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Section 5.10: Approximation properties

Recall that in solution (HE) IBVP:

u(x, t) =
∞∑

n=1

ane−λntφn(x),

I {(λn, φn)}: eigen-pairs to the Sturm-Liouville eigenvalue problem
I an from IC f =

∑∞
n=1 ane−λn0φn(x).

Question: In computational practice, we can only use finitely many terms,

f ≈ fN(x) =
N∑

n=1

αnφn(x)

Should we use {αn = an}? Is {(an, φn)} the best?

Example: f (x) = ex. Which one to use?

ex =
∞∑

n=0

1
n!

xn

ex =
∞∑

n=1

anφn(x)
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Metric on function space

Metric: better in what sense?

distance(f , fN)
f (x) with x ∈ [0,L], and f is piecewise smooth.
I Maximum/uniform error

‖f − fN‖∞ = max
x∈[0,L]

|f (x)− fN(x)|

I root Mean square error (MSE)

‖f − fN‖σ = (

∫ L

0
|f (x)− fN(x)|2σ(x)dx)1/2
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Optimal mean square approximation

Theorem. fN with {αn = an} achieves minimal MSE. That is,

a1:N = argmin
α1:N

‖f −
N∑

n=1

αnφn‖2
σ.

Furthermore, the minimizer is unique.
Proof: (Hint: E(α) = ‖f −

∑N
n=1 αnφn‖2

σ)
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Optimal mean square approximation

Theorem. fN with {αn = an} achieves minimal MSE. That is,

a1:N = argmin
α1:N

‖f −
N∑

n=1

αnφn‖2
σ.

Furthermore, the minimizer is unique.
I Mean square error

E = ‖f − fN‖2
σ =

I Bessel’s inequality

‖f‖2
σ ≥ ‖fN‖2

σ

I Parseval’s equality

‖f‖2
σ =

∞∑
n=1

a2
n〈φn, φn〉σ
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Example and exe
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where I is the length of 0n(x):

fa12 = dx.

Parseval's equality simply states that the length of f squared, fa f 2a dx, equals
the sum of squares of the components of f (using an orthogonal basis of functions
of unit length), (an1)2 = an fab 0na dx.

EXERCISES 5.10
5.10.1. Consider the Fourier sine series for f (x) = 1 on the interval 0 < x < L.

How many terms in the series should be kept so that the mean-square error
is 1% of f L f 2a dx?

5.10.2. Obtain a formula for an infinite series using Parseval's equality applied to
the

(a) Fourier sine series of f (x) = 1 on the interval 0 < x < L
*(b) Fourier cosine series of f (x) = x on the interval 0 < x < L

(c) Fourier sine series of f (x) = x on the interval 0 < x < L

5.10.3. Consider any function f (x) defined for a < x < b. Approximate this func-
tion by a constant. Show that the best such constant (in the mean-square
sense, i.e., minimizing the mean-square deviation) is the constant equal to
the average of f (x) over the interval a < x < b.

5.10.4. (a) Using Parseval's equality, express the error in terms of the tail of a
series.

(b) Redo part (a) for a Fourier sine series on the interval 0 < x < L.
(c) If f (x) is piecewise smooth, estimate the tail in part (b). (Hint: Use

integration by parts.)

5.10.5. Show that if

then

L(f)_-(p f)+qf,

- f'fL(f) dx = -pf dx
b

2
\

l
+

J. [p
dx) _ gf2J dx

a \a

if f and df /dx are continuous.

5.10.6. Assuming that the operations of summation and integration can be inter-
changed, show that if

f = and 9 = Nn 0n,
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then for normalized eigenfunctions
fb

0"fgv dx = E an/jne
n=1

a generalization of Parseval's equality.

5.10.7. Using Exercises 5.10.5 and 5.10.6, prove that

00
Az df-unan= -pfdxn=1

b
r ll

+
fbLp( )

z-9f2I dx. (5.10.15)
a L

[Hint Let g = L(f ), assuming that term-by-term differentiation is justified.]

5.10.8. According to Schwarz's inequality (proved in Exercise 2.3.10), the absolute
value of the pointwise error satisfies

M

"0

_ z

1/2 ao
z

11,2

flx) - E anon anon -_ > IAnlan
n=1 In=M+1 n=M+1 n=M+1 (A'll00

(5.10.16)
Furthermore, Chapter 9 introduces a Green's function G(x, xo), which is
shown to satisfy

00
±n - -G(x, x). (5.10.17)-
An

Using (5.10.15), (5.10.16), and (5.10.17), derive an upper bound for the
pointwise error (in cases in which the generalized Fourier series is pointwise
convergent). Examples and further discussion of this are given by Wein-
berger [1995].

Section 5.10: Approximation properties 7



Outline

Section 5.10: Approximation properties

Section 5.9: Large eigenvalues (Asymptotical behavior)

Section 5.9: Large eigenvalues (Asymptotical behavior) 8



Section 5.9: Large eigenvalues (Asymptotical behavior)

How to estimate λn as→∞?

(pφ′)′ + qφ = λσ(x)φ

When λ is large, two eigenfunctions (sine and cosine) are close to

φ(x) ≈ (σp)−1/4e±iλ1/2 ∫ x(σp )
1/2dx0

Then, we can estimate λ by applying the boundary value:

λn ≈
(

nπ
CL

)2

, CL =

∫ L

0
(
σ(x0)

p(x0)
)2dx0

I Main idea: local approximation
I In the “derivation”: λ large, λσ(x0) >> q(x) in O(x0).
→ consider a local version: (p(x0)φ

′)′ = λσ(x0)φ
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