Introduction to Nonparametric Learning of Kernels in Operators

Fei Lu

Department of Mathematics, Johns Hopkins University

Plan:

Lecture 1. Overview and a review of classical learning theory Lecture 2. Learning interaction kernels in interacting particle systems Lecture 3. Coercivity condition and minimax rate of convergence Lecture 4. Learning interaction kernels in mean-field equations Lecture 5. Data adaptive RKHS Tikhonov regularization Lecture 6. Small noise analysis of RKHS regularizations Lec6. Small noise analysis for Tikhonov regularization Learn the kernel ϕ : $R_{\phi}[u] + \epsilon = f$

from data:

$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \quad (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

Variational approach: ill-posed \Rightarrow **Regularization**, Tikhonov

$$\widehat{\phi}_{\lambda} = \operatorname*{arg\,min}_{\phi \in \mathcal{H}} \mathcal{E}(\phi) + \lambda \|\phi\|_*^2$$

Regression:

 $\phi = \sum_{k=1}^{n} c_k \phi_k, \qquad A_n c = b_n$

$$||A_n c - b_n||^2 + \lambda ||c||_*^2$$

- Regularization norms: $l^2, L^2, RKHSs, H^1 \dots$
- Which norm is better? Proof?

- 1. Review: learning kernels
- 2. Why is DARTR good?
- 3. SNA for DARTR
- 4. SNA for fractional DARTR
- LO23: Lu+Ou arXiv 2303
- LL23: Lang+Lu arXiv2305.

Outline

- 1. Review: learning kernels
- 2. Why is DARTR good?
- 3. SNA for DARTR
- 4. SNA for fractional DARTR

Learning kernels in operators

Learn the kernel ϕ :

$$R_{\phi}[u] + \epsilon = f$$

from data:

$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \quad (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

• Operator $R_{\phi}[u](x) = \int \phi(|x-y|)g[u](x,y)dy$

- interacting particles/agents

$$R_{\phi}[u] = \nabla \cdot [u(K_{\phi} * u)] = \partial_{t}u - \sigma \Delta u, \quad K_{\phi}(x) = \phi(|x|)\frac{x}{|x|} \in \mathbb{R}^{d}$$
$$R_{\phi}[\mathbf{X}_{t}] = \left[-\frac{1}{n}\sum_{j=1}^{n}K_{\phi}(X_{t}^{i} - X_{t}^{j})\right]_{i} = \dot{\mathbf{X}}_{t} + \dot{\mathbf{W}}_{t}, \qquad \mathbb{R}^{nd}$$

- nonlocal PDEs: $R_{\phi}[u] = \partial_{tt}u - v$

$$R_{\phi}[u](x) = \int_{\Omega} \phi(|x-y|)[u(y) - u(x)]dy = \partial_{tt}u - v.$$

– Integral operators, deconvolution, Toeplitz/Hankel matrix ... Toeplitz matrix: $R_{\phi}u = f$, $R_{\phi}(i,j) = \phi(i-j)$

1 Review: learning kernels

Learning kernels in operators

Learn the kernel ϕ :

$$R_{\phi}[u] + \epsilon = f$$

from data:

$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \quad (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

- Operator $R_{\phi}[u](x) = \int \phi(|x-y|)g[u](x,y)dy$
- \triangleright $R_{\phi}[u]$ linear in ϕ
- Data: discrete/noisy, Nonlocal dependence
 - random $(u_k, f_k) \sim \mu \otimes \nu$: statistical learning
 - deterministic (e.g., N small): inverse problem

Learning kernels in operators

Learn the kernel ϕ :

$$R_{\phi}[u] + \epsilon = f$$

from data:

$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \quad (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

- Operator $R_{\phi}[u](x) = \int \phi(|x-y|)g[u](x,y)dy$
- \triangleright $R_{\phi}[u]$ linear in ϕ

Data: discrete/noisy, Nonlocal dependence

- random $(u_k, f_k) \sim \mu \otimes \nu$: statistical learning
- deterministic (e.g., N small): inverse problem

Nonparametric inference \Leftrightarrow Variational inverse problem

$$\widehat{\phi} = \operatorname*{arg\,min}_{\phi \in \mathcal{H}} \mathcal{E}(\phi), \quad \mathcal{E}(\phi) = \frac{1}{N} \sum_{i=1}^{N} \| \mathbf{R}_{\phi}[u_i] - f_i \|_{\mathbb{Y}}^2.$$

1 Review: learning kernels

Computation: Regression and Regularization

Nonparametric Regression: $\phi = \sum_{i=1}^{n} c_i \phi_i \in \mathcal{H}_n = \operatorname{span} \{\phi_i\}_{i=1}^{n}$:

$$\mathcal{E}(\phi) = c^{\top} \overline{A}_n c - 2c^{\top} \overline{b}_n + C_N^f, \Rightarrow \widehat{\phi}_{\mathcal{H}_n} = \sum_i \widehat{c}_i \phi_i, \text{ where } \widehat{c} = \overline{A}_n^{-1} \overline{b}_n,$$

Regularization necessary: \overline{A}_n ill-conditioned & \overline{b}_n : noisy or with error Tikhonov/ridge Regularization: $(||c||_{B_*}^2 = c^\top B_* c)$

$$\mathcal{E}_{\lambda}(\phi) = \mathcal{E}(\phi) + \lambda \|\phi\|_{*}^{2} \Rightarrow c^{\top}\overline{A}_{n}c - 2\overline{b}_{n}^{\top}c + \lambda \|c\|_{B_{*}}^{2}$$
$$\hat{\phi}_{\mathcal{H}_{n}}^{\lambda} = \sum_{i} \widehat{c}_{i}^{\lambda}\phi_{i}, \quad \text{where } \widehat{c} = (\overline{A}_{n} + \lambda B_{*})^{-1}\overline{b}_{n},$$

1 Review: learning kernels

Computation: Regression and Regularization

Nonparametric Regression: $\phi = \sum_{i=1}^{n} c_i \phi_i \in \mathcal{H}_n = \operatorname{span} \{\phi_i\}_{i=1}^{n}$:

$$\mathcal{E}(\phi) = c^{\top} \overline{A}_n c - 2c^{\top} \overline{b}_n + C_N^f, \Rightarrow \widehat{\phi}_{\mathcal{H}_n} = \sum_i \widehat{c}_i \phi_i, \text{ where } \widehat{c} = \overline{A}_n^{-1} \overline{b}_n,$$

Regularization necessary: \overline{A}_n ill-conditioned & \overline{b}_n : noisy or with error Tikhonov/ridge Regularization: $(||c||_{B_*}^2 = c^\top B_* c)$

$$\mathcal{E}_{\lambda}(\phi) = \mathcal{E}(\phi) + \lambda \|\phi\|_{*}^{2} \Rightarrow c^{\top} \overline{A}_{n} c - 2\overline{b}_{n}^{\top} c + \lambda \|c\|_{B_{*}}^{2}$$

$$\widehat{\phi}_{\mathcal{H}_n}^{\lambda} = \sum_i \widehat{c}_i^{\lambda} \phi_i, \quad \text{where } \widehat{c} = (\overline{A}_n + \lambda B_*)^{-1} \overline{b}_n,$$

Hyper-parameter λ: CV, truncated SVD, ... The L-curve method [Hansen00]

Which norm || · ||*?

Identifiability

- ► An exploration measure: $\rho(dr) \Rightarrow \phi \in L^2(\rho)$ $R_{\phi}[u](x) = \int_{\Omega} \phi(|x-y|)g[u](x,y)dy, \quad \rho(dr) \propto \int \int \delta_{|x-y|}(dr)|g[u](x,y)|dxdy$

$$\begin{split} \mathcal{E}(\psi) &= \frac{1}{N} \sum_{i=1}^{N} \| R_{\psi}[u_i] - f_i \|_{L^2}^2 = \langle \mathcal{L}_{\overline{G}} \psi, \psi \rangle_{L^2(\rho)} - 2 \langle \phi^D, \psi \rangle_{L^2(\rho)} + C \\ \nabla \mathcal{E}(\psi) &= 2 \mathcal{L}_{\overline{G}} \psi - 2 \phi^D = 0 \quad \Rightarrow \widehat{\phi} = \mathcal{L}_{\overline{G}}^{-1} \phi^D \\ - \mathcal{L}_{\overline{G}} \text{ is a nonnegative compact operator: } \{ (\lambda_i, \psi_i) \}, \lambda_i \downarrow 0 \\ \text{[Open: can we make it coercive by designing data collection?]} \end{split}$$

$$\phi^D = \mathcal{L}_{\overline{G}}\phi_{true} + \phi^{\text{error}}$$

Function space of identifiability (FSOI):

$$\widehat{\phi} = \mathcal{L}_{\overline{G}}^{-1}(\mathcal{L}_{\overline{G}}\phi_{true} + \phi^{\text{error}}) \Rightarrow \quad H = \operatorname{span}\{\psi_i\}_{i:\lambda_i > 0}$$

- ill-defined beyond H; ill-posed in H

1 Review: learning kernels

DARTR: Data Adaptive RKHS Tikhonov Regularization

$$\widehat{\phi} = \mathcal{L}_{\overline{G}}^{-1} \phi^{D} = \mathcal{L}_{\overline{G}}^{-1} (\mathcal{L}_{\overline{G}} \phi_{true} + \phi^{\text{error}})$$

A new task for Regularization:

ensure that the learning takes place in the FSOI

data-dependent $H = \operatorname{span}\{\psi_i\}_{i:\lambda_i>0} = \overline{H_G}^{L^2(\rho)}$

►
$$\overline{G}$$
 ⇒RKHS: $H_G = \mathcal{L}_{\overline{G}}^{1/2}(L^2(\rho))$
► For $\phi = \sum_k c_k \psi_k$, $\|\phi\|_{L^2(\rho)}^2 = \sum_k c_k^2$, $\|\phi\|_{H_G}^2 = \sum_k \lambda_k^{-1} c_k^2$

1 Review: learning kernels

Outline

1. Review: learning kernels

2. Why is DARTR good?

3. SNA for DARTR

4. SNA for fractional DARTR

Why is DARTR good: (1) removing error outside FSOI:

$$\widehat{\phi} = \mathcal{L}_{\overline{G}}^{-1} \phi^{D} = \mathcal{L}_{\overline{G}}^{-1} (\mathcal{L}_{\overline{G}} \phi_{true} + \phi_{H}^{\text{error}} + \phi_{H^{\perp}}^{\text{error}})$$

► DARTR: $\|\phi_{H^{\perp}}^{\text{error}}\|_{H_G}^2 = \infty$; $\mathcal{L}_{\overline{G}}\phi_{H^{\perp}}^{\text{error}} = 0$.

$$(\mathcal{L}_{\overline{G}} + \lambda \mathcal{L}_{\overline{G}}^{-1})^{-1} \phi^{D} = (\mathcal{L}_{\overline{G}} + \lambda \mathcal{L}_{\overline{G}}^{-1})^{-1} (\mathcal{L}_{\overline{G}} \phi_{true} + \phi_{H}^{\text{error}})$$

• l^2 or L^2 regularizer: with $C = \sum_i \phi_i \otimes \phi_i$ or C = I

$$(\mathcal{L}_{\overline{G}} + \lambda C)^{-1} \phi^{D} = (\mathcal{L}_{\overline{G}} + \lambda C)^{-1} (\mathcal{L}_{\overline{G}} \phi_{true} + \phi^{\text{error}}_{H} + \phi^{\text{error}}_{H^{\perp}})$$

(2) Another metric on *H*. What if L^2 is restricted to FSOI (i.e. use I_H)?

$$(\mathcal{L}_{\overline{G}} + \lambda \mathcal{L}_{\overline{G}}^{-1})^{-1} \phi^{D}$$
 v.s. $(\mathcal{L}_{\overline{G}} + \lambda I_{H})^{-1} \phi^{D}$

Norms on *H* for regularization: L^2 , H_G , l^2

Previous numerical tests:

- DARTR has more consistent rates, but not always better.
- Depending on hyper-parameter selection

$$R_{\phi}[u] = \nabla \cdot [u(K_{\phi} * u)] = f, \quad K_{\phi} = \phi(|x|) \frac{x}{|x|}$$

More robust L-curve

Has DARTR been lucky in getting λ_* ?

Can we PROVE it "better"?

Quantitative: more accurate, robust; faster rate?

$$\begin{split} \mathcal{E}(\phi) &= \frac{1}{N} \sum_{i=1}^{N} \| R_{\phi}[u_i] - f_i \|_{L^2}^2 = \langle \mathcal{L}_{\overline{G}} \phi, \phi \rangle_{L^2(\rho)} - 2 \langle \phi^D, \phi \rangle_{L^2(\rho)} + C \\ \hat{\phi}_{\lambda}^{L_{\rho}^2} &= \operatorname*{arg\,min}_{\phi \in L_{\rho}^2} \mathcal{E}(\phi) + \lambda \left\| \phi \right\|_{L_{\rho}^2}^2 = (\mathcal{L}_{\overline{G}} + \lambda I_H)^{-1} \phi^D, \\ \hat{\phi}_{\lambda}^{H_G} &= \operatorname*{arg\,min}_{\phi \in H_G} \mathcal{E}(\phi) + \lambda \left\| \phi \right\|_{H_G}^2 = (\mathcal{L}_{\overline{G}}^2 + \lambda I)^{-1} \mathcal{L}_{\overline{G}} \phi^D. \end{split}$$

Spectral decomposition: $R_{\phi}[u] + \eta = f$; η = white noise

- $\mathcal{L}_{\overline{G}}: \{(\lambda_k, \psi_k)\}_{k \ge 1}, \{(0, \psi_j^0)\}_{j \ge 1}; \text{ o.n.b. of } L^2_{\rho}$
- $\phi^D = \mathcal{L}_{\overline{G}}\phi_* + \phi^{\sigma}: \phi^{\sigma} \sim \mathcal{N}(0, \sigma^2 \mathcal{L}_{\overline{G}}), = \sum_i \sigma \xi_i \lambda_i^{1/2} \psi_i \text{ with } \{\xi_i\} \text{ iid } [\text{ measure on inifinite-D space: need } \mathcal{L}_{\overline{G}} \text{ to be of trace-class.}]$

$$\begin{split} \widehat{\phi}_{\lambda}^{L_{\rho}^{2}} &= \operatorname*{arg\,min}_{\phi \in L_{\rho}^{2}} \, \mathcal{E}(\phi) + \lambda \, \|\phi\|_{L_{\rho}^{2}}^{2} = (\mathcal{L}_{\overline{G}} + \lambda I_{H})^{-1} \phi^{D}, \\ \widehat{\phi}_{\lambda}^{H_{G}} &= \operatorname*{arg\,min}_{\phi \in H_{G}} \, \mathcal{E}(\phi) + \lambda \, \|\phi\|_{H_{G}}^{2} = (\mathcal{L}_{\overline{G}}^{-2} + \lambda I)^{-1} \mathcal{L}_{\overline{G}} \phi^{D}. \end{split}$$

Spectral decomposition:

Then, the L^2_{ρ} errors are

$$\left\| \widehat{\phi}_{\lambda}^{L_{\rho}^{2}} - \phi_{*} \right\|_{L_{\rho}^{2}}^{2} = \sum_{i} (\lambda_{i} + \lambda)^{-2} (\sigma \lambda_{i}^{1/2} \xi_{i} - \lambda c_{i})^{2} + \sum_{j} d_{j}^{2},$$
$$\left\| \widehat{\phi}_{\lambda}^{H_{G}} - \phi_{*} \right\|_{L_{\rho}^{2}}^{2} = \sum_{i} (\lambda_{i}^{2} + \lambda)^{-2} (\sigma \lambda_{i}^{3/2} \xi_{i} - \lambda c_{i})^{2} + \sum_{j} d_{j}^{2},$$

Which one is more accurate?

$$\begin{split} \left\| \widehat{\phi}_{\lambda}^{L_{\rho}^{2}} - \phi_{*} \right\|_{L_{\rho}^{2}}^{2} &= \sum_{i} (\lambda_{i} + \lambda)^{-2} (\sigma \lambda_{i}^{1/2} \xi_{i} - \lambda c_{i})^{2} + \sum_{j} d_{j}^{2}, \\ \left\| \widehat{\phi}_{\lambda}^{H_{G}} - \phi_{*} \right\|_{L_{\rho}^{2}}^{2} &= \sum_{i} (\lambda_{i}^{2} + \lambda)^{-2} (\sigma \lambda_{i}^{3/2} \xi_{i} - \lambda c_{i})^{2} + \sum_{j} d_{j}^{2}, \end{split}$$

- Too many factors: sequences $\{\lambda_i, c_i, \sigma\xi_i\}, \lambda$
- How to reduce the factors?

Outline

1. Review: learning kernels

2. Why is DARTR good?

3. SNA for DARTR

4. SNA for fractional DARTR

Small noise analysis for DARTR

$$\begin{split} \left\| \widehat{\phi}_{\lambda}^{L_{\rho}^{2}} - \phi_{*} \right\|_{L_{\rho}^{2}}^{2} &= \sum_{i} (\lambda_{i} + \lambda)^{-2} (\sigma \lambda_{i}^{1/2} \xi_{i} - \lambda c_{i})^{2} + \sum_{j} d_{j}^{2}, \\ \left\| \widehat{\phi}_{\lambda}^{H_{G}} - \phi_{*} \right\|_{L_{\rho}^{2}}^{2} &= \sum_{i} (\lambda_{i}^{2} + \lambda)^{-2} (\sigma \lambda_{i}^{3/2} \xi_{i} - \lambda c_{i})^{2} + \sum_{j} d_{j}^{2}, \end{split}$$

Assume all $d_j = 0$, i.e., $\phi_* \in FSOI$. Remove randomness by \mathbb{E} :

$$e^{L_{\rho}^{2}}(\lambda) = \mathbb{E} \left\| \widehat{\phi}_{\lambda}^{L_{\rho}^{2}} - \phi_{*} \right\|_{L_{\rho}^{2}}^{2} = \sum_{i} (\lambda_{i} + \lambda)^{-2} (\sigma^{2} \lambda_{i} + \lambda^{2} c_{i}^{2}),$$
$$e^{H_{G}}(\lambda) = \mathbb{E} \left\| \widehat{\phi}_{\lambda}^{H_{G}} - \phi_{*} \right\|_{L_{\rho}^{2}}^{2} = \sum_{i} (\lambda_{i}^{2} + \lambda)^{-2} (\sigma^{2} \lambda_{i}^{3} + \lambda^{2} c_{i}^{2}).$$

Rate of convergence as $\sigma \rightarrow 0$? 3 SNA for DARTR

Theorem (Small noise limit[LO23]) Assume $\lambda_i = e^{-\theta i}$ for all $i \ge 1$ with $\theta > 0$. Let $\phi_* = \sum_i c_i \psi_i \in H$. (a) When $\sup_i \lambda_i^{-1} c_i^2 < \infty$ [e.g., $\phi_* \in H_G: \sum_i \lambda_i^{-1} c_i^2 < \infty$] \Rightarrow upper bound:

$$\min_{\lambda>0} e^{H_G}(\lambda) \le e^{H_G}(\sigma^2) \le (1 + \sup_i \lambda_i^{-1} c_i^2) C_1 \sigma + O(\sigma^2)$$

where $O(\sigma^2)$ is the big-O notation. (b) Furthermore, if ϕ_* has $c_i^2 = \lambda_i$ ($\phi_* \in H \setminus H_G$) \Rightarrow sharp rates:

$$\begin{split} \lambda_* &= \operatorname*{arg\,min}_{\lambda>0} e^{H_G}(\lambda) = \sigma^2, \qquad e^{H_G}(\lambda_*) = \frac{\pi}{4\theta} \sigma + O(\sigma^2); \\ \widetilde{\lambda}_* &= \operatorname*{arg\,min}_{\lambda>0} e^{L_{\rho}^2}(\lambda) = \sigma + O(\sigma^2), \qquad e^{L_{\rho}^2}(\widetilde{\lambda}_*) = \frac{2}{\theta} \sigma + O(\sigma^2). \end{split}$$

Scheme of small noise analysis

Three steps:

- Step 1: Reduce the optimization in λ to solving an algebraic equation;
- Step 2: Use integrals to approx. the series (dominating terms, small λ);
- Step 3: Solve an algebraic equation for λ_* ; compute optimal rate.

Scheme of small noise analysis

Three steps:

Step 1: Reduce the optimization in λ to solving an algebraic equation;

Step 2: Use integrals to approx. the series (dominating terms, small λ);

Step 3: Solve an algebraic equation for λ_* ; compute optimal rate.

Wahba77 [Grace Wahba. Practical approximate solutions to linear operator equations when the data are noisy. SIAM J. numerical analysis, 14(4):651–667, 1977.]

$$e(\lambda, s) := \sum_{i} (\lambda_i^{1+s} + \lambda)^{-2} (\sigma^2 \lambda_i^{1+2s} + \lambda^2 c_i^2)$$
$$e^{L_{\rho}^2}(\lambda) = \sum_{i} (\lambda_i + \lambda)^{-2} (\sigma^2 \lambda_i + \lambda^2 c_i^2) = e(\lambda, 0),$$
$$e^{H_G}(\lambda) = \sum_{i} (\lambda_i^2 + \lambda)^{-2} (\sigma^2 \lambda_i^3 + \lambda^2 c_i^2) = e(\lambda, 1).$$

Step 1: For each $s \in \{0, 1\}$, $\lambda_* := \underset{\lambda > 0}{\operatorname{arg\,min}} e(\lambda, s)$ satisfies $\lambda = -\sigma^2 \frac{A'(\lambda; s)}{2B_1(\lambda; s)}$,

$$-\frac{1}{2}A'(\lambda;s) = \sum_{i} (\lambda_{i}^{s+1} + \lambda)^{-3} \lambda_{i}^{2s+1}, \quad B_{1}(\lambda;s) = \sum_{i} (\lambda_{i}^{s+1} + \lambda)^{-3} \lambda_{i}^{s+1} c_{i}^{2s}.$$

Proof:

$$e(\lambda, s) := \sum_{i} (\lambda_{i}^{1+s} + \lambda)^{-2} (\sigma^{2} \lambda_{i}^{1+2s} + \lambda^{2} c_{i}^{2})$$
$$= \sigma^{2} A(\lambda, s) + \lambda^{2} B(\lambda, s)$$
$$0 = \frac{d}{d\lambda} e(\lambda, s) = \sigma^{2} A'(\lambda, s) + 2\lambda \underbrace{[B(\lambda, s) + \frac{\lambda}{2} B'(\lambda, s)]}_{B_{1}(\lambda, s)}$$

s = 1: if $c_i^2 = \lambda_i$, then $-\frac{1}{2}A'(\lambda; s) = B_1(\lambda, s)$. Then,

 H_G - regularizer : $\lambda_* = \sigma^2, e^{H_G}(\lambda_*) = \sigma^2 A(\sigma^2, 1) + \sigma^4 B(\sigma^2, 1)$

Step 2: estimate the dominating order of these series. λ small, $c_i = \lambda_i$

$$-\frac{1}{2}A'(\lambda;0) = \sum_{i} (\lambda_{i}^{s+1} + \lambda)^{-3}\lambda_{i}^{2s+1} = \frac{(1+2\lambda)}{2\theta\lambda^{2}(1+\lambda)^{2}} + O(1),$$

$$B_{1}(\lambda;0) = \sum_{i} (\lambda_{i}^{s+1} + \lambda)^{-3}\lambda_{i}^{s+1}c_{i}^{2} = \frac{1}{2\theta\lambda(1+\lambda)^{2}} + O(1)$$

$$A(\lambda;s) = \sum_{i} (\lambda_{i}^{s+1} + \lambda)^{-2}\lambda_{i}^{2s+1} = \frac{1}{2\theta\sqrt{\lambda}} [\arctan\frac{1}{\sqrt{\lambda}} - \frac{\sqrt{\lambda}}{1+\lambda}] + O(1)$$

$$B(\lambda;s) = \sum_{i} (\lambda_{i}^{s+1} + \lambda)^{-2}c_{i}^{2} = \frac{1}{2\theta}\lambda^{-3/2} [\arctan\frac{1}{\sqrt{\lambda}} + \frac{\sqrt{\lambda}}{1+\lambda}] + O(1)$$

Basic idea:

The series = Riemann sum + O(1); Riemann sum = $O(\lambda^{-x})$

Step 2: estimate the dominating order of these series. λ small, $c_i = \lambda_i$

$$-\frac{1}{2}A'(\lambda;0) = \sum_{i} (\lambda_{i}^{s+1} + \lambda)^{-3}\lambda_{i}^{2s+1} = \frac{(1+2\lambda)}{2\theta\lambda^{2}(1+\lambda)^{2}} + O(1),$$

$$B_{1}(\lambda;0) = \sum_{i} (\lambda_{i}^{s+1} + \lambda)^{-3}\lambda_{i}^{s+1}c_{i}^{2} = \frac{1}{2\theta\lambda(1+\lambda)^{2}} + O(1)$$

$$A(\lambda;s) = \sum_{i} (\lambda_{i}^{s+1} + \lambda)^{-2}\lambda_{i}^{2s+1} = \frac{1}{2\theta\sqrt{\lambda}} [\arctan\frac{1}{\sqrt{\lambda}} - \frac{\sqrt{\lambda}}{1+\lambda}] + O(1)$$

$$B(\lambda;s) = \sum_{i} (\lambda_{i}^{s+1} + \lambda)^{-2}c_{i}^{2} = \frac{1}{2\theta}\lambda^{-3/2} [\arctan\frac{1}{\sqrt{\lambda}} + \frac{\sqrt{\lambda}}{1+\lambda}] + O(1)$$

Basic idea:

The series = Riemann sum + O(1); Riemann sum = $O(\lambda^{-x})$ Step 3: solve the algebraic equations for λ_* and compute $e(\lambda_*, s)$.

Numerical tests on Fredholm equation of the 1st kind:

$$y(t) = \int_a^b K(s,t)\phi(s)ds + \sigma \dot{W}(t), \quad K(s,t) = s^{-2}e^{-st}, \ t \in [c,d]$$

▶ Data:
$$(y(t_1), \ldots, y(t_m)) \in \mathbb{R}^m$$
.

b Discrete problem: ϕ on a mesh.

Exponential spectrum decay

Similar to learning kernels in operators $R_{\phi}[u](x) = \int \phi(|x-y|)g[u](x,y)dy$

Typical estimators when nsr = 2 and their recovery of the signal.

(a) True solution inside FSOI

(b) True solution outside FSOI

- All estimators recover the signal y accurately (de-noising)
- *H_G* outperforms *l*² and *L*² in (a), but it slightly underperforms the *L*² regularizer in (b).

Convergence in small noise limit

Settings:

- Mean and std in 100 realizations.
- Hyper-parameter selected from data.
- c_i^2 : not decaying as λ_i

Results:

- Errors "decay" with σ
- (a): H_G outperforms l² and L²;
 (b): slightly outperforms L²_ρ.

(a) ϕ_{true} inside FSOI

(b) ϕ_{true} outside FSOI

Outline

- 1. Review: learning kernels
- 2. Why is DARTR good?
- 3. SNA for DARTR
- 4. SNA for fractional DARTR

Fractional DARTR

Definition (Fractional RKHS)

For $s \ge 0$, $H = \text{Null}(\mathcal{L}_{\overline{G}})^{\perp}$, $\phi = \sum_{i:\lambda_i > 0} c_{i,\phi} \psi_i$: $H^s_G = \mathcal{L}_{\overline{G}}^{s/2}(H)$ with norm $\|\phi\|^2_{H^s_G} = \|\mathcal{L}_{\overline{G}}^{-s/2}\phi\|^2_{L^2_o} = \sum_i \lambda_i^{-s} c_{i,\phi}^2$

•
$$s = 0$$
: $H_G^0 = H$; $s = 1$: $H_G^1 = H_G$

Similar to Sobolev space when $\lambda_k = k^{-2}$?

Fractional DARTR

Definition (Fractional RKHS)

For $s \ge 0$, $H = \text{Null}(\mathcal{L}_{\overline{G}})^{\perp}$, $\phi = \sum_{i:\lambda_i > 0} c_{i,\phi}\psi_i$: $H_G^s = \mathcal{L}_{\overline{G}}^{s/2}(H)$ with norm $\|\phi\|_{H_G^s}^2 = \|\mathcal{L}_{\overline{G}}^{-s/2}\phi\|_{L_{\rho}^2}^2 = \sum_i \lambda_i^{-s} c_{i,\phi}^2$

•
$$s = 0$$
: $H_G^0 = H$; $s = 1$: $H_G^1 = H_G$

Similar to Sobolev space when $\lambda_k = k^{-2}$?

Fractional DARTR:

$$\widehat{\phi}^s_{\lambda} = (\mathcal{L}_{\overline{G}} + \lambda \mathcal{L}_{\overline{G}}^{-s})^{-1} \phi^D,$$

 \triangleright s control the smoothness, λ control regu. strength

Should the best *s* be the regularity of $\phi_{true} \in H_G^r$?

Theorem (Rates in small noise limit[LL23])

Spectrum decay:
$$\lambda_k = p_i f(i)$$
 with $p_i \in [a, b] \subset \mathbb{R}^+$ and $f(x) = x^{-\theta}$ or $e^{-\theta(x-1)}$ (denote $\beta = \theta^{-1} + 1$ or 1)

• *r*-smoothness of ϕ_{true} : $\phi_* = \sum_i c_i \psi_i \in L^2_{\rho}$ with $|c_i| = \lambda_i^r$, r > 0. Then, the minimal H^s_G -regularizer's error satisfies

$$\lambda_* \simeq \begin{cases} \sigma^{\frac{2s+2}{2r+1}}, & s > r - \frac{\beta+1}{2}, \\ \sigma^{\frac{2s+2}{2s+2+\beta}}, & s < r - \frac{\beta+1}{2}; \end{cases} \quad e(\lambda_*; s) \simeq \begin{cases} \sigma^{2-\frac{2\beta}{2r+1}}, & s > r - \frac{\beta+1}{2}, \\ \sigma^{2-\frac{2\beta}{2s+2+\beta}}, & s < r - \frac{\beta+1}{2}. \end{cases}$$

- Optimal rate depends on all factors (s, θ, r)!
- Proof using the SNA-scheme
- Not optimal near the threshold $s = r \frac{\beta+1}{2}$ (no algebraic equation due to a log-term)

Should s = r when H_G^s -regularizer and $\phi_{true} \in H_G^r$?

4 SNA for fractional DARTR

- Over-smoothing OK (according to the rate)
- Trouble in the selection of \u03c6_{*} when s large

Over-smoothing makes it difficult to select the optimal λ_* Settings: $f(x) \approx x^{-4}$, $\beta = \frac{5}{4}$, r = 1.5.

- Over-smoothing (s = 2): difficult to select λ_{*}(right), leading to a relatively large error (left).
- Under-smoothing (s = 0): optimal λ_{*} too small (right); leading to large error (left)
- Properly regularization with s = 1: λ_{*} close to the oracle ones, leading accurate estimators

Summary

Compare regularization norms: small noise analysis

- Practice: too many factors to analyze
- Small noise analysis:
 - Reduce the complexity to rate in $\sigma \rightarrow 0$
 - spectrum decay
 - smoothness: fractional space $\mathcal{L}_{\overline{G}}^{s}$
 - Oracle λ_{*} minimizing L²-error
 - A simple scheme: Riemann sum + algebraic equations

A surprising insight:

Over-smoothing OK in theory; trouble in optimal λ_* selection

Future directions

Inverse problems \leftrightarrow Learning with nonlocal dependence

- Convergence: Δx , *N*? Minimax rate?
- Jointly select (s, λ) in computation? Iterative DARTR?
- Automatic kernel for Gaussian Process/Kernel Regression?

Future directions

Inverse problems \leftrightarrow Learning with nonlocal dependence

- Convergence: $\Delta x, N$? Minimax rate?
- ► Jointly select (s, λ) in computation? Iterative DARTR?
- Automatic kernel for Gaussian Process/Kernel Regression?

