Introduction to Nonparametric Learning of Kernels in Operators

Fei Lu
Department of Mathematics, Johns Hopkins University

Plan:
Lecture 1. Overview and a review of classical learning theory
Lecture 2. Learning interaction kernels in interacting particle systems
Lecture 3. Coercivity condition and minimax rate of convergence
Lecture 4. Learning interaction kernels in mean-field equations
Lecture 5. Data adaptive RKHS Tikhonov regularization
Lecture 6. Small noise analysis of RKHS regularizations

Lec6. Small noise analysis for Tikhonov regularization

Learn the kernel ϕ :

$$
R_{\phi}[u]+\epsilon=f
$$

from data:

$$
\mathcal{D}=\left\{\left(u_{k}, f_{k}\right)\right\}_{k=1}^{N}, \quad\left(u_{k}, f_{k}\right) \in \mathbb{X} \times \mathbb{Y}
$$

Variational approach: ill-posed \Rightarrow Regularization, Tikhonov

$$
\widehat{\phi}_{\lambda}=\underset{\phi \in \mathcal{H}}{\arg \min } \mathcal{E}(\phi)+\lambda\|\phi\|_{*}^{2}
$$

- Regression:

$$
\begin{gathered}
\phi=\sum_{k=1}^{n} c_{k} \phi_{k}, \quad A_{n} c=b_{n} \\
\left\|A_{n} c-b_{n}\right\|^{2}+\lambda\|c\|_{*}^{2}
\end{gathered}
$$

- Regularization norms:

$$
l^{2}, L^{2}, \text { RKHSs, } H^{1} \ldots
$$

1. Review: learning kernels
2. Why is DARTR good?
3. SNA for DARTR
4. SNA for fractional DARTR

- LO23: Lu+Ou arXiv 2303
- LL23: Lang+Lu arXiv2305.

Which norm is better? Proof?

Outline

1. Review: learning kernels
2. Why is DARTR good?
3. SNA for DARTR
4. SNA for fractional DARTR

1 Review: learning kernels

Learning kernels in operators

Learn the kernel ϕ :

$$
R_{\phi}[u]+\epsilon=f
$$

from data:

$$
\mathcal{D}=\left\{\left(u_{k}, f_{k}\right)\right\}_{k=1}^{N}, \quad\left(u_{k}, f_{k}\right) \in \mathbb{X} \times \mathbb{Y}
$$

- Operator $R_{\phi}[u](x)=\int \phi(|x-y|) g[u](x, y) d y$
- interacting particles/agents

$$
\begin{gathered}
R_{\phi}[u]=\nabla \cdot\left[u\left(K_{\phi} * u\right)\right]=\partial_{t} u-\sigma \Delta u, \quad K_{\phi}(x)=\phi(|x|) \frac{x}{|x|} \in \mathbb{R}^{d} \\
R_{\phi}\left[\mathbf{X}_{t}\right]=\left[-\frac{1}{n} \sum_{j=1}^{n} K_{\phi}\left(X_{t}^{i}-X_{t}^{j}\right)\right]_{i}=\dot{\mathbf{X}}_{t}+\dot{\mathbf{W}}_{t},
\end{gathered} \mathbb{R}^{n d} .
$$

- nonlocal PDEs: $R_{\phi}[u]=\partial_{t t} u-v$

$$
R_{\phi}[u](x)=\int_{\Omega} \phi(|x-y|)[u(y)-u(x)] d y=\partial_{t t} u-v .
$$

- Integral operators, deconvolution, Toeplitz/Hankel matrix ... Toeplitz matrix: $R_{\phi} u=f, R_{\phi}(i, j)=\phi(i-j)$

Learning kernels in operators

Learn the kernel ϕ :

$$
R_{\phi}[u]+\epsilon=f
$$

from data:

$$
\mathcal{D}=\left\{\left(u_{k}, f_{k}\right)\right\}_{k=1}^{N}, \quad\left(u_{k}, f_{k}\right) \in \mathbb{X} \times \mathbb{Y}
$$

- Operator $R_{\phi}[u](x)=\int \phi(|x-y|) g[u](x, y) d y$
- $R_{\phi}[u]$ linear in ϕ
- Data: discrete/noisy, Nonlocal dependence
- random $\left(u_{k}, f_{k}\right) \sim \mu \otimes \nu$: statistical learning
- deterministic (e.g., N small): inverse problem

Learning kernels in operators

Learn the kernel ϕ :

$$
R_{\phi}[u]+\epsilon=f
$$

from data:

$$
\mathcal{D}=\left\{\left(u_{k}, f_{k}\right)\right\}_{k=1}^{N}, \quad\left(u_{k}, f_{k}\right) \in \mathbb{X} \times \mathbb{Y}
$$

- Operator $R_{\phi}[u](x)=\int \phi(|x-y|) g[u](x, y) d y$
- $R_{\phi}[u]$ linear in ϕ
- Data: discrete/noisy, Nonlocal dependence
- random $\left(u_{k}, f_{k}\right) \sim \mu \otimes \nu$: statistical learning
- deterministic (e.g., N small): inverse problem

Nonparametric inference \Leftrightarrow Variational inverse problem

$$
\widehat{\phi}=\underset{\phi \in \mathcal{H}}{\arg \min } \mathcal{E}(\phi), \quad \mathcal{E}(\phi)=\frac{1}{N} \sum_{i=1}^{N}\left\|R_{\phi}\left[u_{i}\right]-f_{i}\right\|_{\mathbb{Y}}^{2} .
$$

1 Review: learning kernels

Computation: Regression and Regularization

Nonparametric Regression: $\phi=\sum_{i=1}^{n} c_{i} \phi_{i} \in \mathcal{H}_{n}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}$:

$$
\mathcal{E}(\phi)=c^{\top} \bar{A}_{n} c-2 c^{\top} \bar{b}_{n}+C_{N}^{f}, \Rightarrow \widehat{\phi}_{\mathcal{H}_{n}}=\sum_{i} \widehat{c}_{i} \phi_{i}, \text { where } \widehat{c}=\bar{A}_{n}^{-1} \bar{b}_{n},
$$

Regularization necessary: \bar{A}_{n} ill-conditioned \& \bar{b}_{n} : noisy or with error Tikhonov/ridge Regularization: $\left(\|c\|_{B_{*}}^{2}=c^{\top} B_{*} c\right)$

$$
\begin{aligned}
\mathcal{E}_{\lambda}(\phi) & =\mathcal{E}(\phi)+\lambda\|\phi\|_{*}^{2} \Rightarrow c^{\top} \bar{A}_{n} c-2 \bar{b}_{n}^{\top} c+\lambda\|c\|_{B_{*}}^{2} \\
\widehat{\phi}_{\mathcal{H}_{n}}^{\lambda} & =\sum_{i} \widehat{c}_{i}^{\lambda} \phi_{i}, \quad \text { where } \widehat{c}=\left(\bar{A}_{n}+\lambda B_{*}\right)^{-1} \bar{b}_{n},
\end{aligned}
$$

Computation: Regression and Regularization

Nonparametric Regression: $\phi=\sum_{i=1}^{n} c_{i} \phi_{i} \in \mathcal{H}_{n}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}$:

$$
\mathcal{E}(\phi)=c^{\top} \bar{A}_{n} c-2 c^{\top} \bar{b}_{n}+C_{N}^{f}, \Rightarrow \widehat{\phi}_{\mathcal{H}_{n}}=\sum_{i} \widehat{c}_{i} \phi_{i}, \text { where } \widehat{c}=\bar{A}_{n}^{-1} \bar{b}_{n},
$$

Regularization necessary: \bar{A}_{n} ill-conditioned \& \bar{b}_{n} : noisy or with error Tikhonov/ridge Regularization: $\left(\|c\|_{B_{*}}^{2}=c^{\top} B_{*} c\right)$

$$
\mathcal{E}_{\lambda}(\phi)=\mathcal{E}(\phi)+\lambda\|\phi\|_{*}^{2} \Rightarrow c^{\top} \bar{A}_{n} c-2 \bar{b}_{n}^{\top} c+\lambda\|c\|_{B_{*}}^{2}
$$

$$
\widehat{\phi}_{\mathcal{H}_{n}}^{\lambda}=\sum_{i} \widehat{c}_{i}^{\lambda} \phi_{i}, \quad \text { where } \widehat{c}=\left(\bar{A}_{n}+\lambda B_{*}\right)^{-1} \bar{b}_{n},
$$

- Hyper-parameter λ : CV, truncated SVD, ... The L-curve method [Hansenoo]
- Which norm $\|\cdot\|_{*}$?

1 Review: learning kernels

Identifiability

- An exploration measure: $\rho(d r) \quad \Rightarrow \phi \in L^{2}(\rho)$

$$
R_{\phi}[u](x)=\int_{\Omega} \phi(|x-y|) g[u](x, y) d y, \quad \rho(d r) \propto \iint \delta_{|x-y|}(d r)|g[u](x, y)| d x d y
$$

- An integral operator \Leftarrow the Fréchet derivative of loss functional

$$
\begin{aligned}
\mathcal{E}(\psi) & =\frac{1}{N} \sum_{i=1}^{N}\left\|R_{\psi}\left[u_{i}\right]-f_{i}\right\|_{L^{2}}^{2}=\left\langle\mathcal{L}_{\bar{G}} \psi, \psi\right\rangle_{L^{2}(\rho)}-2\left\langle\phi^{D}, \psi\right\rangle_{L^{2}(\rho)}+C \\
\nabla \mathcal{E}(\psi) & =2 \mathcal{L}_{\bar{G}} \psi-2 \phi^{D}=0 \quad \Rightarrow \widehat{\phi}=\mathcal{L}_{\bar{G}}{ }^{-1} \phi^{D}
\end{aligned}
$$

- $\mathcal{L}_{\bar{G}}$ is a nonnegative compact operator: $\left\{\left(\lambda_{i}, \psi_{i}\right)\right\}, \lambda_{i} \downarrow 0$
[Open: can we make it coercive by designing data collection?]
$-\phi^{D}=\mathcal{L}_{\bar{G}} \phi_{\text {true }}+\phi^{\text {error }}$
- Function space of identifiability (FSOI):

$$
\widehat{\phi}=\mathcal{L}_{\bar{G}}{ }^{-1}\left(\mathcal{L}_{\bar{G}} \phi_{\text {true }}+\phi^{\text {error }}\right) \Rightarrow \quad H=\operatorname{span}\left\{\psi_{i}\right\}_{i: \lambda_{i}>0}
$$

- ill-defined beyond H; ill-posed in H

1 Review: learning kernels

DARTR: Data Adaptive RKHS Tikhonov Regularization

$$
\widehat{\phi}=\mathcal{L}_{\bar{G}}{ }^{-1} \phi^{D}=\mathcal{L}_{\bar{G}}{ }^{-1}\left(\mathcal{L}_{\bar{G}} \phi_{\text {true }}+\phi^{\text {error }}\right)
$$

A new task for Regularization: ensure that the learning takes place in the FSOI

$$
\text { data-dependent } \quad H=\operatorname{span}\left\{\psi_{i}\right\}_{i: \lambda_{i}>0}=\overline{H G}^{L^{2}(\rho)}
$$

- $\bar{G} \Rightarrow$ RKHS: $H_{G}=\mathcal{L}_{\bar{G}}{ }^{1 / 2}\left(L^{2}(\rho)\right)$
- For $\phi=\sum_{k} c_{k} \psi_{k},\|\phi\|_{L^{2}(\rho)}^{2}=\sum_{k} c_{k}^{2}, \quad\|\phi\|_{H_{G}}^{2}=\sum_{k} \lambda_{k}^{-1} c_{k}^{2}$
\Rightarrow Regularization norm: $\|\phi\|_{H_{G}}^{2}$

$$
\mathcal{E}_{\lambda}(\phi)=\mathcal{E}(\phi)+\lambda\|\phi\|_{H_{G}}^{2} \Rightarrow c^{\top} \bar{A}_{n} c-2 \bar{b}_{n}^{\top} c+\lambda\|c\|_{B_{r k l s}}^{2}
$$

Outline

1. Review: learning kernels
2. Why is DARTR good?

3. SNA for DARTR

4. SNA for fractional DARTR

Why is DARTR good: (1) removing error outside FSOI:

$$
\widehat{\phi}=\mathcal{L}_{\bar{G}}{ }^{-1} \phi^{D}=\mathcal{L}_{\bar{G}^{-1}}{ }^{-1}\left(\mathcal{L}_{\bar{G}} \phi_{\text {true }}+\phi_{H}^{\text {error }}+\phi_{H^{\perp}}^{\text {error }}\right)
$$

- DARTR: $\left\|\phi_{H \perp}^{\text {error }}\right\|_{H_{G}}^{2}=\infty ; \mathcal{L}_{\bar{G}} \phi_{H \perp}^{\text {error }}=0$.

$$
\left(\mathcal{L}_{\bar{G}}+\lambda \mathcal{L}_{\bar{G}}{ }^{-1}\right)^{-1} \phi^{D}=\left(\mathcal{L}_{\bar{G}}+\lambda \mathcal{L}_{\bar{G}}{ }^{-1}\right)^{-1}\left(\mathcal{L}_{\bar{G}} \phi_{\text {true }}+\phi_{H}^{\text {error }}\right)
$$

- l^{2} or L^{2} regularizer: with $C=\sum_{i} \phi_{i} \otimes \phi_{i}$ or $C=I$

$$
\left(\mathcal{L}_{\bar{G}}+\lambda C\right)^{-1} \phi^{D}=\left(\mathcal{L}_{\bar{G}}+\lambda C\right)^{-1}\left(\mathcal{L}_{\bar{G}} \phi_{\text {true }}+\phi_{H}^{\text {error }}+\phi_{H \perp}^{\text {error }}\right)
$$

(2) Another metric on H.

What if L^{2} is restricted to FSOI (i.e. use I_{H})?

$$
\left(\mathcal{L}_{\bar{G}}+\lambda \mathcal{L}_{\bar{G}}{ }^{-1}\right)^{-1} \phi^{D} \quad \text { v.s. } \quad\left(\mathcal{L}_{\bar{G}}+\lambda I_{H}\right)^{-1} \phi^{D}
$$

Norms on H for regularization: L^{2}, H_{G}, l^{2}

Previous numerical tests:

- DARTR has more consistent rates, but not always better.
- Depending on hyper-parameter selection

$$
R_{\phi}[u]=\nabla \cdot\left[u\left(K_{\phi} * u\right)\right]=f, \quad K_{\phi}=\phi(|x|) \frac{x}{|x|}
$$

Typical estimators, $\Delta x=0.05$

Convergence of Estimators, nsr $=0.1$ \& 1

More robust L-curve

Has DARTR been lucky in getting λ_{*} ?

Can we PROVE it "better"?

Quantitative: more accurate, robust; faster rate?
$\mathcal{E}(\phi)=\frac{1}{N} \sum_{i=1}^{N}\left\|R_{\phi}\left[u_{i}\right]-f_{i}\right\|_{L^{2}}^{2}=\left\langle\mathcal{L}_{\bar{G}} \phi, \phi\right\rangle_{L^{2}(\rho)}-2\left\langle\phi^{D}, \phi\right\rangle_{L^{2}(\rho)}+C$

$$
\begin{aligned}
& \widehat{\phi}_{\lambda}^{L_{\rho}^{2}}=\underset{\phi \in L_{\rho}^{2}}{\arg \min } \mathcal{E}(\phi)+\lambda\|\phi\|_{L_{\rho}^{2}}^{2}=\left(\mathcal{L}_{\bar{G}}+\lambda I_{H}\right)^{-1} \phi^{D}, \\
& \widehat{\phi}_{\lambda}^{H_{G}}=\underset{\phi \in H_{G}}{\arg \min } \mathcal{E}(\phi)+\lambda\|\phi\|_{H_{G}}^{2}=\left(\mathcal{L}_{\bar{G}}{ }^{2}+\lambda I\right)^{-1} \mathcal{L}_{\bar{G}} \phi^{D} .
\end{aligned}
$$

Spectral decomposition: $R_{\phi}[u]+\eta=f ; \eta=$ white noise

- $\mathcal{L}_{\bar{G}}:\left\{\left(\lambda_{k}, \psi_{k}\right)\right\}_{k \geq 1},\left\{\left(0, \psi_{j}^{0}\right)\right\}_{j \geq 1}$; o.n.b. of L_{ρ}^{2}
- $\phi^{D}=\mathcal{L}_{\bar{G}} \phi_{*}+\phi^{\sigma}: \phi^{\sigma} \sim \mathcal{N}\left(0, \sigma^{2} \mathcal{L}_{\bar{G}}\right),=\sum_{i} \sigma \xi_{i} \lambda_{i}^{1 / 2} \psi_{i}$ with $\left\{\xi_{i}\right\}$ iid [measure on inifinite-D space: need $\mathcal{L}_{\bar{G}}$ to be of trace-class.]

$$
\begin{aligned}
& \widehat{\phi}_{\lambda}^{L_{\rho}^{2}}=\underset{\phi \in L_{\rho}^{2}}{\arg \min } \mathcal{E}(\phi)+\lambda\|\phi\|_{L_{\rho}^{2}}^{2}=\left(\mathcal{L}_{\bar{G}}+\lambda I_{H}\right)^{-1} \phi^{D}, \\
& \widehat{\phi}_{\lambda}^{H_{G}}=\underset{\phi \in H_{G}}{\arg \min } \mathcal{E}(\phi)+\lambda\|\phi\|_{H_{G}}^{2}=\left(\mathcal{L}_{\bar{G}}^{2}+\lambda I\right)^{-1} \mathcal{L}_{\bar{G}} \phi^{D} .
\end{aligned}
$$

Spectral decomposition:

- $\mathcal{L}_{\bar{G}}:\left\{\left(\lambda_{k}, \psi_{k}\right)\right\}_{k \geq 1},\left\{\left(0, \psi_{j}^{0}\right)\right\}_{j \geq 1}$
- $\phi^{D}=\mathcal{L}_{\bar{G}} \phi_{*}+\phi^{\sigma}: \phi^{\sigma} \sim \mathcal{N}\left(0, \sigma^{2} \mathcal{L}_{\bar{G}}\right),=\sum_{i} \sigma \xi_{i} \lambda_{i}^{1 / 2} \psi_{i}$ with $\left\{\xi_{i}\right\}$ iid
- Let the true function be $\phi_{*}=\sum_{i} c_{i} \psi_{i}+\sum_{j} d_{j} \psi_{j}^{0}$

Then, the L_{ρ}^{2} errors are

$$
\begin{aligned}
& \left\|\hat{\phi}_{\lambda}^{L_{\rho}^{2}}-\phi_{*}\right\|_{L_{\rho}^{2}}^{2}=\sum_{i}\left(\lambda_{i}+\lambda\right)^{-2}\left(\sigma \lambda_{i}^{1 / 2} \xi_{i}-\lambda c_{i}\right)^{2}+\sum_{j} d_{j}^{2} \\
& \left\|\widehat{\phi}_{\lambda}^{H_{G}}-\phi_{*}\right\|_{L_{\rho}^{2}}^{2}=\sum_{i}\left(\lambda_{i}^{2}+\lambda\right)^{-2}\left(\sigma \lambda_{i}^{3 / 2} \xi_{i}-\lambda c_{i}\right)^{2}+\sum_{j} d_{j}^{2}
\end{aligned}
$$

Which one is more accurate?

$$
\begin{aligned}
& \left\|\widehat{\phi}_{\lambda}^{L_{\rho}^{2}}-\phi_{*}\right\|_{L_{\rho}^{2}}^{2}=\sum_{i}\left(\lambda_{i}+\lambda\right)^{-2}\left(\sigma \lambda_{i}^{1 / 2} \xi_{i}-\lambda c_{i}\right)^{2}+\sum_{j} d_{j}^{2} \\
& \left\|\widehat{\phi}_{\lambda}^{H_{G}}-\phi_{*}\right\|_{L_{\rho}^{2}}^{2}=\sum_{i}\left(\lambda_{i}^{2}+\lambda\right)^{-2}\left(\sigma \lambda_{i}^{3 / 2} \xi_{i}-\lambda c_{i}\right)^{2}+\sum_{j} d_{j}^{2},
\end{aligned}
$$

- Too many factors: sequences $\left\{\lambda_{i}, c_{i}, \sigma \xi_{i}\right\}, \lambda$
- How to reduce the factors?

Outline

1. Review: learning kernels
2. Why is DARTR good?
3. SNA for DARTR
4. SNA for fractional DARTR

Small noise analysis for DARTR

$$
\begin{aligned}
& \left\|\widehat{\phi}_{\lambda}^{L_{\rho}^{2}}-\phi_{*}\right\|_{L_{\rho}^{2}}^{2}=\sum_{i}\left(\lambda_{i}+\lambda\right)^{-2}\left(\sigma \lambda_{i}^{1 / 2} \xi_{i}-\lambda c_{i}\right)^{2}+\sum_{j} d_{j}^{2} \\
& \left\|\widehat{\phi}_{\lambda}^{H_{G}}-\phi_{*}\right\|_{L_{\rho}^{2}}^{2}=\sum_{i}\left(\lambda_{i}^{2}+\lambda\right)^{-2}\left(\sigma \lambda_{i}^{3 / 2} \xi_{i}-\lambda c_{i}\right)^{2}+\sum_{j} d_{j}^{2}
\end{aligned}
$$

Assume all $d_{j}=0$, i.e., $\phi_{*} \in \mathrm{FSOI}$. Remove randomness by \mathbb{E} :

$$
\begin{aligned}
& e^{L_{\rho}^{2}}(\lambda)=\mathbb{E}\left\|\widehat{\phi}_{\lambda}^{L_{\rho}^{2}}-\phi_{*}\right\|_{L_{\rho}^{2}}^{2}=\sum_{i}\left(\lambda_{i}+\lambda\right)^{-2}\left(\sigma^{2} \lambda_{i}+\lambda^{2} c_{i}^{2}\right) \\
& e^{H_{G}}(\lambda)=\mathbb{E}\left\|\widehat{\phi}_{\lambda}^{H_{G}}-\phi_{*}\right\|_{L_{\rho}^{2}}^{2}=\sum_{i}\left(\lambda_{i}^{2}+\lambda\right)^{-2}\left(\sigma^{2} \lambda_{i}^{3}+\lambda^{2} c_{i}^{2}\right)
\end{aligned}
$$

Rate of convergence as $\sigma \rightarrow 0$?
3 SNA for DARTR

Theorem (Small noise limit[Loz3])
Assume $\lambda_{i}=e^{-\theta i}$ for all $i \geq 1$ with $\theta>0$. Let $\phi_{*}=\sum_{i} c_{i} \psi_{i} \in H$.
(a) When $\sup _{i} \lambda_{i}^{-1} c_{i}^{2}<\infty\left[\right.$ e.g., $\left.\phi_{*} \in H_{G}: \sum_{i} \lambda_{i}^{-1} c_{i}^{2}<\infty\right] \Rightarrow$ upper bound:

$$
\min _{\lambda>0} e^{H_{G}}(\lambda) \leq e^{H_{G}}\left(\sigma^{2}\right) \leq\left(1+\sup _{i} \lambda_{i}^{-1} c_{i}^{2}\right) C_{1} \sigma+O\left(\sigma^{2}\right)
$$

where $O\left(\sigma^{2}\right)$ is the big-O notation.
(b) Furthermore, if ϕ_{*} has $c_{i}^{2}=\lambda_{i}\left(\phi_{*} \in H \backslash H_{G}\right) \Rightarrow$ sharp rates:

$$
\begin{array}{ll}
\lambda_{*}=\underset{\lambda>0}{\arg \min } e^{H_{G}}(\lambda)=\sigma^{2}, & e^{H_{G}}\left(\lambda_{*}\right)=\frac{\pi}{4 \theta} \sigma+O\left(\sigma^{2}\right) ; \\
\widetilde{\lambda}_{*}=\underset{\lambda>0}{\arg \min } e^{L_{\rho}^{2}}(\lambda)=\sigma+O\left(\sigma^{2}\right), & e^{L_{\rho}^{2}}\left(\widetilde{\lambda}_{*}\right)=\frac{2}{\theta} \sigma+O\left(\sigma^{2}\right) .
\end{array}
$$

Scheme of small noise analysis

Three steps:
Step 1: Reduce the optimization in λ to solving an algebraic equation; Step 2: Use integrals to approx. the series (dominating terms, small λ); Step 3: Solve an algebraic equation for λ_{*}; compute optimal rate.

Scheme of small noise analysis

Three steps:
Step 1: Reduce the optimization in λ to solving an algebraic equation; Step 2: Use integrals to approx. the series (dominating terms, small λ); Step 3: Solve an algebraic equation for λ_{*}; compute optimal rate.

Wahba77 [Grace Wahba. Practical approximate solutions to linear operator equations when the data are noisy. SIAM J. numerical analysis, 14(4):651-667, 1977.]

$$
\begin{gathered}
e(\lambda, s):=\sum_{i}\left(\lambda_{i}^{1+s}+\lambda\right)^{-2}\left(\sigma^{2} \lambda_{i}^{1+2 s}+\lambda^{2} c_{i}^{2}\right) \\
e^{L_{\rho}^{2}}(\lambda)=\sum_{i}\left(\lambda_{i}+\lambda\right)^{-2}\left(\sigma^{2} \lambda_{i}+\lambda^{2} c_{i}^{2}\right)=e(\lambda, 0), \\
e^{H_{G}}(\lambda)=\sum_{i}\left(\lambda_{i}^{2}+\lambda\right)^{-2}\left(\sigma^{2} \lambda_{i}^{3}+\lambda^{2} c_{i}^{2}\right)=e(\lambda, 1) .
\end{gathered}
$$

Step 1: For each $s \in\{0,1\}, \lambda_{*}:=\underset{\lambda>0}{\arg \min } e(\lambda, s)$ satisfies

$$
\begin{gathered}
\lambda=-\sigma^{2} \frac{A^{\prime}(\lambda ; s)}{2 B_{1}(\lambda ; s)}, \\
-\frac{1}{2} A^{\prime}(\lambda ; s)=\sum_{i}\left(\lambda_{i}^{s+1}+\lambda\right)^{-3} \lambda_{i}^{2 s+1}, \quad B_{1}(\lambda ; s)=\sum_{i}\left(\lambda_{i}^{s+1}+\lambda\right)^{-3} \lambda_{i}^{s+1} c_{i}^{2} .
\end{gathered}
$$

Proof:

$$
\begin{gathered}
e(\lambda, s):=\sum_{i}\left(\lambda_{i}^{1+s}+\lambda\right)^{-2}\left(\sigma^{2} \lambda_{i}^{1+2 s}+\lambda^{2} c_{i}^{2}\right) \\
=\sigma^{2} A(\lambda, s)+\lambda^{2} B(\lambda, s) \\
0=\frac{d}{d \lambda} e(\lambda, s)=\sigma^{2} A^{\prime}(\lambda, s)+2 \lambda \underbrace{\left[B(\lambda, s)+\frac{\lambda}{2} B^{\prime}(\lambda, s)\right]}_{B_{1}(\lambda, s)}
\end{gathered}
$$

$s=1$: if $c_{i}^{2}=\lambda_{i}$, then $-\frac{1}{2} A^{\prime}(\lambda ; s)=B_{1}(\lambda, s)$. Then,

$$
H_{G}-\text { regularizer : } \lambda_{*}=\sigma^{2}, e^{H_{G}}\left(\lambda_{*}\right)=\sigma^{2} A\left(\sigma^{2}, 1\right)+\sigma^{4} B\left(\sigma^{2}, 1\right)
$$

Step 2: estimate the dominating order of these series. λ small, $c_{i}=\lambda_{i}$

$$
\begin{aligned}
-\frac{1}{2} A^{\prime}(\lambda ; 0) & =\sum_{i}\left(\lambda_{i}^{s+1}+\lambda\right)^{-3} \lambda_{i}^{2 s+1}=\frac{(1+2 \lambda)}{2 \theta \lambda^{2}(1+\lambda)^{2}}+O(1) \\
B_{1}(\lambda ; 0) & =\sum_{i}\left(\lambda_{i}^{s+1}+\lambda\right)^{-3} \lambda_{i}^{s+1} c_{i}^{2}=\frac{1}{2 \theta \lambda(1+\lambda)^{2}}+O(1) \\
A(\lambda ; s) & =\sum_{i}\left(\lambda_{i}^{s+1}+\lambda\right)^{-2} \lambda_{i}^{2 s+1}=\frac{1}{2 \theta \sqrt{\lambda}}\left[\arctan \frac{1}{\sqrt{\lambda}}-\frac{\sqrt{\lambda}}{1+\lambda}\right]+O(1) \\
B(\lambda ; s) & =\sum_{i}\left(\lambda_{i}^{s+1}+\lambda\right)^{-2} c_{i}^{2}=\frac{1}{2 \theta} \lambda^{-3 / 2}\left[\arctan \frac{1}{\sqrt{\lambda}}+\frac{\sqrt{\lambda}}{1+\lambda}\right]+O(1)
\end{aligned}
$$

Basic idea:
The series $=$ Riemann sum $+\mathrm{O}(1) ; \quad$ Riemann sum $=O\left(\lambda^{-x}\right)$

Step 2: estimate the dominating order of these series. λ small, $c_{i}=\lambda_{i}$

$$
\begin{aligned}
-\frac{1}{2} A^{\prime}(\lambda ; 0) & =\sum_{i}\left(\lambda_{i}^{s+1}+\lambda\right)^{-3} \lambda_{i}^{2 s+1}=\frac{(1+2 \lambda)}{2 \theta \lambda^{2}(1+\lambda)^{2}}+O(1), \\
B_{1}(\lambda ; 0) & =\sum_{i}\left(\lambda_{i}^{s+1}+\lambda\right)^{-3} \lambda_{i}^{s+1} c_{i}^{2}=\frac{1}{2 \theta \lambda(1+\lambda)^{2}}+O(1) \\
A(\lambda ; s) & =\sum_{i}\left(\lambda_{i}^{s+1}+\lambda\right)^{-2} \lambda_{i}^{2 s+1}=\frac{1}{2 \theta \sqrt{\lambda}}\left[\arctan \frac{1}{\sqrt{\lambda}}-\frac{\sqrt{\lambda}}{1+\lambda}\right]+O(1) \\
B(\lambda ; s) & =\sum_{i}\left(\lambda_{i}^{s+1}+\lambda\right)^{-2} c_{i}^{2}=\frac{1}{2 \theta} \lambda^{-3 / 2}\left[\arctan \frac{1}{\sqrt{\lambda}}+\frac{\sqrt{\lambda}}{1+\lambda}\right]+O(1)
\end{aligned}
$$

Basic idea:
The series $=$ Riemann sum $+\mathrm{O}(1) ; \quad$ Riemann sum $=O\left(\lambda^{-x}\right)$
Step 3: solve the algebraic equations for λ_{*} and compute $e\left(\lambda_{*}, s\right)$.

3 SNA for DARTR

Numerical tests on Fredholm equation of the 1st kind:

$$
y(t)=\int_{a}^{b} K(s, t) \phi(s) d s+\sigma \dot{W}(t), \quad K(s, t)=s^{-2} e^{-s t}, t \in[c, d]
$$

- Data: $\left(y\left(t_{1}\right), \ldots, y\left(t_{m}\right)\right) \in \mathbb{R}^{m}$.
- Discrete problem: ϕ on a mesh.
- Exponential spectrum decay

Similar to learning kernels in operators

$$
R_{\phi}[u](x)=\int \phi(|x-y|) g[u](x, y) d y
$$

Typical estimators when $n s r=2$ and their recovery of the signal.

(a) True solution inside FSOI

(b) True solution outside FSOI

- All estimators recover the signal y accurately (de-noising)
- H_{G} outperforms l^{2} and L^{2} in (a), but it slightly underperforms the L^{2} regularizer in (b).

Convergence in small noise limit

(a) $\phi_{\text {true }}$ inside FSOI

Settings:

- Mean and std in 100 realizations.
- Hyper-parameter selected from data.

- c_{i}^{2} : not decaying as λ_{i}

Results:

- Errors "decay" with σ
- (a): H_{G} outperforms l^{2} and L^{2};
(b): slightly outperforms L_{ρ}^{2}.
(b) $\phi_{\text {true }}$ outside FSOI

Outline

1. Review: learning kernels
2. Why is DARTR good?

3. SNA for DARTR

4. SNA for fractional DARTR

Fractional DARTR

Definition (Fractional RKHS)

For $s \geq 0, H=\operatorname{Null}\left(\mathcal{L}_{\bar{G}}\right)^{\perp}, \phi=\sum_{i: \lambda_{i}>0} c_{i, \phi} \psi_{i}$:
$H_{G}^{s}=\mathcal{L}_{\bar{G}}{ }^{s / 2}(H)$ with norm $\|\phi\|_{H_{G}^{s}}^{2}=\left\|\mathcal{L}_{\bar{G}^{-s / 2}} \phi\right\|_{L_{\rho}^{2}}^{2}=\sum_{i} \lambda_{i}^{-s} c_{i, \phi}^{2}$

- $s=0: H_{G}^{0}=H ; s=1: H_{G}^{1}=H_{G}$
- Similar to Sobolev space when $\lambda_{k}=k^{-2}$?

Fractional DARTR

Definition (Fractional RKHS)

For $s \geq 0, H=\operatorname{Null}\left(\mathcal{L}_{\bar{G}}\right)^{\perp}, \phi=\sum_{i: \lambda_{i}>0} c_{i, \phi} \psi_{i}$:
$H_{G}^{s}=\mathcal{L}_{\bar{G}}{ }^{s / 2}(H)$ with norm $\|\phi\|_{H_{G}^{s}}^{2}=\left\|\mathcal{L}_{\bar{G}}{ }^{-s / 2} \phi\right\|_{L_{\rho}^{2}}^{2}=\sum_{i} \lambda_{i}^{-s} c_{i, \phi}^{2}$

- $s=0: H_{G}^{0}=H ; s=1: H_{G}^{1}=H_{G}$
- Similar to Sobolev space when $\lambda_{k}=k^{-2}$?

Fractional DARTR:

$$
\widehat{\phi}_{\lambda}^{s}=\left(\mathcal{L}_{\bar{G}}+\lambda \mathcal{L}_{\bar{G}}{ }^{-s}\right)^{-1} \phi^{D},
$$

- s control the smoothness, λ control regu. strength
- Should the best s be the regularity of $\phi_{\text {true }} \in H_{G}^{r}$?

Theorem (Rates in small noise limitt[L233])

- Spectrum decay: $\lambda_{k}=p_{i} f(i)$ with $p_{i} \in[a, b] \subset \mathbb{R}^{+}$and $f(x)=x^{-\theta}$ or $e^{-\theta(x-1)}$ (denote $\beta=\theta^{-1}+1$ or 1)
- r-smoothness of $\phi_{\text {true }}: \phi_{*}=\sum_{i} c_{i} \psi_{i} \in L_{\rho}^{2}$ with $\left|c_{i}\right|=\lambda_{i}^{r}, r>0$.

Then, the minimal H_{G}^{s}-regularizer's error satisfies

- Optimal rate depends on all factors (s, θ, r) !
- Proof using the SNA-scheme
- Not optimal near the threshold $s=r-\frac{\beta+1}{2}$ (no algebraic equation due to a log-term)

Should $s=r$ when H_{G}^{s}-regularizer and $\phi_{\text {true }} \in H_{G}^{r}$?

Should $s=r$ when H_{G}^{s}-regularizer and $\phi_{\text {true }} \in H_{G}^{r}$? Settings: $f(x)=e^{-1.5 x}, \beta=1$

- Over-smoothing OK (according to the rate)
- Trouble in the selection of λ_{*} when s large

Over-smoothing makes it difficult to select the optimal λ_{*} Settings: $f(x) \approx x^{-4}, \beta=\frac{5}{4}, r=1.5$.

- Over-smoothing ($s=2$): difficult to select λ_{*} (right), leading to a relatively large error (left).
- Under-smoothing ($s=0$): optimal λ_{*} too small (right); leading to large error (left)
- Properly regularization with $s=1$:
λ_{*} close to the oracle ones, leading accurate estimators

Summary

Compare regularization norms: small noise analysis

- Practice: too many factors to analyze
- Small noise analysis:
- Reduce the complexity to rate in $\sigma \rightarrow 0$
- spectrum decay
- smoothness: fractional space $\mathcal{L}_{\bar{G}^{s}}$
- Oracle λ_{*} minimizing L^{2}-error
- A simple scheme: Riemann sum + algebraic equations

A surprising insight:
Over-smoothing OK in theory; trouble in optimal λ_{*} selection

Future directions

Inverse problems \leftrightarrow Learning with nonlocal dependence

- Convergence: $\Delta x, N$? Minimax rate?
- Jointly select (s, λ) in computation? Iterative DARTR?
- Automatic kernel for Gaussian Process/Kernel Regression?

Future directions

Inverse problems \leftrightarrow Learning with nonlocal dependence

- Convergence: $\Delta x, N$? Minimax rate?
- Jointly select (s, λ) in computation? Iterative DARTR?
- Automatic kernel for Gaussian Process/Kernel Regression?

Classical learning Learning kernel

$$
\left\{\left(x_{i}, \phi\left(x_{i}\right)+\epsilon_{i}\right)\right\} \quad\left\{\left(u_{k}, R_{\phi}\left[u_{k}\right]+\eta_{k}\right)\right\}
$$

Regularization $\widehat{\phi}=(I+\lambda Q)^{-1} \phi^{D} \quad \widehat{\phi}=\left(L_{G}+\lambda L_{G}^{-1}\right)^{-1} \phi^{D}$

