Chapter 2: Method of Separation of Variables

Fei Lu

Department of Mathematics, Johns Hopkins

Solution to the IBVP?

$$
\begin{aligned}
& \partial_{t} u=\kappa \partial_{x x} u+Q(x, t), \quad \text { with } x \in(0, L), t>0 \\
& u(x, 0)=f(x) \\
& \mathrm{BC}: u(0, t)=\phi(t), u(L, t)=\psi(t)
\end{aligned}
$$

Section 2.5 Laplace's equation: solution examples Section 2.5 Laplace's equation: qualitative properties

Outline

Section 2.5 Laplace's equation: solution examples

Section 2.5 Laplace's equation: qualitative properties

1. Laplace's equation inside a rectangular

Consider the Laplace's equation

$$
\begin{aligned}
& \nabla^{2} u=\partial_{x x} u+\partial_{y y} u=0, \quad 0 \leq x \leq L, 0 \leq y \leq H \\
& \left.u\right|_{\Gamma_{1}}=g_{1}(y) ;\left.\quad u\right|_{\Gamma_{2}}=g_{2}(y) ; \\
& \left.u\right|_{\Gamma_{3}}=f_{1}(x) ;\left.\quad u\right|_{\Gamma_{4}}=f_{2}(x) ;
\end{aligned}
$$

- Equilibrium of the HE
- How to solve it? 1D: $\partial_{x x} u=0 \Rightarrow u(x)=c_{1} x+c_{2}$. Separation of variables?
Linear and homogeneous: PDE, BC

$$
\begin{array}{rrrr}
\nabla^{2} u_{1}=0, & \nabla^{2} u_{2}=0, & \nabla^{2} u_{3}=0, & \nabla^{2} u_{4}=0 \\
\left.u_{1}\right|_{\Gamma_{1}}=g_{1} ; & \left.u_{2}\right|_{\Gamma_{1}}=0 ; & \left.u_{3}\right|_{\Gamma_{1}}=0 ; & \left.u_{4}\right|_{\Gamma_{1}}=0 \\
\left.u_{1}\right|_{\Gamma_{2}}=0 ; & \left.u_{2}\right|_{\Gamma_{2}}=g_{2} ; & \left.u_{3}\right|_{\Gamma_{2}}=0 ; & \left.u_{4}\right|_{\Gamma_{2}}=0 ; \\
\left.u_{1}\right|_{\Gamma_{3}}=0 ; & \left.u_{2}\right|_{\Gamma_{3}}=0 ; & \left.u_{3}\right|_{\Gamma_{3}}=f_{1} ; & \left.u_{4}\right|_{\Gamma_{3}}=0 ; \\
\left.u_{1}\right|_{\Gamma_{4}}=0 ; & \left.u_{2}\right|_{\Gamma_{4}}=0 ; & \left.u_{3}\right|_{\Gamma_{4}}=0 ; & \left.u_{4}\right|_{\Gamma_{4}}=f_{2} ;
\end{array}
$$

Solve u_{1} by Separation of Variables:

1. Seek solution $u_{1}(x, y)=h(x) \phi(y)$:

$$
\begin{aligned}
& \nabla^{2} u_{1}=0 \\
&\left.u_{1}\right|_{\Gamma_{1}}=g_{1} ; \\
&\left.u_{1}\right|_{\Gamma_{2}}=0 ; \\
&\left.u_{1}\right|_{\Gamma_{3}}=0 ; \\
&\left.u_{1}\right|_{\Gamma_{4}}=0 ;
\end{aligned}
$$

$$
\frac{h^{\prime \prime}(x)}{h}=-\frac{\phi^{\prime \prime}(y)}{\phi}=\lambda
$$

2. Eigenvalue problem:

$$
\begin{aligned}
\phi^{\prime \prime}(y) & =-\lambda \phi(y), \quad \phi(0)=\phi(H)=0 \\
\phi_{n}(y) & =\sin \left(\frac{n \pi}{H} y\right), \quad \lambda_{n}=\left(\frac{n \pi}{H}\right)^{2}, \quad n=1,2, \cdots,
\end{aligned}
$$

3. Solve h:

$$
h^{\prime \prime}(x)=\lambda h(x), \quad h(L)=0
$$

- $\lambda>0: h(x)=c_{1} e^{\sqrt{\lambda} x}+c_{2} e^{-\sqrt{\lambda} x}$
$h_{n}(x)=a_{n} \sinh \left(\sqrt{\lambda_{n}}(x-L)\right)$

4. Determine a_{n}

$$
u_{1}(x, y)=\sum_{n=1}^{\infty} a_{n} \sinh \left(\sqrt{\lambda_{n}}(x-L)\right) \phi_{n}(y) .
$$

2.5.2 Laplace equation on a disk

$$
\begin{aligned}
\nabla^{2} u & =0, \quad(x, y) \in D i s k \\
\left.u\right|_{\Gamma} & =f
\end{aligned}
$$

$x=r \cos \theta ; \quad y=r \sin \theta$

$$
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}, \quad 0<r<a,-\pi<\theta<\pi
$$

- BC: $u(a, \pi)=u(a,-\pi) ; \quad \partial_{\theta} u(a, \pi)=\partial_{\theta} u(a,-\pi)$

$$
u(a, \theta)=f(\theta) ; \quad u(0, \theta)=?
$$

- Separation of variables? linear homo: PDE, BC

$$
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0, \quad 0<r<a,-\pi<\theta<\pi
$$

$\mathrm{BC}: u(a, \pi)=u(a,-\pi) ; \quad \partial_{\theta} u(a, \pi)=\partial_{\theta} u(a,-\pi)$

$$
u(a, \theta)=f(\theta) ; \quad u(0, \theta)=?
$$

-1. Seek solution $u(r, \theta)=G(r) \phi(\theta)$:

$$
\frac{r\left(r G^{\prime}\right)^{\prime}}{G}(r)=-\frac{\phi^{\prime \prime}(\theta)}{\phi}=\lambda
$$

- 2. EigenvalueP:

$$
\phi^{\prime \prime}(\theta)=-\lambda \phi(\theta), \quad \phi(-\pi)=\phi(\pi) ; \phi^{\prime}(-\pi)=\phi^{\prime}(\pi)
$$

- 3. $G(r): \frac{r\left(r G^{\prime}\right)^{\prime}}{G}=\lambda_{n} ; \mathrm{BC} ? \quad G(0)$ is bounded
- 4. Solution: $\lambda_{n}=n^{2}, \phi_{n}=\cos (n \theta), \sin (n \theta), \quad n=0,1, \ldots$ $r^{2} G^{\prime \prime}+r G^{\prime}-n^{2} G=0 \Rightarrow$ (Euler's method:) $G(r)=r^{p}$ or $\ln r$

$$
u(r, \theta)=A_{0}+\sum_{n=1}^{\infty}\left[A_{n} r^{n} \cos (n \theta)+B_{n} r^{n} \sin (n \theta)\right]
$$

*2.5.3. Solve Laplace's equation outside a circular disk $(r \geq a)$ subject to the boundary condition
(a) $u(a, \theta)=\ln 2+4 \cos 3 \theta$
(b) $u(a, \theta)=f(\theta)$

You may assume that $u(r, \theta)$ remains finite as $r \rightarrow \infty$.

$$
\nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0, \quad r>a,-\pi<\theta<\pi
$$

$\mathrm{BC}: u(a, \pi)=u(a,-\pi) ; \quad \partial_{\theta} u(a, \pi)=\partial_{\theta} u(a,-\pi)$

$$
u(a, \theta)=g(\theta) ; \quad \lim _{r \rightarrow \infty} u(r, \theta)<\infty
$$

Outline

Section 2.5 Laplace's equation: solution examples

Section 2.5 Laplace's equation: qualitative properties

2.5.3 Qualitative properties

Mean value property $u(P)$ is the average of u in $\partial B_{r}(P) \subset \mathrm{D}$

- The temperature at any point is the average of the temperature along any circle (inside domain) centered at the point.
- Example on disk:

$$
u(0, \theta)=a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) d \theta
$$

Maximum principle In non-constant steady state the temperature cannot attain its maximum in the interior:

$$
u(P)=\max _{\bar{D}} u \Rightarrow P \in \partial D
$$

Wellposedness and uniqueness

Definition: a DE problem is well-posed if there exists a unique solution that depends continuously on the nonhomogeneous data.
Theorem
$\nabla^{2} u=0$ on a smooth domain D with $\left.u\right|_{\partial D}=f(x)$ is well-posed.
"Proof".

- Existence: physical intuition, for compatible f. solution on \mathbb{R}^{d}; then constraint on D (Reading: Craig Evans, Partial Differential Equations)
- Continuous dependence on BC
- Uniqueness

Solvability condition For $\nabla^{2} u=0$, we have (Divergence theorem)

$$
\oint \nabla u \cdot \mathbf{n} d S=\int \nabla^{2} u d V=0
$$

- If Neumann BC $-K_{0} \nabla u \cdot \mathbf{n}$, then we must have $\oint \nabla u \cdot \mathbf{n} d S=0$
- The net heat flow through the boundary must be zero for a steady state (with no source).

Summary of Chp 2: Separation of variables

- Heat equation + BC + IC; Laplace +BC
- Linear + homogeneous \Rightarrow Principle of superposition
- Separation of variables

Solution of HE + BC+ IC: $\partial_{t} u=\partial_{x x} u, u(x, 0)=f(x)$

$$
\begin{array}{ll}
\text { Dirichlet } x \in(0, L) & f(x)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi}{L} x\right) \\
u(0, t)=u(L, t)=0 & u(x, t)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi}{L} x\right) e^{-\lambda_{n} \kappa t}
\end{array}
$$

Neuman $x \in(0, L) \quad f(x)=\sum_{n=0}^{\infty} A_{n} \cos \left(\frac{n \pi}{L} x\right)$

$$
\partial_{x} u(0, t)=\partial_{x} u(L, t)=0 \quad u(x, t)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi}{L} x\right) e^{-\lambda_{n} \kappa t}
$$

$$
\text { Mixed } x \in(-L, L) \quad f(x)=A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi}{L} x+B_{n} \sin \frac{n \pi}{L} x\right)
$$

$$
\partial_{x} u(0, t)=\partial_{x} u(L, t) \quad u(x, t)=A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{\frac{n}{L} x}{L} x+B_{n} \sin \frac{h \pi}{L} x\right) e^{-\lambda_{n} \kappa t}
$$

$$
u(0, t)=u(L, t)
$$

Question

- When $f(x)$ can be written as series? Convergence?
- If the series of f converge, will $u(x, t)$ series converge?
- If converge, will u continuous/differentiable/satisfy HE?

