Introduction to Nonparametric Learning of Kernels in Operators

Fei Lu
Department of Mathematics, Johns Hopkins University

Plan:
Lecture 1. Overview and a review of classical learning theory
Lecture 2. Learning interaction kernels in interacting particle systems
Lecture 3. Coercivity condition and minimax rate of convergence
Lecture 4. Learning interaction kernels in mean-field equations
Lecture 5. Data adaptive RKHS Tikhonov regularization
Lecture 6. Small noise analysis of RKHS regularizations

Lecture 2. Learning kernels in interacting particle systems
Learning interaction kernel $K_{\phi}(x-y)=\phi(|x-y|) \frac{x-y}{|x-y|}$

$$
\begin{aligned}
d X_{t}^{i} & =\frac{1}{N} \sum_{j=1}^{N} K_{\phi}\left(X_{t}^{j}-X_{t}^{i}\right) d t+\sqrt{2 \nu} d B_{t}^{i}, \quad 1 \leq i \leq N, X_{t}^{i} \in \mathbb{R}^{d} \\
\Leftrightarrow \dot{\mathbf{X}}_{t} & =R_{\phi}\left(\mathbf{X}_{t}\right)+\sqrt{2 \nu} \dot{\mathbf{B}}_{t}, \quad \mathbf{X}_{t} \in \mathbb{R}^{N \times d}
\end{aligned}
$$

Finite N :

- Data: M trajectories of particles $\left\{\mathbf{X}_{t_{1}::_{L}}^{(m)}\right\}_{m=1}^{M}$

- ODEs/SDEs: Opinion Dynamics, Lennard-Jones, Prey-Predator; 1st/2nd order
- Statistical learning

Goal: algorithm, identifiability, convergence

1. Review of learning theory in Lecture 1

2. Computation: loss function and regression
3. Main results: theory and numerical tests
4. The coercivity condition (with open questions)

Outline

1. Review of learning theory in Lecture 1
2. Computation: loss function and regression
3. Main results: theory and numerical tests
4. The coercivity condition (with open questions)

1 Review of learning theory in Lecture 1

Review of Lecture 1:
 Theory for learning kernels in operators

Variational approach: $\mathcal{H}_{n}:=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}, \phi=\sum_{i=1}^{n} c_{i} \phi_{i}$,

$$
\begin{gathered}
\widehat{\phi}_{n, M}=\underset{\phi \in \mathcal{H}_{n}}{\arg \min } \mathcal{E}_{M}(\phi) \\
\mathcal{E}_{M}(\phi)=\frac{1}{T M} \sum_{m=1}^{M} \int_{0}^{T}\left|\dot{\mathbf{X}}_{t}^{(m)}-R_{\phi}\left(\mathbf{X}_{t}^{(m)}\right)\right|^{2} d t=c^{\top} A_{n, M} c-2 c^{\top} b_{n, M}+\text { Const } .
\end{gathered}
$$

$$
\nabla \mathcal{E}_{M}=0 \Rightarrow \widehat{c}=A_{n, M}^{-1} b_{n, M} \Rightarrow \quad \widehat{\phi}_{n, M}=\sum_{i} \widehat{c}_{i} \phi_{i}
$$

New elements:

- How to choose $\mathcal{H}_{n}:=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}$?
- $A_{n, M}^{-1}$ exists? $A_{n, M}^{-1} b_{n, M}$ stable?
- Convergence of $\phi_{n, M}$?
- Identifiability of $\phi_{\text {true }}$? ...

Exploration measure: $\rho_{T} \sim\left\{\left|X_{t}^{i}-X_{t}^{j}\right|\right\}_{i, j, t}^{(m)}$

$$
\langle\langle\phi, \phi\rangle\rangle:=\frac{1}{T} \int_{0}^{T} \mathbb{E}\left[\left\langle R_{\phi}\left(\mathbf{X}_{t}\right), R_{\phi}\left(\mathbf{X}_{t}\right)\right\rangle\right] d t
$$

Coercivity condition: $\langle\langle\phi, \phi\rangle\rangle \geq c_{\mathcal{H}}\|\phi\|_{L_{\rho_{T}}^{2}}^{2}$

1 Review of learning theory in Lecture 1

From the loss function, find its minimizer in \mathcal{H}

Exploration measure ρ for the variable of ϕ

- Empirical distribution $\rho_{M} \xrightarrow{M \rightarrow \infty} \rho$ (LLN)
- Intrinsic to the dynamics: initial distribution $\mu_{0}^{\otimes N}$ and kernel
- Function space L_{ρ}^{2}
- $\mathcal{H}=$ piecewise polynomials $\subset L_{\rho}^{2}$
- singular kernels $\subset L_{\rho}^{2}$

Coercivity condition $\langle\langle\phi, \phi\rangle\rangle \geq c_{\mathcal{H}}\|\phi\|_{L_{\rho_{T}}^{2}}^{2}, \forall \phi \in \mathcal{H}$

- The loss function is uniformly convex
- Ensures identifiability and error bounds
- Ensures $\left(A_{n, M}(i, j)\right) \approx\left(\left\langle\left\langle\phi_{i}, \phi_{j}\right\rangle\right\rangle\right)$ well-conditioned w.h.p. in regression

Learning theory: classical v.s. new

Classical learning theory

Given: $\operatorname{Data}\left\{\left(X_{m}, Y_{m}\right)\right\}_{m=1}^{M} \sim(X, Y)$
Goal: find f s.t. $Y=f(X)$

$$
\mathcal{E}(f)=\mathbb{E}\left[|Y-f(X)|^{2}\right]=\left\|f-f_{\text {true }}\right\|_{L^{2}\left(\rho_{X}\right)}^{2}
$$

$\approx \mathcal{E}_{M}(f)=\frac{1}{M} \sum_{m=1}^{M}\left|Y_{m}-f\left(X_{m}\right)\right|^{2}$

Learning kernel
Given: $\operatorname{Data}\left\{\mathbf{X}_{[0, T]}^{(m)}\right\}_{m=1}^{M}$
Goal: find ϕ s.t. $\dot{\mathbf{X}}_{t}=R_{\phi}\left(\mathbf{X}_{t}\right)$

$$
\mathcal{E}(\phi)=\mathbb{E}\left[\left|\dot{\mathbf{X}}-R_{\phi}(\mathbf{X})\right|^{2}\right] \neq\left\|\phi-\phi_{\text {true }}\right\|_{L^{2}(\rho)}^{2}
$$

$$
\approx \mathcal{E}_{M}(\phi)=\frac{1}{M} \sum_{m=1}^{M}\left|\dot{\mathbf{X}}^{(m)}-R_{\phi}\left(\mathbf{X}^{(m)}\right)\right|^{2}
$$

Learning theory: classical v.s. new

Classical learning theory

Given: $\operatorname{Data}\left\{\left(X_{m}, Y_{m}\right)\right\}_{m=1}^{M} \sim(X, Y)$
Goal: find f s.t. $Y=f(X)$
$\mathcal{E}(f)=\mathbb{E}\left[|Y-f(X)|^{2}\right]=\left\|f-f_{\text {true }}\right\|_{L^{2}\left(\rho_{X}\right)}^{2}$
$\approx \mathcal{E}_{M}(f)=\frac{1}{M} \sum_{m=1}^{M}\left|Y_{m}-f\left(X_{m}\right)\right|^{2}$

Learning kernel

Given: $\operatorname{Data}\left\{\mathbf{X}_{[0, T]}^{(m)}\right\}_{m=1}^{M}$
Goal: find ϕ s.t. $\dot{\mathbf{X}}_{t}=R_{\phi}\left(\mathbf{X}_{t}\right)$

$$
\mathcal{E}(\phi)=\mathbb{E}\left[\left|\dot{\mathbf{X}}-R_{\phi}(\mathbf{X})\right|^{2}\right] \neq\left\|\phi-\phi_{\text {true }}\right\|_{L^{2}(\rho)}^{2}
$$

$$
\approx \mathcal{E}_{M}(\phi)=\frac{1}{M} \sum_{m=1}^{M}\left|\dot{\mathbf{X}}^{(m)}-R_{\phi}\left(\mathbf{X}^{(m)}\right)\right|^{2}
$$

- Function space: $L^{2}\left(\rho_{X}\right)$.
- Identifiability: $\mathbb{E}[Y \mid X=x]=\underset{f \in L^{2}(\rho x)}{\arg \operatorname{Lin}} \mathcal{E}(f)$.

$$
f \in L^{2}\left(\rho_{X}\right)
$$

Learning theory: classical v.s. new

Classical learning theory

Given: $\operatorname{Data}\left\{\left(X_{m}, Y_{m}\right)\right\}_{m=1}^{M} \sim(X, Y)$
Goal: find f s.t. $Y=f(X)$
$\mathcal{E}(f)=\mathbb{E}\left[|Y-f(X)|^{2}\right]=\left\|f-f_{\text {true }}\right\|_{L^{2}\left(\rho_{X}\right)}^{2}$
$\approx \mathcal{E}_{M}(f)=\frac{1}{M} \sum_{m=1}^{M}\left|Y_{m}-f\left(X_{m}\right)\right|^{2}$

Learning kernel

Given: $\operatorname{Data}\left\{\mathbf{X}_{[0, T]}^{(m)}\right\}_{m=1}^{M}$
Goal: find ϕ s.t. $\dot{\mathbf{X}}_{t}=R_{\phi}\left(\mathbf{X}_{t}\right)$

$$
\mathcal{E}(\phi)=\mathbb{E}\left[\left|\dot{\mathbf{X}}-R_{\phi}(\mathbf{X})\right|^{2}\right] \neq\left\|\phi-\phi_{\text {true }}\right\|_{L^{2}(\rho)}^{2}
$$

$$
\approx \mathcal{E}_{M}(\phi)=\frac{1}{M} \sum_{m=1}^{M}\left|\dot{\mathbf{X}}^{(m)}-R_{\phi}\left(\mathbf{X}^{(m)}\right)\right|^{2}
$$

- Function space: $L^{2}\left(\rho_{X}\right)$.
- Identifiability: $\mathbb{E}[Y \mid X=x]=\underset{f \in L^{2}\left(\rho_{x}\right)}{\arg \min } \mathcal{E}(f)$.

$$
f \in L^{2}\left(\rho_{X}\right)
$$

- $A_{n, M} \approx \mathbb{E}\left[\phi_{i}(X) \phi_{j}(X)\right]=I_{n}$ by setting $\left\{\phi_{i}\right\}$ ONB in $L^{2}\left(\rho_{X}\right)$.
- Error bounds for $\widehat{f}_{n, M}$ (asymptotic/non-asymptotic)
1 Review of learning theory in Lecture 1

Learning theory: classical v.s. new

Classical learning theory

Given: $\operatorname{Data}\left\{\left(X_{m}, Y_{m}\right)\right\}_{m=1}^{M} \sim(X, Y)$
Goal: find f s.t. $Y=f(X)$
$\mathcal{E}(f)=\mathbb{E}\left[|Y-f(X)|^{2}\right]=\left\|f-f_{\text {true }}\right\|_{L^{2}\left(\rho_{X}\right)}^{2}$
$\approx \mathcal{E}_{M}(f)=\frac{1}{M} \sum_{m=1}^{M}\left|Y_{m}-f\left(X_{m}\right)\right|^{2}$

Learning kernel

Given: $\operatorname{Data}\left\{\mathbf{X}_{[0, T]}^{(m)}\right\}_{m=1}^{M}$
Goal: find ϕ s.t. $\dot{\mathbf{X}}_{t}=R_{\phi}\left(\mathbf{X}_{t}\right)$

$$
\mathcal{E}(\phi)=\mathbb{E}\left[\left|\dot{\mathbf{X}}-R_{\phi}(\mathbf{X})\right|^{2}\right] \neq\left\|\phi-\phi_{\text {true }}\right\|_{L^{2}(\rho)}^{2}
$$

$$
\approx \mathcal{E}_{M}(\phi)=\frac{1}{M} \sum_{m=1}^{M}\left|\dot{\mathbf{X}}^{(m)}-R_{\phi}\left(\mathbf{X}^{(m)}\right)\right|^{2}
$$

- Function space: $L^{2}\left(\rho_{X}\right)$.
- Identifiability: $\mathbb{E}[Y \mid X=x] \underset{f \in L^{2}\left(\rho_{x}\right)}{\arg \operatorname{Ein}} \mathcal{E}(f)$.
- $A_{n, M} \approx \mathbb{E}\left[\phi_{i}(X) \phi_{j}(X)\right]=I_{n}$ by setting $\left\{\phi_{i}\right\}$ ONB in $L^{2}\left(\rho_{X}\right)$.
- Error bounds for $\widehat{f}_{n_{M}}$ (asymptotic/non-asymptotic)
1 Review of learning theory in Lecture 1

Learning theory: classical v.s. new

Classical learning theory

Given: $\operatorname{Data}\left\{\left(X_{m}, Y_{m}\right)\right\}_{m=1}^{M} \sim(X, Y)$
Goal: find f s.t. $Y=f(X)$
$\mathcal{E}(f)=\mathbb{E}\left[|Y-f(X)|^{2}\right]=\left\|f-f_{\text {true }}\right\|_{L^{2}\left(\rho_{X}\right)}^{2}$
$\approx \mathcal{E}_{M}(f)=\frac{1}{M} \sum_{m=1}^{M}\left|Y_{m}-f\left(X_{m}\right)\right|^{2}$

Learning kernel

Given: $\operatorname{Data}\left\{\mathbf{X}_{[0, T]}^{(m)}\right\}_{m=1}^{M}$
Goal: find ϕ s.t. $\dot{\mathbf{X}}_{t}=R_{\phi}\left(\mathbf{X}_{t}\right)$

$$
\mathcal{E}(\phi)=\mathbb{E}\left[\left|\dot{\mathbf{X}}-R_{\phi}(\mathbf{X})\right|^{2}\right] \neq\left\|\phi-\phi_{\text {true }}\right\|_{L^{2}(\rho)}^{2}
$$

$$
\approx \mathcal{E}_{M}(\phi)=\frac{1}{M} \sum_{m=1}^{M}\left|\dot{\mathbf{X}}^{(m)}-R_{\phi}\left(\mathbf{X}^{(m)}\right)\right|^{2}
$$

- Function space: $L^{2}\left(\rho_{X}\right)$.
- Identifiability: $\mathbb{E}[Y \mid X=x] \underset{f \in L^{2}\left(\rho_{x}\right)}{\arg \operatorname{Ein}} \mathcal{E}(f)$.
- $A_{n, M} \approx \mathbb{E}\left[\phi_{i}(X) \phi_{j}(X)\right]=I_{n}$ by setting $\left\{\phi_{i}\right\}$ ONB in $L^{2}\left(\rho_{X}\right)$.
- Error bounds for $\widehat{f}_{n_{M}}$ (asymptotic/non-asymptotic)
- Function space: $L^{2}(\rho)$.
- Identifiability: $\underset{\phi \in L_{\rho}^{2}}{\arg \min } \mathcal{E}(\phi)$??
- $A_{n, M} \approx \mathbb{E}\left[R_{\phi_{i}}(\mathbf{X}) R_{\phi_{j}}(\mathbf{X})\right] \approx I_{n}$ by setting $\left\{\phi_{i}\right\}$ ONB in L_{ρ}^{2} ??.
- Error bounds for $\widehat{\phi}_{n_{M}}$?

Convergence/Error bounds

- For $\mathcal{E}_{M} \rightarrow \mathcal{E}_{\infty}$; LLN/CLT, concentration inequalities; (Uniform in \mathcal{H})
- Pass them to estimator:
$c^{2}-a^{2}>b^{2}$

$$
\begin{aligned}
\langle\langle\phi, \psi\rangle\rangle: & =\frac{1}{T} \int_{0}^{T} \mathbb{E}\left[\left\langle R_{\phi}\left(\mathbf{X}_{t}\right), R_{\psi}\left(\mathbf{X}_{t}\right)\right\rangle\right] d t \\
\mathcal{E}_{\infty}(\phi) & =\frac{1}{T} \int_{0}^{T} \mathbb{E}\left[\left|\dot{\mathbf{X}}_{t}-R_{\phi}\left(\mathbf{X}_{t}\right)\right|^{2}\right] d t=\left\langle\left\langle\phi-\phi_{\text {true }}, \phi-\phi_{\text {true }}\right\rangle\right\rangle
\end{aligned}
$$

Coercivity condition: $\langle\langle\phi, \phi\rangle\rangle \geq c_{\mathcal{H}}\|\phi\|^{2}, \quad \forall \phi \in \mathcal{H}$.

Outline

1. Review of learning theory in Lecture 1
2. Computation: loss function and regression
3. Main results: theory and numerical tests
4. The coercivity condition (with open questions)

Computation: loss function and regression

Variational approach: $\mathcal{H}_{n}:=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}, \phi=\sum_{i=1}^{n} c_{i} \phi_{i}$,

$$
\begin{aligned}
\widehat{\phi}_{n, M}=\underset{\phi \in \mathcal{H}_{n}}{\arg \min } \mathcal{E}_{M}(\phi) & =\frac{1}{M} \sum_{m=1}^{M} \frac{1}{T} \int_{0}^{T}\left|\dot{\mathbf{X}}_{t}^{(m)}-R_{\phi}\left(\mathbf{X}_{t}^{(m)}\right)\right|^{2} d t=c^{\top} A_{n, M} \mathcal{C}-2 c^{\top} b_{n, M}+\text { Const. } \\
\nabla \mathcal{E}_{M} & =0 \Rightarrow \quad \widehat{c}=A_{n, M}^{-1} b_{n, M} \Rightarrow \quad \widehat{\phi}_{n, M}=\sum_{i} \widehat{c}_{i} \phi_{i}
\end{aligned}
$$

Computation: loss function and regression

Variational approach: $\mathcal{H}_{n}:=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}, \phi=\sum_{i=1}^{n} c_{i} \phi_{i}$,

$$
\begin{aligned}
\widehat{\phi}_{n, M}=\underset{\phi \in \mathcal{H}_{n}}{\arg \min } \mathcal{E}_{M}(\phi) & =\frac{1}{M} \sum_{m=1}^{M} \frac{1}{T} \int_{0}^{T}\left|\dot{\mathbf{X}}_{t}^{(m)}-R_{\phi}\left(\mathbf{X}_{t}^{(m)}\right)\right|^{2} d t=c^{\top} A_{n, M} c-2 c^{\top} b_{n, M}+\text { Const. } \\
\nabla \mathcal{E}_{M} & =0 \Rightarrow \quad \widehat{c}=A_{n, M}^{-1} b_{n, M} \Rightarrow \quad \widehat{\phi}_{n, M}=\sum_{i} \widehat{c}_{i} \phi_{i}
\end{aligned}
$$

- Loss function: key in a variational/learning approach
- Regression: (where fundamental questions arise)
- How to choose $\mathcal{H}_{n}:=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}$?
- $A_{n, M}^{-1}$ exists? $A_{n, M}^{-1} b_{n, M}$ stable? LSE, regularization?
- Exploration measure ρ
- Function space
- Convergence of $\phi_{n, M}$ as M increases?

Loss function

Given data $\left\{\mathbf{X}_{t_{0}: L_{L}}^{(m)}\right\}_{m=1}^{M}$, to recover ϕ in

$$
\begin{aligned}
d X_{t}^{i} & =\frac{1}{N} \sum_{j=1}^{N} K_{\phi}\left(X_{t}^{j}-X_{t}^{i}\right) d t+\sqrt{2 \nu} d B_{t}^{i}, \quad 1 \leq i \leq N, X_{t}^{i} \in \mathbb{R}^{d} \\
\Leftrightarrow d \mathbf{X}_{t} & =R_{\phi}\left(\mathbf{X}_{t}\right) d t+\sqrt{2 \nu} d \mathbf{B}_{t}, \quad \mathbf{X}_{t} \in \mathbb{R}^{N \times d}
\end{aligned}
$$

Loss function $\mathcal{E}_{M}(\phi)=\frac{1}{M} \sum_{m=1}^{M} \mathcal{E}\left(\phi, \mathbf{X}_{[0, T]}^{(m)}\right)$

- Deterministic $(\nu=0): \mathcal{E}\left(\phi, \mathbf{X}_{[0, T]}\right)=\frac{1}{T} \int_{0}^{T}\left\|\dot{\mathbf{X}}_{t}-R_{\phi}\left(\mathbf{X}_{t}\right)\right\|^{2} d t$

Loss function

Given data $\left\{\mathbf{X}_{t_{0}: L_{L}}^{(m)}\right\}_{m=1}^{M}$, to recover ϕ in

$$
\begin{aligned}
d X_{t}^{i} & =\frac{1}{N} \sum_{j=1}^{N} K_{\phi}\left(X_{t}^{j}-X_{t}^{i}\right) d t+\sqrt{2 \nu} d B_{t}^{i}, \quad 1 \leq i \leq N, X_{t}^{i} \in \mathbb{R}^{d} \\
\Leftrightarrow d \mathbf{X}_{t} & =R_{\phi}\left(\mathbf{X}_{t}\right) d t+\sqrt{2 \nu} d \mathbf{B}_{t}, \quad \mathbf{X}_{t} \in \mathbb{R}^{N \times d}
\end{aligned}
$$

Loss function $\mathcal{E}_{M}(\phi)=\frac{1}{M} \sum_{m=1}^{M} \mathcal{E}\left(\phi, \mathbf{X}_{[0, T]}^{(m)}\right)$

- Deterministic $(\nu=0): \mathcal{E}\left(\phi, \mathbf{X}_{[0, T]}\right)=\frac{1}{T} \int_{0}^{T}\left\|\dot{\mathbf{X}}_{t}-R_{\phi}\left(\mathbf{X}_{t}\right)\right\|^{2} d t$
- Stochastic: $\mathcal{E}\left(\phi, \mathbf{X}_{[0, T]}\right)=\frac{1}{T} \int_{0}^{T}-2\left\langle d \mathbf{X}_{t}, R_{\phi}\left(\mathbf{X}_{t}\right)\right\rangle_{\mathbb{R}^{N \times d}}+\left\|R_{\phi}\left(\mathbf{X}_{t}\right)\right\|^{2} d t$
- - log-likelihood ratio of the path $\mathbf{X}_{[0, T]}$
- Discrete-approximation with $d \mathbf{X}_{t_{l}} \approx \mathbf{X}_{t_{t+1}}-\mathbf{X}_{t_{l}}$ $=$ the -log-likelihood of Euler-Maruyama

$$
\mathbf{X}_{t_{t+1}}-\mathbf{X}_{t_{l}} \approx R_{\phi}\left(\mathbf{X}_{t_{l}}\right) \Delta t+\sqrt{2 \nu \Delta t} \mathbf{W}_{l}
$$

- $\mathcal{E}_{M}(\phi)$ is quadratic in $\phi \longrightarrow$ Regression

Nonparametric Regression

Quadratic loss: $\mathcal{H}_{n}:=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}, \phi=\sum_{i=1}^{n} c_{i} \phi_{i}$,

$$
\begin{aligned}
& \widehat{\phi}_{n, M}=\underset{\phi \in \mathcal{H}_{n}}{\arg \min } \mathcal{E}_{M}(\phi), \quad \nabla \mathcal{E}_{M}=0 \Rightarrow \quad \widehat{c}=A_{n, M}^{-1} b_{n, M} \Rightarrow \widehat{\phi}_{n, M}=\sum_{i} \widehat{c}_{i} \phi_{i} \\
& \mathcal{E}_{M}(\phi)=\frac{1}{M} \sum_{m=1}^{M} \frac{1}{T} \int_{0}^{T}\left\|\dot{\mathbf{X}}_{t}^{(m)}-R_{\phi}\left(\mathbf{X}_{t}^{(m)}\right)\right\|^{2} d t=c^{\top} A_{n, M} c-2 c^{\top} b_{n, M}+\text { Const. }, \\
& A_{n, M}(i, j)=\frac{1}{M T} \sum_{m=1}^{M} \int_{0}^{T}\left\langle R_{\phi_{i}}\left(\mathbf{X}_{t}^{(m)}\right), R_{\phi_{j}}\left(\mathbf{X}_{t}^{(m)}\right)\right\rangle d t \\
& \left.b_{n, M}(i)=\frac{1}{M T} \sum_{m=1}^{M} \int_{0}^{T}\left\langle R_{\phi_{i}}\left(\mathbf{X}_{t}^{(m)}\right), d \mathbf{X}_{t}^{(m)}\right)\right\rangle
\end{aligned}
$$

- How to choose $\mathcal{H}_{n}:=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}$?
- $A_{n, M}^{-1}$ exists? $A_{n, M}^{-1} b_{n, M}$ stable? LSE, regularization?

Nonparametric Regression

Quadratic loss: $\mathcal{H}_{n}:=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}, \phi=\sum_{i=1}^{n} c_{i} \phi_{i}$,

$$
\begin{aligned}
& \widehat{\phi}_{n, M}=\underset{\phi \in \mathcal{H}_{n}}{\arg \min } \mathcal{E}_{M}(\phi), \quad \nabla \mathcal{E}_{M}=0 \Rightarrow \quad \widehat{c}=A_{n, M}^{-1} b_{n, M} \Rightarrow \widehat{\phi}_{n, M}=\sum_{i} \widehat{c}_{i} \phi_{i} \\
& \mathcal{E}_{M}(\phi)=\frac{1}{M} \sum_{m=1}^{M} \frac{1}{T} \int_{0}^{T}\left\|\dot{\mathbf{X}}_{t}^{(m)}-R_{\phi}\left(\mathbf{X}_{t}^{(m)}\right)\right\|^{2} d t=c^{\top} A_{n, M} c-2 c^{\top} b_{n, M}+\text { Const. }, \\
& A_{n, M}(i, j)=\frac{1}{M T} \sum_{m=1}^{M} \int_{0}^{T}\left\langle R_{\phi_{i}}\left(\mathbf{X}_{t}^{(m)}\right), R_{\phi_{j}}\left(\mathbf{X}_{t}^{(m)}\right)\right\rangle d t \\
& \left.b_{n, M}(i)=\frac{1}{M T} \sum_{m=1}^{M} \int_{0}^{T}\left\langle R_{\phi_{i}}\left(\mathbf{X}_{t}^{(m)}\right), d \mathbf{X}_{t}^{(m)}\right)\right\rangle
\end{aligned}
$$

- How to choose $\mathcal{H}_{n}:=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}$?
- $A_{n, M}^{-1}$ exists? $A_{n, M}^{-1} b_{n, M}$ stable? LSE, regularization?
- Exploration measure ρ : ϕ_{i} supported in $\operatorname{supp}(\rho)\left(\mathrm{ONB}\right.$ in $\left.L_{\rho}^{2}\right)$
- Local basis (B-spline), global basis (polynomials, RKHS)
- LSE OK for singular $A_{n, M}$ (NO need of regularization if CC)

Outline

1. Review of learning theory in Lecture 1

2. Computation: loss function and regression
3. Main results: theory and numerical tests

4. The coercivity condition (with open questions)

Results for deterministic systems

Consistency of estimator

Theorem ([Lztm19])

Assume the coercivity condition. Let $\left\{\mathcal{H}_{n}\right\}$ be a sequence of \uparrow compact convex subsets of $C([0, R])$ such that $\inf _{\psi \in \mathcal{H}_{n}}\left\|\psi-\phi_{\text {true }}\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$. Then

$$
\lim _{n \rightarrow \infty} \lim _{M \rightarrow \infty}\left\|\widehat{\phi}_{M, \mathcal{H}_{n}}-\phi_{\text {true }}\right\|_{L_{\rho_{T}}^{2}}=0, \text { almost surely }
$$

[LZTM19]: L., M Zhong, S Tang, and M Maggioni. Nonparametric inference of interaction laws in systems of agents from trajectory data. Proc. Natl. Acad. Sci. USA. 116 (29) 14424-14433. 2019

Rate of convergence: upper bound

Theorem ([LzTM19])
Let $\left\{\mathcal{H}_{n}\right\}$ be a seq. of compact convex subspaces of $C[0, R]$ s.t.

$$
\operatorname{dim}\left(\mathcal{H}_{n}\right) \leq c_{0} n, \text { and } \inf _{\psi \in \mathcal{H}_{n}}\left\|\psi-\phi_{\text {true }}\right\|_{\infty} \leq c_{1} n^{-s}
$$

Assume the coercivity condition. Choose $n_{*}=(M / \log M)^{\frac{1}{2 s+1}}:$ then

$$
\mathbb{E}_{\mu_{0}}\left[\left\|\widehat{\phi}_{T, M, \mathcal{H}_{n_{*}}}-\phi_{\text {true }}\right\|_{L_{\rho_{T}}^{2}}\right] \leq C\left(\frac{\log M}{M}\right)^{\frac{s}{2 s+1}} .
$$

- The 2nd condition is about regularity: $\phi \in C^{s}$
- Choice of $\operatorname{dim}\left(\mathcal{H}_{n}\right)$: adaptive to s and M

Prediction

Theorem ([Lztm19])

Denote by $\widehat{\mathbf{X}}(t)$ and $\mathbf{X}(t)$ the solutions of the systems with kernels $\widehat{\phi}$ and $\phi_{\text {true }}$ respectively, starting from the same initial conditions that are drawn i.i.d from μ_{0}. Then we have

$$
\mathbb{E}_{\mu_{0}}\left[\sup _{t \in[0, T]}\|\widehat{\mathbf{X}}(t)-\mathbf{X}(t)\|^{2}\right] \lesssim e^{C T} \sqrt{N}\left\|\widehat{\phi}-\phi_{\text {true }}\right\|_{L_{\rho_{T}}^{2}}^{2}
$$

- Follows from Grownwall's inequality

Example: Opinion Dynamics

$$
N=10, \mathbf{x}_{i} \in \mathbb{R} .
$$

$$
M=250, \mu_{0}=\operatorname{Unif}[0,10]^{10}
$$

$$
\mathcal{T}=[0,10], 200 \text { discrete instances }
$$

$$
\mathcal{H}=\text { piecewise constant functions }
$$

The estimated kernels:

Example: Opinion Dynamics

$$
\begin{aligned}
N & =10, \mathbf{x}_{i} \in \mathbb{R} \\
M & =250, \mu_{0}=\text { Unif }[0,10]^{10} \\
\mathcal{T} & =[0,10], 200 \text { discrete instances } \\
\mathcal{H} & =\text { piecewise constant functions }
\end{aligned}
$$

The rate of convergence:

Examples: Lennard-Jones Dynamics

The Lennard-Jones potential

$$
\begin{gathered}
V_{L J}(r)=4 \epsilon\left(\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right) \Rightarrow \phi(r) r=V_{L J}^{\prime}(r) \\
\dot{x}_{i}(t)=\frac{1}{N} \sum_{j=1, j \neq i}^{N} \phi\left(\left|x_{i}-x_{j}\right|\right)\left(x_{j}-x_{i}\right)
\end{gathered}
$$

- piecewise linear estimator; Gaussian initial conditions.

3 Main results: theory and numerical tests

Optimal rate

$$
V_{L J}(r)=4 \epsilon\left(\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right) \Rightarrow \quad \phi(r) r=V_{L J}^{\prime}(r)
$$

- $V_{L J}$ is highly singular, yet we get close to optimal rate (-0.4).

Example: 2nd-order Prey-Predator system

3 Main results: theory and numerical tests

Example: model selection

- Order selection

	Learned as 1 ${ }^{\text {st }}$ order	Learned as 2 ${ }^{\text {nd }}$ order
$1^{\text {st }}$ order system	$\mathbf{0 . 0 1} \pm \mathbf{0 . 0 0 2}$	1.6 ± 1.1
$2^{\text {nd }}$ order system	1.7 ± 0.3	$\mathbf{0 . 2} \pm \mathbf{0 . 0 6}$

- Interaction type selection

Stochastic systems: similar results

Theorem ([LMT21foc])
For any ϵ, with a high probability ($>1-\delta, M \geq M_{\delta, \epsilon}$)

$$
\left\|\widehat{\phi}_{L, T, M, \mathcal{H}}-\phi\right\|_{L_{\rho}^{2}}^{2} \leq\left\|\widehat{\phi}_{T, \infty, \mathcal{H}}-\phi\right\|_{L_{\rho}^{2}}^{2}+C(\epsilon n / M+\Delta t),
$$

With a high probability and in expectation:

$$
\left\|\widehat{\phi}_{L, T, M, \mathcal{H}}-\phi\right\|_{L_{\rho}^{2}}^{2} \lesssim c_{\mathcal{H}}^{-2}\left(\frac{\log M}{M}\right)^{\frac{2 \delta}{2 s+1}}
$$

- Discrete data: Euler-Maruyama \approx the likelihood ratio
- Concentration for Martingales/unbounded r.v.
- Two types of arguments
- Learning theory (applicable for generic regression)
- Regression ($A_{n, M}, b_{n, M}$)

Lennard-Jones kernel estimators:

M=32

$\mathrm{M}=1024$

Lennard-Jones kernel estimators:

$\mathrm{M}=1024$

Close to optimal rates of convergence:

Rate in $M \times T$

Opinion dynamics kernel estimators:

M=32

$\mathrm{M}=4096$

Opinion dynamics kernel estimators:

Close to optimal rates of convergence:

Outline

> 1. Review of learning theory in Lecture 1
> 2. Computation: loss function and regression
> 3. Main results: theory and numerical tests
4. The coercivity condition (with open questions)

The coercivity condition

$$
\begin{aligned}
&\langle\langle\phi, \psi\rangle\rangle=\frac{1}{T N} \int_{0}^{T} \mathbb{E}\left[\left\langle R_{\phi}\left(\mathbf{X}_{t}\right), R_{\psi}\left(\mathbf{X}_{t}\right)\right\rangle\right] d t \\
&\langle\langle\phi, \phi\rangle\rangle \geq c_{\mathcal{H}}^{T}\|\phi\|_{L_{\rho}^{2}}^{2}, \forall \phi \in \mathcal{H}
\end{aligned}
$$

When does it hold?

- Partial results for $\mathcal{H}=L_{\rho}^{2}$ in [LMT21jmir, LLMTZ21spa,LL21]
- $t=0$ with Gaussian initial distribution [LZMT19], $c_{\mathcal{H}}=\frac{1}{N-2}$
- stochastic: Gaussian process or $r^{2 \beta}$ stationary $N=3$ [LLMTZ21spa]
- stochastic: $r^{2 \beta}$ nonlinear stationary $N>3$ [LL20]
- Open: non-stationary? A compact $\mathcal{H} \subset C\left(\operatorname{supp}\left(\rho_{T}\right)\right)$?
- No coercivity on $L_{\rho_{T}}^{2}$ when $N \rightarrow \infty$ since $c_{\mathcal{H}} \rightarrow 0$

The coercivity condition

$$
\begin{aligned}
&\langle\langle\phi, \psi\rangle\rangle=\frac{1}{T N} \int_{0}^{T} \mathbb{E}\left[\left\langle R_{\phi}\left(\mathbf{X}_{t}\right), R_{\psi}\left(\mathbf{X}_{t}\right)\right\rangle\right] d t \\
&\langle\langle\phi, \phi\rangle\rangle \geq c_{\mathcal{H}}^{T}\|\phi\|_{L_{\rho}^{2}}^{2}, \forall \phi \in \mathcal{H}
\end{aligned}
$$

Recall:

$$
\begin{aligned}
& R_{\phi}\left(\mathbf{X}_{t}\right)_{i}=\frac{1}{N} \sum_{j=1}^{N} \phi\left(\left|\mathbf{r}_{t}^{i, j}\right|\right) \frac{\mathbf{r}_{t}^{i, j}}{\left|\mathbf{r}_{t}^{i, j}\right|}, \quad \mathbf{r}_{t}^{i, j}=X_{t}^{j}-X_{t}^{i}, \quad r_{t}^{i j}=\left|\mathbf{r}_{t}^{i j}\right| \\
&\left\langle R_{\phi}\left(\mathbf{X}_{t}\right), R_{\psi}\left(\mathbf{X}_{t}\right)\right\rangle=\left\langle\frac{1}{N} \sum_{j=1}^{N} \phi\left(r_{t}^{i j}\right) \frac{\mathbf{r}_{t}^{i j}}{r_{t}^{i j}}, \frac{1}{N} \sum_{j=1}^{N} \psi\left(r_{t}^{i j}\right) \frac{\mathbf{r}_{t}^{i j}}{r_{t}^{i j}}\right\rangle \\
&=\sum_{i=1}^{N} \frac{1}{N^{2}} \sum_{j, k=1}^{N} \phi\left(r_{t}^{i j}\right) \psi\left(r_{t}^{i k}\right) \frac{\left\langle\mathbf{r}_{t}^{i j}, \mathbf{r}_{t}^{i k}\right\rangle}{r_{t}^{i k} r_{t}^{i j}}
\end{aligned}
$$

4 The coercivity condition (with open questions)

Exchangeability implies

$$
\begin{aligned}
\frac{1}{N} \mathbb{E}\left[\left\langle R_{\phi}\left(\mathbf{X}_{t}\right), R_{\phi}\left(\mathbf{X}_{t}\right)\right\rangle\right] & =\sum_{i=1}^{N} \frac{1}{N^{3}} \sum_{\substack{j, k=1, j \neq i, k \neq i}}^{N} \underbrace{\left.\mathbb{E}\left[\phi\left(\left|\mathbf{r}_{t}^{j i}\right|\right) \phi\left(\left|\mathbf{r}_{t}^{k i}\right|\right)\right) \frac{\left\langle\mathbf{r}_{t}^{i j}, \mathbf{r}_{t}^{k i}\right\rangle}{\left|\mathbf{r}_{t}^{j i}\right|\left|\mathbf{r}_{t}^{k i}\right|}\right]}_{I_{i j k}} \\
& =\frac{(N-1)(N-2) I_{123}+(N-1) I_{122}}{N^{2}}
\end{aligned}
$$

- $I_{i j k}=I_{123}$ for $\{(i, j, k), j \neq i, k \neq i, j \neq k\}, \Rightarrow N(N-1)(N-2)$ copies of I_{123};
- $I_{i j k}=I_{122}$ for $\{(i, j, k), j=k \neq i\}, \Rightarrow N(N-1)$ copies of I_{122}.

Note that $\frac{1}{T} \int_{0}^{T} I_{122} d t=\frac{1}{T} \int_{0}^{T} \mathbb{E}\left[\phi\left(r_{t}^{12}\right)^{2}\right] d t=\|\phi\|_{L_{\rho_{T}}^{2}}^{2}$. Denote

$$
\begin{aligned}
&\left\langle\phi, L_{G} \phi\right\rangle:=\frac{1}{T} \int_{0}^{T} I_{123}(t) d t=\frac{1}{T} \int_{0}^{T} \mathbb{E}\left[\phi\left(\left|\mathbf{r}_{t}^{12}\right|\right) \phi\left(\left|\mathbf{r}_{t}^{13}\right|\right) \frac{\left\langle\mathbf{r}_{t}^{12}, \mathbf{r}_{t}^{13}\right\rangle}{\left|\mathbf{r}_{t}^{12}\right|\left|\mathbf{r}_{t}^{13}\right|}\right] d t . \\
&\langle\langle\phi, \phi\rangle\rangle=\frac{1}{T} \int_{0}^{T} \frac{(N-1)(N-2) I_{123}+(N-1) I_{122}}{N^{2}} d t \\
&=\frac{(N-1)(N-2)}{N^{2}}\left\langle\phi, L_{G} \phi\right\rangle+\frac{N-1}{N^{2}}\|\phi\|_{L_{\rho_{T}}^{2}}^{2}
\end{aligned}
$$

Coercivity condition in operator form:
$\langle\langle\phi, \phi\rangle\rangle \geq c_{\mathcal{H}}\|\phi\|_{L_{\rho_{T}}^{2}}^{2} \Leftrightarrow \frac{(N-1)(N-2)}{N^{2}} \inf _{\phi \in \mathcal{H},\|\phi\|_{L_{\rho_{T}}}=1}\left\langle\phi, L_{G} \phi\right\rangle+\frac{N-1}{N^{2}} \geq c_{\mathcal{H}}$

- $\langle\langle\phi, \phi\rangle\rangle=\left\langle\mathcal{L}_{\bar{G}} \phi, \phi\right\rangle$ with $\mathcal{L}_{\bar{G}}=\frac{(N-1)(N-2)}{N^{2}} L_{G}+\frac{N-1}{N^{2}} I$
- A sufficient condition for $c_{\mathcal{H}}=\frac{N-1}{N^{2}}$ with $\mathcal{H}=L_{\rho_{T}}^{2}$:

$$
\left\langle\phi, L_{G} \phi\right\rangle:=\frac{1}{T} \int_{0}^{T} \mathbb{E}\left[\phi\left(\left|\mathbf{r}_{t}^{12}\right|\right) \phi\left(\left|\mathbf{r}_{t}^{13}\right|\right) \frac{\left\langle\mathbf{r}_{t}^{12}, \mathbf{r}_{t}^{13}\right\rangle}{\left|\mathbf{r}_{t}^{12}\right|\left|\mathbf{r}_{t}^{13}\right|}\right] d t \geq 0, \forall \phi \in L_{\rho_{T}}^{2}
$$

$$
\frac{1}{T} \int_{0}^{T} \mathbb{E}\left[\phi\left(\left|\mathbf{r}_{t}^{12}\right|\right) \phi\left(\left|\mathbf{r}_{t}^{13}\right|\right) \frac{\left\langle\mathbf{r}_{t}^{12}, \mathbf{r}_{t}^{13}\right\rangle}{\left|\mathbf{r}_{t}^{12}\right|\left|\mathbf{r}_{t}^{13}\right|}\right] d t \geq 0, \forall \phi \in L_{\rho_{T}}^{2}
$$

$t=0$, Gaussian:
Theorem (Lemma 3.2, LZTM19)
Let (X, Y, Z) be exchangeable mean zero Gaussian in \mathbb{R}^{d} with $\operatorname{cov}(X)-\operatorname{cov}(X, Y)=\lambda I_{d}$ for $\lambda>0$. Then, the coercivity condition holds true with $c_{\mathcal{H}}=\frac{N-1}{N^{2}}$ on L_{ρ}^{2} with $\rho \propto r^{d-1} e^{-r^{2} / 3}$:

$$
\mathbb{E}\left[\phi(|X-Y|) \phi(|X-Z|) \frac{\langle X-Y, X-Z\rangle}{|X-Y||X-Z|}\right] \geq 0, \forall \phi \in L_{\rho}^{2}
$$

- $L H S=\iint \phi(r) \phi(s) G(r, s) d r d s$ and show G is positive definite.
- Open: general distribution?

Theorem (LLMTZ21spa,LL20)

Stochastic system. Then, CC holds with $c_{\mathcal{H}}=\frac{N-1}{N^{2}}$ on $\mathcal{H}=L_{\rho}^{2}$:

- Linear $\phi(r)=\theta r$; IC: non-degenerate exchangeable Gaussian.
- Nonlinear stationary: $\Phi(r)=a r^{2 \beta}+\Phi_{0}(r)$, with $a>0, \beta \in\left[\frac{1}{2}, 1\right]$, $\Phi_{0} \in C^{2}$ s.t. $f(u, v)=\Phi(|u-v|)$ is negative definite, and $\lim _{r \rightarrow \infty} \Phi(r)=+\infty$.

Major idea:

- Write it in the form with an integral operator with kernel G_{T}

$$
\frac{1}{T} \int_{0}^{T} \mathbb{E}\left[\phi\left(\left|\mathbf{r}_{t}^{12}\right|\right) \phi\left(\left|\mathbf{r}_{t}^{13}\right|\right) \frac{\left\langle\mathbf{r}_{t}^{12}, \mathbf{r}_{t}^{13}\right\rangle}{\left|\mathbf{r}_{t}^{12}\right|\left|\mathbf{r}_{t}^{3}\right|}\right] d t=\int \phi(r) \phi(s) G_{T}(r, s) \rho(r) \rho(s) d r d s
$$

- Gaussian: G_{T} is strictly positive definite using Müntz type theorems (i.e., $\left\{r^{2 k}\right\}_{k \geq 0}$ is dense in L_{ρ}^{2})
- Nonlinear: a "comparison to Gaussian kernels" technique
- Open: Non-stationary? Relax the symmetry?

A new idea: conditional independence.

At IC with iid components: by independence

$$
\mathbb{E}\left[\left.\phi\left(r_{12}\right) \frac{\mathbf{r}_{12}}{r_{12}} \right\rvert\, X_{1}\right]=\mathbb{E}\left[\left.\phi\left(r_{13}\right) \frac{\mathbf{r}_{13}}{r_{13}} \right\rvert\, X_{1}\right]
$$

Then,

$$
\begin{aligned}
& \mathbb{E}\left[\phi\left(r_{12}\right) \psi\left(r_{13}\right) \frac{\left\langle\mathbf{r}_{12}, \mathbf{r}_{13}\right\rangle}{r_{12} r_{13}}\right] \\
= & \mathbb{E}\left[\left\langle\mathbb{E}\left[\left.\phi\left(r_{12}\right) \frac{\mathbf{r}_{12}}{r_{12}} \right\rvert\, X_{1}\right], \mathbb{E}\left[\left.\phi\left(r_{13}\right) \frac{\mathbf{r}_{13}}{r_{13}} \right\rvert\, X_{1}\right]\right\rangle\right] \\
= & \mathbb{E}\left[\left\|\left.\mathbb{E}\left[\left.\phi\left(r_{12}\right) \frac{\mathbf{r}_{12}}{r_{12}} \right\rvert\, X_{1}\right] \right\rvert\,\right\|^{2}\right] \geq 0
\end{aligned}
$$

Question: can we extend it to the stochastic process?

- the EM generated process: yes
- continuous-time process?

Summary

Learn the interaction kernel in IPS, $N<\infty$

- Multiple trajectories M
- New from classical learning theory: coercivity condition
$-\mathcal{E}_{\infty}(\phi)-\mathcal{E}_{\infty}\left(\phi_{\mathcal{H}}\right) \geq c_{\mathcal{H}}\left\|\phi-\phi_{\mathcal{H}}\right\|_{2}^{2}$
- Well-posed inversion
- Open questions: important for nonlocal dependence (later)
- Nonparametric regression: rate of convergence in M

Summary

Learn the interaction kernel in IPS, $N<\infty$

- Multiple trajectories M
- New from classical learning theory: coercivity condition
$-\mathcal{E}_{\infty}(\phi)-\mathcal{E}_{\infty}\left(\phi_{\mathcal{H}}\right) \geq c_{\mathcal{H}}\left\|\phi-\phi_{\mathcal{H}}\right\|_{2}^{2}$
- Well-posed inversion
- Open questions: important for nonlocal dependence (later)
- Nonparametric regression: rate of convergence in M

Next questions:

- Is the rate minimax?
- what if $N \rightarrow \infty$?

Data: particle ensemble/microscopic density,

$$
u_{N}(x, t)=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}^{i}}(x) \rightarrow u(x, t)
$$

an inverse problem for the mean-field equations.

