Chapter 3: Fourier series

Fei Lu
Department of Mathematics, Johns Hopkins

Section 3.4 Term-by-term differentiation (review)
Section 3.5 Term-by-term Integration
Section 3.6 Complex form of Fourier series

Outline

Section 3.4 Term-by-term differentiation (review)

Section 3.5 Term-by-term Integration

Section 3.6 Complex form of Fourier series

Section 3.4 Term-by-term differentiation

f on $[0, L]$ or $[-L, L]$:

- sine series: TBTD if f, f^{\prime} are PS, f continuous and $f(L)=f(0)=0$.
- cosine series: TBTD if f, f^{\prime} are PS, f continuous.
- Fourier series: TBTD if f, f^{\prime} are PS, f continuous and $f(L)=f(-L)$
Q: how did we prove it?

Method of eigenfunction expansion (generalizing separation of variables) Seek solution of the form

$$
u(x, t)=\sum_{n=0}^{\infty} a_{n}(t) \cos \frac{n \pi}{L} x+b_{n}(t) \sin \frac{n \pi}{L} x
$$

- PDE+ BC determines the eigenfunctions to use
- works for equation with source $\partial_{t} u=\kappa \partial_{x x} u+Q(x, t)$
- solve $a_{n}(t), b_{n}(t)$ from the PDE + IC

Q: what about BC? Why solution in the form of Fourier series?

Outline

Section 3.4 Term-by-term differentiation (review)

Section 3.5 Term-by-term Integration

Section 3.6 Complex form of Fourier series

Section 3.5 Term-by-term Integration

Theorem
Let f be a piece-wise smooth function. We can always do TBTI of f's Fourier series and the resulted series always converge to the integral of f on $[-L, L]$. That is, $\left(\int \sum=\sum \int\right)$

$$
\begin{aligned}
f(x) & \sim a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L} \\
\int_{-L}^{x} f(y) d y & =a_{0}(x+L)+\sum_{n=1}^{\infty} \int_{-L}^{x}\left(a_{n} \cos \frac{n \pi y}{L}+b_{n} \sin \frac{n \pi y}{L}\right) d y
\end{aligned}
$$

Section 3.5 Term-by-term Integration

Theorem

Letf be a piece-wise smooth function. We can always do TBTI off's Fourier series and the resulted series always converge to the integral of f on $[-L, L]$. That is, $\left(\int \sum=\sum \int\right.$)

$$
\begin{aligned}
f(x) & \sim a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L} \\
\int_{-L}^{x} f(y) d y & =a_{0}(x+L)+\sum_{n=1}^{\infty} \int_{-L}^{x}\left(a_{n} \cos \frac{n \pi y}{L}+b_{n} \sin \frac{n \pi y}{L}\right) d y
\end{aligned}
$$

- Even if the original Fourier series has jump discontinuities
- The new series is continuous. Is it a Fourier series?
$f(x) \sim a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L}$

$$
\begin{equation*}
\int_{-L}^{x} f(y) d y-a_{0}(x+L) "=" \sum_{n=1}^{\infty} \int_{-L}^{x}\left(a_{n} \cos \frac{n \pi y}{L}+b_{n} \sin \frac{n \pi y}{L}\right) d y \tag{1}
\end{equation*}
$$

Proof(Basic idea: match the series. Shift $a_{0}(x+L)$ to get Fourier series) Let $G(x)=$ LHS $=F(x)-a_{0}(x+L)$. We verify (1).

1. Note that $G(x)$ is PS+continuous, $G^{\prime}(x)=f(x)-a_{0}, G(-L)=0=G(L)$.
$\Rightarrow G(x)=$ its Fourier series $=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L}+B_{n} \sin \frac{n \pi x}{L}$
2. Verify (1) by showing the coefficients are the same.

$$
\begin{aligned}
R H S & =\sum_{n=1}^{\infty} a_{n} \frac{L}{n \pi} \sin \frac{n \pi x}{L}-b_{n} \frac{L}{n \pi}\left[\cos \frac{n \pi x}{L}-\cos (n \pi)\right] \\
A_{n} & =\frac{1}{L} \int_{-L}^{L} G(x) \cos \frac{n \pi x}{L} d x=\cdots \text { integration by parts }=-b_{n} \frac{L}{n \pi} \\
B_{n} & =\frac{1}{L} \int_{-L}^{L} G(x) \sin \frac{n \pi x}{L} d x=\cdots=a_{n} \frac{L}{n \pi} \\
A_{0} & =G(L)-\text { other terms }=\cdots=\sum_{n=1}^{\infty} b_{n} \cos (n \pi)
\end{aligned}
$$

** [compute A_{0} from $G(L)=0$, not $\frac{1}{2 L} \int_{-L}^{L} G(x) d x$]

Fourier series: Convergence + TBTD + TBTI \Rightarrow A new world
Example 1: evaluate $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots$ by Fourier sine series of $f(x)=1: \quad 1 \sim \frac{4}{\pi} \sum_{n=1, \text { odd }}^{\infty} \frac{1}{n} \sin \frac{n \pi x}{L}, \quad x \in[0, L]$.

Example 2: show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
(Hint: use $x \sim 2 \sum_{n=1}^{\infty} \frac{L}{n \pi}(-1)^{n+1} \sin \frac{n \pi x}{L}$)

Fourier series: Convergence + TBTD + TBTI \Rightarrow A new world

Example 1: evaluate $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots$ by Fourier sine series of $f(x)=1: \quad 1 \sim \frac{4}{\pi} \sum_{n=1, \text { odd }}^{\infty} \frac{1}{n} \sin \frac{n \pi x}{L}, \quad x \in[0, L]$.

Example 2: show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
(Hint: use $x \sim 2 \sum_{n=1}^{\infty} \frac{L}{n \pi}(-1)^{n+1} \sin \frac{n \pi x}{L}$)

$$
\begin{aligned}
\frac{L^{3}}{3}=\int_{0}^{L} x^{2} d x & =\int_{0}^{L} 4 \sum_{n, m=1}^{\infty} \frac{L^{2}}{m n \pi^{2}}(-1)^{n+m} \sin \frac{m \pi x}{L} \sin \frac{n \pi x}{L} d x \\
& =\frac{4 L^{2}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{n \pi x}{L} d x \text { (Exchange of order) } \\
& =\frac{2 L^{3}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}
\end{aligned}
$$

Outline

Section 3.4 Term-by-term differentiation (review)

Section 3.5 Term-by-term Integration

Section 3.6 Complex form of Fourier series

Section 3.6 Complex form of Fourier series

Euler's Formula

$$
\begin{aligned}
& e^{i \theta}=\cos \theta+i \sin \theta ; \quad \cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right), \sin \theta=\frac{1}{2}\left(e^{i \theta}-e^{-i \theta}\right), \\
& f(x) \sim a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}+b_{n} \sin \frac{n \pi x}{L} \\
&=\sum_{n=-\infty}^{\infty} c_{n} e^{-i \frac{n \pi x}{L}},
\end{aligned}
$$

where $c_{0}=a_{0}, c_{n}=\frac{1}{2}\left(a_{n}+i b_{n}\right)=\frac{1}{2 L} \int_{-L}^{L} f(x)\left[\cos \frac{n \pi x}{L}+i \sin \frac{n \pi x}{L}\right) d x$. In short, $c_{n}=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{i \frac{n \pi x}{L}} d x$ for all n.
Do we have orthogonality for $\left\{\phi_{n}(x)=e^{i \frac{n \pi x}{L}}\right\}$? (i.e. $\left.\left\langle\phi_{n}, \phi_{m}\right\rangle=\delta_{n-m}\right) \downarrow$

Complex Orthogonality $\left\{\phi_{n}(x)=e^{i \frac{\pi \pi x}{L}}\right\}$

$$
\left\langle\phi_{n}, \phi_{m}\right\rangle=\frac{1}{2 L} \int_{-L}^{L} \phi_{n}(x) \overline{\phi_{m}(x)} d x=\frac{1}{2 L} \int_{-L}^{L} e^{i \frac{(n-m) \pi x}{L}} d x=\delta_{n-m}
$$

(note the complex conjugate)

Complex form of Fourier series

$$
f(x) \sim \sum_{n=-\infty}^{\infty} c_{n} e^{-i \frac{n \pi x}{L}}, \quad c_{n}=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{i \frac{n \pi x}{L}} d x
$$

If f is a real-valued function, $c_{-n}=\overline{c_{n}}$

Summary of Chp 3: Fourier series

- Fourier series, sine/cosine/complex FS
- Fourier Theorem: convergence of FS
$f(x) \sim a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi}{L} x+b_{n} \sin \frac{n \pi}{L} x\right)=\frac{1}{2}\left[f\left(x^{-}\right)+f\left(x^{+}\right)\right]$
- TBTD:
- sine series: if f, f^{\prime} are PS, f continuous and $f(L)=f(0)=0$.

$$
f^{\prime}(x) \sim \frac{1}{L}[f(L)-f(0)]+\sum_{n=1}^{\infty}\left[\frac{n \pi}{L} b_{n}+\frac{2}{L}\left[(-1)^{n} f(L)-f(0)\right]\right] \cos \frac{n \pi x}{L}
$$

- cosine series: if f, f^{\prime} are PS, f continuous.
- FS: if f, f^{\prime} are PS, f continuous and $f(L)=f(-L)$
- TBTI: always! (if f PS)
- Enable us to treat infinite series!
- compute series
- method of eigenfunctions (non-homogeneous PDEs)
3.4.6. There are some things wrong in the following demonstration. Find the mistakes and correct them.

In this exercise we attempt to obtain the Fourier cosine coefficients of e^{x} :

$$
\begin{equation*}
e^{x}=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L} \tag{3.4.22}
\end{equation*}
$$

Differentiating yields

$$
e^{x}=-\sum_{n=1}^{\infty} \frac{n \pi}{L} A_{n} \sin \frac{n \pi x}{L}
$$

the Fourier sine series of e^{x}. Differentiating again yields

$$
\begin{equation*}
e^{x}=-\sum_{n=1}^{\infty}\left(\frac{n \pi}{L}\right)^{2} A_{n} \cos \frac{n \pi x}{L} \tag{3.4.23}
\end{equation*}
$$

Since equations (3.4.22) and (3.4.23) give the Fourier cosine series of e^{x}, they must be identical. Thus,

$$
\left.\begin{array}{l}
A_{0}=0 \\
A_{n}=0
\end{array}\right\} \text { (obviously wrong!). }
$$

By correcting the mistakes, you should be able to obtain A_{0} and A_{n} without using the typical technique, that is, $A_{n}=2 / L \int_{0}^{L} e^{x} \cos n \pi x / L d x$.

Solution to 3-4-6:
Solution 3.4.6

$$
\begin{equation*}
e^{x}=A_{0}+\sum_{1}^{\infty} A_{n} \cos \frac{n \pi}{L} x \tag{1}
\end{equation*}
$$

Mestake: $T B T D \rightarrow e^{x} \sim=\sum_{1}^{6} A_{n} \frac{n \pi}{L} \sin \frac{n \pi}{L} x \quad$ NoT equality
Also, $e^{L} \neq 0, e^{0} \neq 0 \Rightarrow$ can NOT TBTD agani.
Instead, recall that, $\left[\begin{array}{l}\text { If } f, f^{\prime} \text { piecewise smooth, } f(x) \sim \sum_{1}^{\infty} B_{n} s m \frac{n \pi}{L} x, \text { then } \\ f^{\prime}(x) \sim \frac{1}{L}[f(L)-f(0)]+\sum_{1}^{6}\left\{\frac{n \pi}{L} B_{n}+\frac{2}{L}\left[(-1)^{n} f(L)-f(0)\right]\right\} \cos \frac{n \pi}{L} x\end{array}\right]$
we have $e^{x}=\left(e^{x}\right)^{\prime} \sim \frac{1}{L}\left[e^{L}-e^{0}\right]+\sum_{1}^{b}\left\{\frac{n \pi}{L}\left(-\operatorname{An}_{n}^{n z}\right)+\frac{2}{L}\left[(1)^{n} e^{L}-e^{0}\right]\right\} \cos _{L}^{n \pi} x_{(2)}$

$$
\xrightarrow{\text { (1) \&(2) } \quad \begin{array}{l}
A_{0}
\end{array}=\frac{1}{L}\left[e^{L}-e^{0}\right]} \begin{aligned}
A_{n} & =-A_{n}\left(\frac{n \pi}{L}\right)^{2}+\frac{2}{L}\left[(-1)^{n} e^{L}-e^{0}\right] \Rightarrow A_{n}=\frac{2}{L}\left[(-1)^{n} e^{L}-e^{0}\right] /\left(1+\left(\frac{n \pi}{L}\right)^{2}\right) .
\end{aligned}
$$

