Chapter 3: Fourier series

Fei Lu
Department of Mathematics, Johns Hopkins

Section 3.1 Piecewise Smooth Functions and Periodic Extensions Section 3.2 Convergence of Fourier series

Section 3.3 Fourier cosine and sine series
Section 3.4 Term-by-term differentiation
Section 3.5 Term-by-term Integration
Section 3.6 Complex form of Fourier series

Outline

Section 3.1 Piecewise Smooth Functions and Periodic Extensions

Section 3.2 Convergence of Fourier series

Section 3.3 Fourier cosine and sine series

Section 3.4 Term-by-term differentiation

Section 3.5 Term-by-term Integration

Section 3.6 Complex form of Fourier series

Definition

A function $f:[a, b] \rightarrow \mathbb{R}$ is piecewise continuous if it is continuous on $[a, b]$ except at finitely many points. If both f and f^{\prime} are piecewise continuous, then f is called piecewise smooth.

- PC: may have finitely many jump discontinuity, but $f\left(x^{-}\right)$and $f\left(x^{+}\right)$exist for all $x \in[a, b]$.
- Are these functions PC or PS? Suppose that $x \in[-\pi, \pi]$:

function	PC	PS
$f_{1}(x)=\sin (10 x) ;$		
$f_{2}(x)=\|x\| ;$		
$f_{3}(x)=x^{1 / 3} ;$		
$f_{4}(x)=\mathbf{1}_{[0,1]}(x)$		
$f_{5}(x)=\left\{\begin{array}{cc}-\ln (1-x), & -\pi \leq x<1 ; \\ 1, & 1 \leq x \leq \pi\end{array}\right.$		

Periodic extension. If f is defined on $[-L, L]$, then its periodic extension is

$$
\widetilde{f}(x)=\left\{\begin{array}{cc}
\vdots & \\
f(x+2 L), & -3 L<x<-L \\
f(x), & -L<x L ; \\
f(x-2 L), & L<x<3 L \\
\vdots &
\end{array}\right.
$$

- The end points?
- Example (how to make the extension in a sketch?)

Outline

Section 3.1 Piecewise Smooth Functions and Periodic Extensions

Section 3.2 Convergence of Fourier series

Section 3.3 Fourier cosine and sine series

Section 3.4 Term-by-term differentiation

Section 3.5 Term-by-term Integration

Section 3.6 Complex form of Fourier series

Convergence of Fourier series

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi}{L} x+b_{n} \sin \frac{n \pi}{L} x\right)
$$

- Convergent series?
- point-wise, almost everywhere, uniform.
- radius of convergence of $g(x)=\sum_{n=1}^{\infty} a_{n} x^{n}: r=\lim _{n \rightarrow \infty} \frac{a_{n}}{a_{n+1}}$.
- Weierstrass M-test: the series $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly in D if $\left|f_{n}(x)\right| \leq c_{n}$ for $x \in D$ and $\sum_{n=1}^{\infty} c_{n}<\infty$.
- Is the limit f ? A more precise notation:

$$
f(x) \sim a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi}{L} x+b_{n} \sin \frac{n \pi}{L} x\right)=\widetilde{f}(x)
$$

The Fourier coefficient of f (by orthogonality)

$$
a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x, \quad a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi}{L} x d x, \quad b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi}{L} x d x
$$

Theorem (Fourier Convergence Theorem)

If f is piecewise smooth on $[-L, L]$, then the Fourier series of f converges to

1. the periodic extension \bar{f}, at where \bar{f} is continuous;
2. the average $\frac{1}{2}\left[f\left(x^{-}\right)+f\left(x^{+}\right)\right]$at where \bar{f} has a jump discontinuity.

- Note: 2 includes 1. Together:

$$
\frac{1}{2}\left[f\left(x^{-}\right)+f\left(x^{+}\right)\right]=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi}{L} x+b_{n} \sin \frac{n \pi}{L} x\right)
$$

- Proof: use Dirichlet kernel: $D_{N}(x)=\frac{1}{2}+\sum_{n=1}^{N} \cos (n x)=\frac{\sin \left(N+\frac{1}{2}\right) x}{2 \sin \frac{1}{2}}$

Notation: f, periodic extension \bar{f}, Fourier series (limit) $\widetilde{f}(x)$

Sketch Fourier series Given f. Can we sketch the Fourier series $\widetilde{f}=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi}{L} x+b_{n} \sin \frac{n \pi}{L} x\right)$ without knowing a_{n}, b_{n} ?

Yes! A simple application of the (powerful!) Fourier theorem: 3 steps

1. sketch f on $[-L, L]$
2. Period extension of f to $[-3 L, 3 L]$
3. skecch \tilde{f} : same as \bar{f} except average at jumps

Example: $f(x)=\left\{\begin{array}{cc}0, & -L \leq x<L / 2 ; \\ 1, & L / 2 \leq x \leq L\end{array}\right.$

Q1: what if unbounded domain? $f(x)= \begin{cases}0, & x<0 ; \\ 1, & x \geq 0\end{cases}$
Q2: half domain: $f(x)$ defined only for $x \in[0, L]$?
(Recall in HE+BC(Dirichlet/Neumann) + IC: $x \in[0, L]$)

Outline

Section 3.1 Piecewise Smooth Functions and Periodic Extensions
 Section 3.2 Convergence of Fourier series

Section 3.3 Fourier cosine and sine series

Section 3.4 Term-by-term differentiation

Section 3.5 Term-by-term Integration

Section 3.6 Complex form of Fourier series

Fourier sine series

Fourier series of odd functions
When $f(x)$ on $[-L, L]$ is odd: $a_{n}=? b_{n}=$?

$$
\begin{gathered}
a_{n}=0, b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi}{L} x d x=B_{n} \\
f(x)
\end{gathered} \sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi}{L} x, ~ \$ ~ \$
$$

Fourier sine series: for $f(x)$ on $[0, L]$

$$
f(x) \sim \sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi}{L} x
$$

Sketch Fourier sine series Given f, sketch the Fourier sine series $\widetilde{f}=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi}{L} x$ without knowing B_{n} ?

1. sketch f on $[0, L]$
2. Odd periodic extension of f to $[-3 L, 3 L]: \bar{f}_{\text {odd }}$
3. skecch \tilde{f} : same as $\bar{f}_{\text {odd }}$ except average at jumps

Example: $f(x)=100, x \in[0, L]$?
sketch:

Compute $B_{n}: B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi}{L} x d x=\frac{200}{L} \int_{0}^{L} \sin \frac{n \pi}{L} x d x=\frac{400}{n \pi} \mathbf{1}_{\{n \text { odd }\}}$

$$
100=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi}{L} x=\frac{400}{\pi}\left[\sin \frac{\pi}{L} x+\frac{1}{3} \sin \frac{3 \pi}{L} x+\cdots\right], \quad x \in(0, L)
$$

- A series representation for $\pi: \frac{\pi}{4}=\sin \frac{\pi}{L} x+\frac{1}{3} \sin \frac{3 \pi}{L} x+\cdots$ for $x \in(0, L)$ at $x=\frac{L}{2} \Rightarrow \frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}+\cdots=\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n}$
- Equality holds on $x \in(0, L)$, but not at $x=0, x=L$.
- Discontinuity: $\tilde{f}(0)=0, \widetilde{f}(L)=0$, but $f(x)=100$

Physical example: $\mathrm{HE}+\mathrm{BC}$ (Dirichlet) $+\mathrm{IC}: x \in[0, L]$

$$
\begin{aligned}
& \partial_{t} u=\kappa \partial_{x x} u, \quad \text { with } x \in(0, L), t>0 \\
& u(0, t)=0, u(L, t)=0 \\
& u(x, 0)=f(x), \quad x \in[0, L]
\end{aligned}
$$

Solution: IF
$f(x) "=" \sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi}{L} x$,

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi}{L} x\right) e^{-\lambda_{n} \kappa t}
$$

- The equality does not hold! The series $\tilde{f} \neq f$ at $x=0, x=L$.
- Physical meaning?
- numerical approximation \downarrow

Fourier series computation and the Gibbs Phenomenon In numerical computation, we can only have finitely many terms.

$$
f(x) \approx f_{N}(x)=\sum_{n=1}^{N} B_{n} \sin \frac{n \pi}{L} x
$$

For $f(x)=100, x \in[0, L]$, what will happen as $N \rightarrow \infty$?

- for $x \in(0, L), f_{N}(x) \rightarrow f(x)$
- $f_{N}(0) \rightarrow \widetilde{f}(0)=0, f_{N}(L) \rightarrow \widetilde{f}(L)=0$
- Gibbs phenomenon:
overshoot(undershoot) at the jump discontinuity

$$
\lim _{N \rightarrow \infty} f_{N}\left(0+\frac{L}{2 N}\right) \approx f\left(0^{+}\right)+\left[f\left(0^{+}\right)-f\left(0^{-}\right)\right] * 0.0895
$$

Fourier cosine series

Similar to sine series:

- When $f(x)$ on $[-L, L]$ is EVEN: $b_{n}=0 \rightarrow$ Fourier cosine series
- For $f(x)$ on $[0, L]$, even extension \rightarrow Fourier cosine series

$$
f(x) \sim \sum_{n=0}^{\infty} A_{n} \cos \frac{n \pi}{L} x
$$

- Odd periodic extension to sketch \tilde{f}.

$f(x)$ on $(0, L)$ by both sine and cosine series

Example: $f(x)=\cos \frac{2 \pi}{L} x$ on $x \in(0, L)$
Sine series: $f(x) \sim \sum_{n=0}^{\infty} B_{n} \sin \frac{n \pi}{L} x$ with $B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi}{L} x d x$
Cosine series: $f(x) \sim \sum_{n=0}^{\infty} A_{n} \cos \frac{n \pi}{L} x$ with $A_{n}=0$ if $n \neq 2, A_{2}=1$

Even and odd parts

$$
\begin{gathered}
f(x)=f_{\text {even }}(x)+f_{\text {odd }}(x)=\frac{1}{2}[f(x)+f(-x)]+\frac{1}{2}[f(x)-f(-x)] \\
\widetilde{f}(x)=\widetilde{f}_{\text {even }}(x)+\widetilde{f}_{\text {odd }}(x)=\text { Cosine series }+ \text { Sine Series }
\end{gathered}
$$

Continues Fourier Series

What condition on f to make its Fourier series continuous?
Let f be piecewise smooth, and denote its Fourier (sine/cosine) series by \tilde{f}.

- Fourier series \tilde{f} is conti. and $\tilde{f}=f$ on $[-L, L]$ iff $f(-L)=f(L)$;
- Fourier sine series \tilde{f} is conti. and $\tilde{f}=f$ on $[0, L]$ iff $f(0)=f(L)=0$;
- Fourier cosine series \tilde{f} is conti. and $\tilde{f}=f$ on $[-L, L]$ iff f is conti.

Outline

Section 3.1 Piecewise Smooth Functions and Periodic Extensions
 Section 3.2 Convergence of Fourier series
 Section 3.3 Fourier cosine and sine series

Section 3.4 Term-by-term differentiation

Section 3.5 Term-by-term Integration

Section 3.6 Complex form of Fourier series

Section 3.5 Term-by-term Integration

Question: can we exchange the order of the two operations:

$$
\frac{d}{d x} \sum_{n=1}^{\infty} "=" \sum_{n=1}^{\infty} \frac{d}{d x}
$$

Motivation: when solving PDE by separation of variables

$$
\begin{aligned}
& \partial_{t} u=\kappa \partial_{x x} u, \text { with } x \in(0, L), t>0 \\
& u(0, t)=0, u(L, t)=0 \\
& u(x, 0)=f(x), \quad x \in[0, L]
\end{aligned}
$$

We get

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi}{L} x\right) e^{-\lambda_{n} \kappa t}
$$

with B_{n} determined by
$f(x)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi}{L} x$.

To be addressed:

- Does the series converge?

$$
\begin{array}{r}
\partial_{t} \sum_{n=1}^{\infty} \stackrel{?}{=} \kappa \partial_{x x} \sum_{n=1}^{\infty} \\
? \partial_{t} \sum_{n=1}^{\infty}=\sum_{n=1}^{\infty} \partial_{t} \\
? \partial_{x x} \sum_{n=1}^{\infty}=\sum_{n=1}^{\infty} \partial_{x x}
\end{array}
$$

Example: Consider Fourier series of $f(x)=x, x \in[0, L]$:

- Find the Fourier series of f
- Try term by term Diff. (TBTD)

$$
x=\sum_{n=1}^{\infty} \frac{2 L}{n \pi}(-1)^{n+1} \sin \frac{n \pi x}{L}=: \widetilde{f}, \quad x \in(0, L)
$$

TBTD:

$$
1 "=" \sum_{n=1}^{\infty} 2(-1)^{n+1} \cos \frac{n \pi x}{L},
$$

at $x=0$: the RHS $=2 \sum_{n=1}^{\infty}(-1)^{n+1}$ diverges $!$
\Rightarrow no TBTD
Q: $f(x)=x$ is such a "good" function. What's the problem?

Consider first Fourier sine series: f odd; f^{\prime} even

$$
\begin{array}{rlrl}
f \mathrm{PC}, f^{\prime} \mathrm{PC} & f(x) & \sim \sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} \\
f^{\prime} \mathrm{PC}, f^{\prime \prime} \mathrm{PC} & f^{\prime}(x) & \sim A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}
\end{array}
$$

If TBTD:

$$
f^{\prime}(x) \sim \sum_{n=1}^{\infty} b_{n} \frac{n \pi}{L} \cos \frac{n \pi x}{L}
$$

which requires

$$
A_{0}=0 ; A_{n}=b_{n} \frac{n \pi}{L} .
$$

Thus (recall $\left.b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi}{L} x d x\right)$

$$
\begin{aligned}
0=A_{0} & =\frac{1}{L} \int_{0}^{L} f^{\prime}(x) d x=\frac{1}{L}[f(L)-f(0)] \Rightarrow f(L)=f(0) \\
A_{n} & =\frac{2}{L} \int_{0}^{L} f^{\prime}(x) \cos \frac{n \pi}{L} x d x=
\end{aligned}
$$

TBTD of Fourier sine series f on $[0, L]$

- $f \mathrm{PS} \Rightarrow$ its Fourier sine series converges:

$$
f(x) \sim \sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}=\frac{1}{2}\left[f\left(x^{-}\right)+f\left(x^{+}\right)\right]
$$

- $f^{\prime} \mathrm{PS}, \Rightarrow$ Fourier series of f^{\prime} converges
if in addition, f continuous: \Rightarrow
$f^{\prime}(x) \sim \frac{1}{L}[f(L)-f(0)]+\sum_{n=1}^{\infty}\left[\frac{n \pi}{L} b_{n}+\frac{2}{L}\left[(-1)^{n} f(L)-f(0)\right]\right] \cos \frac{n \pi x}{L}$
- TBTD if f, f^{\prime} are PS, f continuous and $f(L)=f(0)=0$.

TBTD of Fourier cosine series f on $[0, L]$

- $f \mathrm{PS} \Rightarrow$ its Fourier sine series converges:

$$
f(x) \sim \sum_{n=0}^{\infty} a_{n} \cos \frac{n \pi x}{L}=\frac{1}{2}\left[f\left(x^{-}\right)+f\left(x^{+}\right)\right]
$$

- $f^{\prime} \mathrm{PS}, \Rightarrow$ Fourier series of f^{\prime} converges
if in addition, f continuous: \Rightarrow (check it)

$$
f^{\prime}(x) \sim \sum_{n=1}^{\infty} \frac{n \pi}{L} a_{n}(-1) \sin \frac{n \pi x}{L}
$$

- TBTD if f, f^{\prime} are PS, f continuous.

TBTD of Fourier series f on $[-L, L]$

- $f \mathrm{PS} \Rightarrow$ its Fourier series converges:

$$
f(x) \sim a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}=\frac{1}{2}\left[f\left(x^{-}\right)+f\left(x^{+}\right)\right]
$$

- $f^{\prime} \mathrm{PS}, \Rightarrow$ Fourier series of f^{\prime} converges
if in addition, f continuous: \Rightarrow

$$
f^{\prime}(x) \sim
$$

- TBTD if f, f^{\prime} are PS, f continuous and $f(L)=f(-L)$.

Back to PDE:

$$
\begin{aligned}
& \partial_{t} u=\kappa \partial_{x x} u, \text { with } x \in(0, L), t>0 \\
& u(0, t)=0, u(L, t)=0 \\
& u(x, 0)=f(x), \quad x \in[0, L]
\end{aligned}
$$

To be addressed:

- Does the series converge?

We get

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi}{L} x\right) e^{-\lambda_{n} \kappa t}
$$

with B_{n} determined by $f(x)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi}{L} x$.

$$
\begin{array}{r}
\partial_{t} \sum_{n=1}^{\infty} \stackrel{?}{=} \kappa \partial_{x x} \sum_{n=1}^{\infty} \\
? \partial_{t} \sum_{n=1}^{\infty}=\sum_{n=1}^{\infty} \partial_{t} \\
? \partial_{x x} \sum_{n=1}^{\infty}=\sum_{n=1}^{\infty} \partial_{x x}
\end{array}
$$

- for each $t: u(x, t)$ is conti.\& $\partial_{x} u \mathrm{PS}, \mathrm{BC} \Rightarrow$ TBTD sine series $\partial_{x} u$ is conti.\& $\partial_{x x} u$ PS \Rightarrow TBTD cosine series $\Rightarrow \quad \partial_{x x} \sum_{n=1}^{\infty}=\sum_{n=1}^{\infty} \partial_{x x}$
- $\partial_{t} u \mathrm{PS} \Rightarrow \quad \partial_{t} \sum_{n=1}^{\infty}=\sum_{n=1}^{\infty} \partial_{t}$

Method of eigenfunction expansion (a generalization separation of variables) Seek solution of the form

$$
u(x, t)=\sum_{n=0}^{\infty} a_{n}(t) \cos \frac{n \pi}{L} x+b_{n}(t) \sin \frac{n \pi}{L} x
$$

- PDE +BC determines the eigenfunctions to use
- works for equation with source $\partial_{t} u=\kappa \partial_{x x} u+Q(x, t)$
- solve $a_{n}(t), b_{n}(t)$ from the PDE + IC
*3.4.9 Consider the heat equation with a known source $q(x, t)$:

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}+q(x, t) \text { with } u(0, t)=0 \text { and } u(L, t)=0 .
$$

Assume that $q(x, t)$ (for each $t>0$) is a piecewise smooth function of x. Also assume that u and $\partial u / \partial x$ are continuous functions of x (for $t>0$) and $\partial^{2} u / \partial x^{2}$ and $\partial u / \partial t$ are piecewise smooth. Thus,

$$
u(x, t)=\sum_{n=1}^{\infty} b_{n}(t) \sin \frac{n \pi x}{L} .
$$

What ordinary differential equation does $b_{n}(t)$ satisfy? Do not solve this differential equation.

Outline

Section 3.1 Piecewise Smooth Functions and Periodic Extensions
Section 3.2 Convergence of Fourier series
Section 3.3 Fourier cosine and sine series
Section 3.4 Term-by-term differentiation
Section 3.5 Term-by-term Integration
Section 3.6 Complex form of Fourier series
Section 3.5 Term-by-term Integration 27

Outline

Section 3.1 Piecewise Smooth Functions and Periodic Extensions
Section 3.2 Convergence of Fourier series
Section 3.3 Fourier cosine and sine series
Section 3.4 Term-by-term differentiation
Section 3.5 Term-by-term IntegrationSection 3.6 Complex form of Fourier series

