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Solution to the IBVP?

∂tu = κ∂xxu + Q(x, t), with x ∈ (0,L), t ≥ 0
u(x, 0) = f (x)

u(0, t) = φ(t), u(L, t) = ψ(t)

Recall ODEs:
ay′′ + by′ + cy︸ ︷︷ ︸

Ly

= g(x); y(x0) = α; y(x1) = β.

I Step 1: solve the linear equation Ly = 0⇒ y1(x), y2(x)
I Step 2: find the specific solution Ly = g⇒ ys(x)

⇒ general solution: y = c1y1 + c2y2 + ys with c1, c2 TBD by BC/IC.

Same for PDE? key principles?
linear homogeneous⇒ Principle of Superposition (PoS)
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Section 2.2: Linearity

Linear operator: for any c1, c2 ∈ R,

L(c1u1 + c2u2) = c1L(u1) + c2L(u2), ∀u1, u2 ∈ Dom(L)

Examples: which operator(s) nonlinear?
A. L = ∂xxx; B. L = ∂t − κ∂xx;
C. L(u) = ∂x(K(x)∂xu); D. L(u) = ∂xxu + u∂xu
E. L(u) = u(x, 0) F. L(u) = c1u(0, t) + c2∂xu(1, t)

Linear homogeneous equation L(u) = f with f = 0
otherwise (if f 6= 0), nonhomogeneous.

I linearity and homogeneity also apply to BC.
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Principle of Superposition L linear,

if L(u1) = L(u2) = 0, then L(c1u1 + c2u2) = 0 .

I if u1, u2 solve L(u) = 0, then so does c1u1 + c2u2

I T/F? L(u1) = f1,L(u2) = f2 ⇒ L(u1 + u2) = f1 + f2.

??? Is u = v + w a solution to

∂tu = κ∂xxu + Q(x, t), with x ∈ (0, 1), t ≥ 0
u(x, 0) = f (x)

u(0, t) = φ(t), u(1, t) = ψ(t)

if

∂tv = κ∂xxv,

v(x, 0) = f (x)

v(0, t) = 0, v(1, t) = 0

∂tw = κ∂xxw + Q(x, t),

w(x, 0) = 0
w(0, t) = φ(t), u(1, t) = ψ(t)
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HE: homogeneous IBVP

∂tu = κ∂xxu,

u(x, 0) = f (x)

u(0, t) = 0, u(L, t) = 0

I equation and BC: linear homogeneous
I physical meaning:

1D rod with no sources and both ends immersed at 0o.
How the temperature evolve to Equilibrium?

I a first step for general IBVP (from previous slide)
can be solved by method of separation of variables ↓
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Separation of variables

Seek solutions in the form (Daniel Bernoulli 1700s)

u(x, t) = φ(x)G(t)

Reduce PDE to ODEs:
∂tu = φ(x)G′(t) = κ∂xxu = κφ′′(x)G(t)

G′(t)
κG(t)

=
φ′′(x)
φ(x)

for any x,t
= −λ

I λ is a constant TBD
I two ODEs:

In time: G′(t) = −λκG(t) ⇒
In space: φ′′(x) = −λφ(x) ⇒

I IC: trivial solution when f (x) = 0, u ≡ 0 with G ≡ 0;
otherwise, u(x, 0) = G(0)φ(x) = f (x): G(0) TBD

I BC: for non-trivial solution⇒ φ(0) = φ(L) = 0
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Time dependent ODE

G′(t) = −λκG(t) ⇒ G(t) = G(0)e−λκt.

Assume that G(0) > 0,
I λ < 0: G(t) ↑ ∞
I λ = 0:
I λ > 0:

Physical setting: λ ≥ 0
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Boundary value problem

φ′′(x) = −λφ(x), φ(0) = φ(L) = 0

I λ < 0: φ(x) = c1e
√
−λx + c2e−

√
−λx

I λ = 0: φ(x) =
I λ > 0: φ(x) =

Eigenfunctions: Lφ = λφ, φ(0) = φ(L) = 0, with Lφ := −φ′′

φn(x) = sin(
nπ
L

x), λn = (
nπ
L
)2, n = 1, 2, · · · ,

Section 2.3: HE with zero boundaries 10



Solution to HE-IBVP:

∂tu = κ∂xxu,

u(x, 0) = f (x)

u(0, t) = 0, u(L, t) = 0

λn = ( nπ
L )2, n = 1, 2, . . .

u(x, t) = φn(x)Gn(t) = sin(
nπ
L

x)e−λnκt

PoS:

uN(x, t) =
N∑

n=1

Bn sin(
nπ
L

x)e−λnκt → u(x, t) =
∞∑

n=1

Bn sin(
nπ
L

x)e−λnκt

I if f (x) =
∑N

n=1 Bn sin( nπ
L x), uN is a solution

I if f (x) =
∑∞

n=1 Bn sin( nπ
L x), u is a solution

( convergence of function series: Chp3:Fourier series)

For a general f , how to determine Bn? Orthogonality∫ L

0
sin(

nπ
L

x) sin(
mπ

L
x)dx = δm−n

L
2

Bn =
2
L

∫ L

0
f (x) sin(

nπ
L

x)dx
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Figure 2.3.5 Time dependence of temperature (using the
infinite series) compared to the first term. Note the first
term is a good approximation if the time is not too small.

2.3.8 Summary
Let us summarize the method of separation of variables as it appears for the one
example:

au 82uPDE: _
k8t 8x2

u(0 t) = 0BC: ,

u(L, t) = 0
IC: u(x,0) = f(x).

1. Make sure that you have a linear and homogeneous PDE with linear and
homogeneous BC.

2. Temporarily ignore the nonzero IC.
3. Separate variables (determine differential equations implied by the assumption

of product solutions) and introduce a separation constant.
4. Determine separation constants as the eigenvalues of a boundary value prob-

lem.
5. Solve other differential equations. Record all product solutions of the PDE

obtainable by this method.
6. Apply the principle of superposition (for a linear combination of all product

solutions).
7. Attempt to satisfy the initial condition.
8. Determine coefficients using the orthogonality of the eigenfunctions.

These steps should be understood, not memorized. It is important to note that
1. The principle of superposition applies to solutions of the PDE (do not add up

solutions of various different ordinary differential equations).
2. Do not apply the initial condition u(x, 0) = f (x) until after the principle of

superposition.
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Section 2.4: HE with other boundary values

∂tu = κ∂xxu,

u(x, 0) = f (x)

∂xu(0, t) = 0, ∂xu(L, t) = 0

λn = ( nπ
L )2, n = 1, 2, . . .

u(x, t) = φn(x)Gn(t) = cos(
nπ
L

x)e−λnκt
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Review of the method: separation of variables (SoV)

PDE︸︷︷︸
linear, homo

+ BC︸︷︷︸
linear, homo

+ IC

1. linear + homo⇒ PoS

2. SoV: PDE+BC⇒ ODEs

3. Solve EigenvalueP

4. IC⇒ coefficients

(orthogonality ↓ )

5. Conclude solution

∂tu = κ∂xxu,

u(0, t) = 0, u(L, t) = 0
u(x, 0) = f (x)

G′(t)
κG(t)

=
φ′′(x)
φ(x)

= −λ

G(t) = G(0)e−λκt.

φ′′(x) = −λφ(x), φ(0) = φ(L) = 0

φn(x) = sin(
nπ
L

x), λn = (
nπ
L
)2, n ≥ 1

u(x, t) =
∞∑

n=1

Bn sin(
nπ
L

x)e−λnκt

Bn =
2
L

∫ L

0
f (x) sin(

nπ
L

x)dx
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Orthogonality
In finite dimensional space: a = (a1, a2, . . . , aN),b ∈ RN :

a ⊥ b⇔ 〈a,b〉 =
N∑

i=1

aibi = 0

For functions: φ, ψ ∈ C[0,L] (connection? )

φ ⊥ ψ ⇔ 〈φ, ψ〉 =
∫ L

0
φ(x)ψ(x)dx = 0

Recall {φn, λn} with φn(x) = sin( nπ
L x) and λn = nπ

L solve:

φ′′(x) = −λφ(x), φ(0) = φ(L) = 0

We have 〈φn, φm〉 = δm−n
L
2 .
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HE+ BCNeumann, homo + IC

∂tu = κ∂xxu,

∂xu(0, t) = 0, ∂xu(L, t) = 0
u(x, 0) = f (x)

1. linear homo: ⇒ PoS

2. SoV: u(x, t) = φ(x)G(t)

3. Solve EigenvalueP

4. Determine coefs. by IC.

5. Conclude solution

u(x, t) = A0 +

∞∑
n=1

Ane−λnκtφn(x)

limt→∞ u(x, t) =?
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HE in a circular ring
∂tu = κ∂xxu,

u(L, t) = u(−L, t)

∂xu(L, t) = ∂xu(−L, t)

u(x, 0) = f (x)

1. linear homo: ⇒ PoS

2. SoV: u(x, t) = φ(x)G(t)

3. Solve EigenvalueP

4. Determine coefs. by IC.

5. Conclude solution

u(x, t) = a0 +

∞∑
n=1

e−λnκt[anφn(x) + bnψn(x)]

limt→∞ u(x, t) =?
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Summary of boundary value problems for φ′′ = −λφ:
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