
\begin{aligned}
L \phi_{n}=-\lambda_{n} \sigma \phi_{n} & \int_{a}^{b} L \phi_{n}(x) \phi_{m}(x) d x=-\lambda_{n}\left\langle\phi_{n}, \phi_{m}\right\rangle_{\sigma} \\
L \phi_{m}=-\lambda_{m} \sigma \phi_{m} & \int_{a}^{b} L \phi_{m}(x) \phi_{n}(x) d x=-\lambda_{m}\left\langle\phi_{n}, \phi_{m}\right\rangle_{\sigma} \\
& \int_{a}^{b}\left[\phi_{m} L \phi_{n}-\phi_{n} L \phi_{m}\right] d x=-\left(\lambda_{n}-\lambda_{m}\right)\left\langle\phi_{n}, \phi_{m}\right\rangle_{\sigma}
\end{aligned}
$$

Thus, if LHS $=0$, then we obtain $\left\langle\phi_{n}, \phi_{m}\right\rangle_{\sigma}=0$ bc. $\lambda_{n} \neq \lambda_{m}$.
Green's formula: $\int_{a}^{b}[u L v-v L u] d x=\left.p\left(u v^{\prime}-v u^{\prime}\right)\right|_{a} ^{b}$.

+ regular BC: $\quad \beta_{1} \phi(a)+\beta_{2} \phi^{\prime}(a)=0 ; \beta_{3} \phi(b)+\beta_{4} \phi^{\prime}(b)=0 ;$

$$
\beta_{1}^{2}+\beta_{2}^{2}>0, \beta_{3}^{2}+\beta_{4}^{2}>0
$$

\Rightarrow LHS $=0$

Green's formula: for any $u, v \in C^{2}, L \phi:=\left(p \phi^{\prime}\right)^{\prime}+q \phi$,

$$
\int_{a}^{b}[u L v-v L u] d x=\left.p\left(u v^{\prime}-v u^{\prime}\right)\right|_{a} ^{b}
$$

Proof:

Lagrange identity:

$$
u L v-v L u=\left[p\left(u v^{\prime}-v u^{\prime}\right)\right]^{\prime}
$$

Green's formula: for any $u, v \in C^{2}, L \phi:=\left(p \phi^{\prime}\right)^{\prime}+q \phi$,

$$
\int_{a}^{b}[u L v-v L u] d x=\left.p\left(u v^{\prime}-v u^{\prime}\right)\right|_{a} ^{b} .
$$

Self-adjoint operator: with regular BC: $\int_{a}^{b}[u L v-v L u] d x=0$.
Equivalently, $\int_{a}^{b} u L v d x=\int_{a}^{b} v L u d x$ for any u, v with BC.

$$
\left\langle L^{*} u, v\right\rangle=\langle u, L v\rangle=\langle v, L u\rangle ; \quad L^{*}=L
$$

Green's formula: for any $u, v \in C^{2}, L \phi:=\left(p \phi^{\prime}\right)^{\prime}+q \phi$,

$$
\int_{a}^{b}[u L v-v L u] d x=\left.p\left(u v^{\prime}-v u^{\prime}\right)\right|_{a} ^{b} .
$$

Self-adjoint operator: with regular BC: $\int_{a}^{b}[u L v-v L u] d x=0$.
Equivalently, $\int_{a}^{b} u L v d x=\int_{a}^{b} v L u d x$ for any u, v with BC.

$$
\left\langle L^{*} u, v\right\rangle=\langle u, L v\rangle=\langle v, L u\rangle ; \quad L^{*}=L
$$

Remark: matrix $A \in \mathbb{R}^{d \times d}$. Then, for any $u, v \in \mathbb{R}^{d}$,

$$
\left\langle A^{*} u, v\right\rangle=\langle u, A v\rangle=\langle v, A u\rangle . \quad A^{*}=A^{\top}=A
$$

1. All eigenvalues are real.

Proof: take adjoint to both sides of the equation. (Either without using orthogonality or with it.)
3. Uniqueness: for each λ_{n}, there is a unique normal eigenfunction. Proof: by Lagrange identity. (The role of the regular BC.)

Section 5.5: Quiz

1 The eigenvalues for the SLEP must be non-negative.
2 The Green's formula $\int_{a}^{b}[u L v-v L u] d x=\left.p\left(u v^{\prime}-v u^{\prime}\right)\right|_{a} ^{b}$ can be applied to the $\mathrm{BC} \phi(-a)=\phi(a), \phi^{\prime}(-a)=\phi^{\prime}(a)$ when the interval is $(-a, a)$.

Outline

Section 5.5 Self-adjoint operator and Sturm-Liouville Eigenvalue

Section 5.6 Rayleigh quotient

Section 5.7: Vibrations of a non-uniform String

Section 5.8: BC of the 3rd kind

Section 5.6 Rayleigh quotient

Regular SLEP:

$$
\begin{aligned}
& L \phi=\left(p(x) \phi^{\prime}\right)^{\prime}+q(x) \phi=-\lambda \sigma \phi \\
& \beta_{1} \phi(a)+\beta_{2} \phi^{\prime}(a)=0 \\
& \beta_{3} \phi(b)+\beta_{4} \phi^{\prime}(b)=0
\end{aligned}
$$

$$
p^{\prime}, q, \sigma \in C[a, b]
$$

$$
p(x)>0, \sigma(x)>0, \forall x \in[a, b]
$$

$$
\beta_{1}^{2}+\beta_{2}^{2}>0, \beta_{3}^{2}+\beta_{4}^{2}>0
$$

A regular SLEP has eigenvalues and eigenfunctions $\left\{\left(\lambda_{n}, \phi_{n}\right)\right\}$ s.t.
6 Rayleigh quotient $\lambda_{n}=-\frac{\left\langle L \phi_{n}, \phi_{n}\right\rangle}{\left\langle\phi_{n}, \phi_{n}\right\rangle_{\sigma}}$.

$$
\langle f, g\rangle:=\int_{a}^{b} f(x) g(x) d x ; \quad\langle f, g\rangle_{\sigma}:=\int_{a}^{b} f(x) g(x) \sigma(x) d x .
$$

Section 5.6 Rayleigh quotient

Regular SLEP:

$$
\begin{aligned}
& L \phi=\left(p(x) \phi^{\prime}\right)^{\prime}+q(x) \phi=-\lambda \sigma \phi \\
& \beta_{1} \phi(a)+\beta_{2} \phi^{\prime}(a)=0 \\
& \beta_{3} \phi(b)+\beta_{4} \phi^{\prime}(b)=0
\end{aligned}
$$

$$
p^{\prime}, q, \sigma \in C[a, b]
$$

$$
p(x)>0, \sigma(x)>0, \forall x \in[a, b]
$$

$$
\beta_{1}^{2}+\beta_{2}^{2}>0, \beta_{3}^{2}+\beta_{4}^{2}>0
$$

A regular SLEP has eigenvalues and eigenfunctions $\left\{\left(\lambda_{n}, \phi_{n}\right)\right\}$ s.t.
6 Rayleigh quotient $\lambda_{n}=-\frac{\left\langle L \phi_{n}, \phi_{n}\right\rangle}{\left\langle\phi_{n}, \phi_{n}\right\rangle_{\sigma}}$.
$\langle f, g\rangle:=\int_{a}^{b} f(x) g(x) d x ; \quad\langle f, g\rangle_{\sigma}:=\int_{a}^{b} f(x) g(x) \sigma(x) d x$.
Remark: Note that $\left\langle L \phi_{n}, \phi_{n}\right\rangle=\left.p \phi_{n} \phi_{n}^{\prime}\right|_{a} ^{b}+\int_{a}^{b}\left[q \phi_{n}^{2}-p\left(\phi_{n}^{\prime}\right)^{2}\right] d x$

- Nonnegative eigenvalues if $\left.p \phi_{n} \phi_{n}^{\prime}\right|_{a} ^{b} \leq 0, q \leq 0$
- We use only p. NO need of its derivative
- We use only $\phi_{n}, \phi_{n}^{\prime}$. No need of $\phi^{\prime \prime}$
\rightarrow weak/distribution solution in Sobolev spaces

Minimax principle

$$
\lambda_{1}=\min _{u \in H_{0}}-\frac{\langle L u, u\rangle}{\langle u, u\rangle_{\sigma}}
$$

$H_{0}=\left\{u \in C^{1}: u\right.$ satisfies BC, $\left.\langle u, u\rangle_{\sigma}>0\right\}$

- ϕ_{1} is a minimizer
- We can estimate λ_{1} by trial functions u (Example next)
- Similarly, for larger eigenvalues, recursively,

$$
\lambda_{n}=\min _{u \in H_{n-1}}-\frac{\langle L u, u\rangle}{\langle u, u\rangle_{\sigma}}=\max _{S_{n} \subset H_{0} u \in S_{n}^{\perp}} \min ^{-} \frac{\langle L u, u\rangle}{\langle u, u\rangle_{\sigma}}
$$

with $H_{n-1}=\operatorname{span}\left\{\phi_{1}, \cdots, \phi_{n-1}\right\}^{\perp}$ and $S_{n} \subset H_{0}$ with $\operatorname{dim}=\mathrm{n}$.
Proof: $\left\{\phi_{n}\right\}$ complete and orthogonal. Let $u=\sum_{i=1}^{\infty} a_{i} \phi_{i}$.
Use TBTD. $\langle L u, u\rangle=\ldots$.

$$
R Q[u]=-\frac{\langle L u, u\rangle}{\langle u, u\rangle_{\sigma}}=\ldots
$$

Estimate bounds for λ_{1} by the Minimax principle:

$$
\lambda_{1}=\min _{u \in H_{0}}-\frac{\langle L u, u\rangle}{\langle u, u\rangle_{\sigma}}
$$

$H_{0}=\left\{u \in C^{1}: u\right.$ satisfies $\left.\mathrm{BC},\langle u, u\rangle_{\sigma}>0\right\}$;
$\langle L u, u\rangle=\left.p u^{\prime} u\right|_{a} ^{b}+\int_{a}^{b}\left[q u^{2}-p\left(u^{\prime}\right)^{2}\right] d x$.
Example: $\phi^{\prime \prime}=-\lambda \phi, \quad \phi(0)=\phi(1)=0$. Can we choose trial function to get a close estimate of $\lambda_{1}=\pi^{2}$?

- satisfies BC
- close to ϕ_{1} (unknown). It has no zero in $[0,1]$

1. $u(x)=x \mathbf{1}_{[0,0.5]}+(1-x) \mathbf{1}_{[0.5,1]}$.

$$
-\langle L u, u\rangle=1,\langle u, u\rangle_{\sigma}=1 / 12 . \Rightarrow \lambda_{1} \leq 12 .
$$

2. $u(x)=x(1-x) . \quad \cdots \cdots \cdots \Rightarrow \lambda_{1} \leq 10$.

$$
u_{T}=\left\{\begin{array}{cc}
x & x<0.5 \\
1-x & x>0.5
\end{array}\right.
$$

(a)

$u_{T}=x-x^{2}$
(b)

(c)

Figure 5.6.1 Trial functions: continuous, satisfy the boundary conditions, and are of one sign.

Outline

Section 5.5 Self-adjoint operator and Sturm-Liouville Eigenvalue

Section 5.6 Rayleigh quotient

Section 5.7: Vibrations of a non-uniform String

Section 5.8: BC of the 3rd kind

Section 5.7 Variation of non-uniform string

$$
\begin{aligned}
& \text { PDE: } \rho(x) \partial_{t t} u=T_{0} \partial_{x x} u, \quad \text { with } x \in(0, L), t \geq 0 \\
& \text { IC: } u(x, 0)=f(x), \partial_{t} u(x, 0)=g(x) \\
& \text { BC: } u(0, t)=0, u(L, t)=0
\end{aligned}
$$

Separation of variables (or Eigenfunction expansion):

$$
\left.u(x, t)=\sum_{n=0}^{\infty}\left[a_{n} \cos \left(\sqrt{\lambda_{n}} t\right)+b_{n} \sin \left(\sqrt{(} \lambda_{n} t\right)\right)\right] \phi_{n}(x) .
$$

(Recall: when $\rho \equiv \rho_{0}$, we have $\lambda_{n}^{2}=\frac{n \pi T_{0}}{\rho_{0} L}$ and $\phi_{n}(x)=\sin \frac{n \pi x}{L}$)
Question: range of λ_{1} for a non-uniform string?

Section 5.7 Variation of non-uniform string

$$
\begin{aligned}
& \text { PDE: } \rho(x) \partial_{t t} u=T_{0} \partial_{x x} u, \quad \text { with } x \in(0, L), t \geq 0 \\
& \text { IC: } u(x, 0)=f(x), \partial_{t} u(x, 0)=g(x) \\
& \text { BC: } u(0, t)=0, u(L, t)=0
\end{aligned}
$$

Separation of variables (or Eigenfunction expansion):

$$
\left.u(x, t)=\sum_{n=0}^{\infty}\left[a_{n} \cos \left(\sqrt{\lambda_{n}} t\right)+b_{n} \sin \left(\sqrt{(} \lambda_{n} t\right)\right)\right] \phi_{n}(x) .
$$

(Recall: when $\rho \equiv \rho_{0}$, we have $\lambda_{n}^{2}=\frac{n \pi T_{0}}{\rho_{0} L}$ and $\phi_{n}(x)=\sin \frac{n \pi x}{L}$)
Question: range of λ_{1} for a non-uniform string?
Assume:

$$
0<\rho_{\min } \leq \rho(x) \leq \rho_{\max } .
$$

The SLEP: $T_{0} \phi^{\prime \prime}=-\lambda \rho(x) \phi$ with BC: $\phi(0)=0=\phi(L)$.

$$
? \leq \lambda_{1}=\min _{\phi \in H_{0}}-\frac{\left\langle T_{0} \phi^{\prime \prime}, \phi\right\rangle}{\langle\phi, \phi\rangle_{\rho}} \leq ?
$$

Outline

> Section 5.5 Self-adjoint operator and Sturm-Liouville Eigenvalue Section 5.6 Rayleigh quotient

> Section 5.7: Vibrations of a non-uniform String

Section 5.8: BC of the 3rd kind

Section 5.8: BC of the 3rd kind

Consider either heat equation or wave equation

	$\partial_{t} u=\kappa \partial_{x x} u$	$\partial_{t t} u=c^{2} \partial_{x x} u$
IC	$u(x, 0)=0 ;$	$u(x, 0)=f(x), \partial_{t} u(x, 0)=g(x)$
BC	$u(0, t)=0 ; \partial_{x} u(L, t)=-h u(L, t)$	
$h>0$	cooling	a restoring force
$h=0$	insulated	zero speed
$h<0$	heating	a destabilizing force

Physical:
To solve them, use separation of variables

- 1 separate variable
- 2 solve the eigenvalue problem

Q1: Sturm-Liouville theorem?

- 3 solve time ODEs with λ_{n} and ICs

Solve the eigenvalue problem: (estimate λ_{n}, find ϕ_{n})

$$
\phi^{\prime \prime}(x)=-\lambda \phi ; \quad \phi(0)=0 ; \phi^{\prime}(L)+h \phi(L)=0
$$

1. $\lambda>0$:

$$
\phi(x)=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x)
$$

Apply BC to estimate c_{1}, c_{2} and find possible λ.
2. $\lambda=0$ (exe)

$$
\phi(x)=c_{1}+c_{2} x .
$$

3. $\lambda<0$ (exe)

$$
\phi(x)=c_{1} e^{-\sqrt{-\lambda} x}+c_{2} e^{-\sqrt{-\lambda} x} .
$$

Case 1, $\lambda>0$: Estimate λ_{n} from $-\frac{1}{h L} z=\tan z$ with $z=\sqrt{\lambda L}$:

$\frac{3}{2} \pi<\sqrt{\lambda_{2}} L<2 \pi$
$h<0$

$\sqrt{\lambda_{1}}$ in the thee e cases $\begin{cases}\epsilon(0, \pi / 2), & \text { if }-1<h\left(c_{0},\right. \\ \epsilon\left(\pi, \frac{3}{2}\right), & \text { if } h l s-1 .\end{cases}$

$$
\left.\left(n-\frac{1}{2}\right) \lambda<\sqrt{\lambda_{n}} L<n \pi \Rightarrow \lambda_{n} v\left(n-\frac{1}{2}\right)^{\pi}\right)^{2}
$$

$$
\lambda_{n} \sim\left(\left(n+\frac{t}{2}\right) \pi\right)^{2} \text { if } \frac{\nu}{h}<-1
$$

Summary:

- The smallest eigenvalue $\left(\lambda_{1}\right)$ depends on h.

Exe: complete the other cases.

