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Abstract. We investigate the unsupervised learning of non-invertible obser-

vation functions in nonlinear state space models. Assuming abundant data of
the observation process along with the distribution of the state process, we

introduce a nonparametric generalized moment method to estimate the obser-

vation function via constrained regression. The major challenge comes from the
non-invertibility of the observation function and the lack of data pairs between

the state and observation. We address the fundamental issue of identifiability

from quadratic loss functionals and show that the function space of identifia-
bility is the closure of a RKHS that is intrinsic to the state process. Numerical

results show that the first two moments and temporal correlations, along with
upper and lower bounds, can identify functions ranging from piecewise polyno-

mials to smooth functions, leading to convergent estimators. The limitations

of this method, such as non-identifiability due to symmetry and stationarity,
are also discussed.

1. Introduction. We consider the following state space model for pXt, Ytq pro-
cesses in Rˆ R:

State space model: dXt “ apXtqdt` bpXtqdBt, with a, b are known; (1.1)

Observation model: Yt “ f˚pXtq, with f˚ unknown. (1.2)

Here pBtq is the standard Brownian motion, the drift function apxq and the dif-
fusion coefficient bpxq are given, satisfying the linear growth and global Lipschitz
conditions. We assume that the initial distribution of Xt0 is given; the state space
model is therefore known, in the sense that the distribution of the process pXtq is
known.

Our goal is to estimate the unknown observation function f˚ from data consisting

of a large ensemble of trajectories of the process Yt, denoted by tY pmqt0:tLuMm“1, where

2020 Mathematics Subject Classification. Primary: 62G05, 68Q32, 62M15.
Key words and phrases. State-space models, nonparametric regression, generalized moment

method, RKHS..
MM, YGK and FL are partially supported by DE-SC0021361 and FA9550-21-1-0317. FL is

partially funded by the NSF Award DMS-1913243.
˚Corresponding author: Fei Lu.

1

http://dx.doi.org/10.3934/fods.2023002
mailto:qan2@jhu.edu
mailto:yannisk@jhu.edu
mailto:feilu@math.jhu.edu
mailto:mmaggio4@jh.edu


2 QINGCI AN, YANNIS KEVREKIDIS, FEI LU AND MAURO MAGGIONI

m indexes trajectories, and t0 ă ¨ ¨ ¨ ă tL are the times at which the observations are
made. In particular, there are no pairs pXt, Ytq being observed, so in the language
of machine learning this may be considered an unsupervised learning problem. A
case of particular interest in the present work is when the observation function f˚
is nonlinear and non-invertible, and it is within a large class of functions, including
smooth functions but also, for example, piecewise regular functions. We will also
emphasize the role and usefulness of many short trajectories, vs. few long trajecto-
ries, albeit both the theory and algorithms that we consider are generally applicable
in a wide range of regimes.

We estimate the observation function f˚ by matching generalized moments, while
constraining the estimator to a suitably chosen finite-dimensional hypothesis (func-
tion) space, whose dimension depends on the number of observations, in the spirit
of nonparametric statistics. We consider both first- and second-order moments, as
well as temporal correlations, of the observation process. The estimator minimizes
the discrepancy between the moments over an hypothesis space (e.g. spanned by B-
spline functions), with upper and lower pointwise constraints estimated from data.
The method we propose has several significant strengths:

‚ the generalized moments do not require the invertibility of the observation
function f˚;

‚ low-order generalized moments tend to be robust to additive observation noise;
‚ generalize moments avoid the need of local constructions, since they depend

on the entire distribution of the latent and observed processes;
‚ our nonparametric approach does not require a priori information about the

observation function, and, for example, it can deal with both regular and
piecewise regular functions;

‚ the method is computationally efficient because the moments need to be esti-
mated only once, and the computation is easily performed in parallel.

We note that the method we propose readily extends to multivariate state space
models, with the main statistical and computational bottlenecks coming from the
curse of dimensionality in the representation and estimation of a higher-dimensional
f˚ in terms of basis functions.

The problem we are considering has been studied in many contexts, including
nonlinear system identification [2, 24], filtering and data assimilation [4, 22], albeit
typically only when observations are in the form of one, or a small number of, long
trajectories, and in the case of an invertible or smooth observations function f˚.
The estimation of the unknown observation function and of the latent dynamics
from unlabeled data has been considered in [11, 15, 18, 28] and references therein.
Inference for state space models (SSMs) has been widely studied; most classical
approaches focus on estimating the parameters in the SSM from a single trajectory
of the observation process, by expectation-maximization methods maximizing the
likelihood, or Bayesian approaches [2,4,12,19,24], with the recent studies estimating
the coefficients in a kernel representation [37] or the coefficients of a pre-specified
set of basis functions [36]. The recent work [38] estimates a slow manifold (and
effective equations on it), image under a nonlinear but invertible map of a latent
space where slow and fast variables in a slow-fast system of SDEs are independent
and orthogonal, using short bursts of trajectories; see discussions and references
therein for motivations, applications and related works.

Our framework combines nonparametric learning [7, 14] with the generalized
moments method, that is mainly studied in the setting of parametric inference
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[31, 32, 34]. We study the identifiability of the observation function f˚ from first-
order moments, and show that the first-order generalized moments can identify the
function in the L2 closure of a reproducing kernel Hilbert space (RKHS) that is
intrinsic to the state space model. As far as we know, this is the first result on the
function space of identifiability for nonparametric learning of observation functions
in SSMs.

When the observation function is invertible, its unsupervised regression is in-
vestigated [33] by maximizing the likelihood for high-dimensional data. However,
in many applications, particularly those involving complex dynamics, the obser-
vation functions are non-invertible, for example they are projections or nonlinear
non-invertible transformations (e.g.,fpxq “ |x|2 with x P Rd). As a consequence,
the resulting observed process may have discontinuous or singular probability den-
sities [13, 17]. In [28], it has been shown empirically that delayed coordinates with
principal component analysis may be used to estimate the dimension of the hidden
process, and diffusion maps [6] may yield a diffeomorphic copy of the observation
function.

The remainder of the paper is organized as follows. We present the nonparametric
generalized moments method in Section 2. In Section 3 we study the identifiability
of the observation function from first-order moments, and show that the function
spaces of identifiability are RKHSs intrinsic to the state space model. We present
numerical examples to demonstrate the effectiveness and the limitations of the pro-
posed method in Section 4. Section 5 summarizes this study and discusses directions
of future research; we review the basic elements about RKHSs in Appendix A.

2. Non-parametric regression based on generalized moments. Throughout
this work, we focus on discrete-time observations of the state space model (1.1)–
(1.2), because data in practice are discrete in time, and the extension to continuous
time trajectories is straightforward. We thereby suppose that the data is in the

form tY pmqt0:tLuMm“1, with m indexing multiple independent trajectories, observed at
the vector t0 : tL of discrete times pt0, ¨ ¨ ¨ , tLq.

2.1. Generalized moments method. We estimate the observation function f˚
by the generalized moment method (GMM) [31,32,34], searching for an observation

function pf , in a suitable finite-dimensional hypothesis (function) space, such that

the moments of functionals of the process p pfpXtqq are close to the empirical ones
(computed from data) of f˚pXtq.

We consider “generalized moments” in the form E rξpYt0:tLqs, where ξ : RL`1 Ñ
RK is a functional of the trajectory Yt0:tL . For example, the functional ξ can
be ξpYt0:tLq “ rYt0:tL , Yt0Yt1 , . . . , YtL´1

YtLs P R2L`1, in which case E rξpYt0:tLqs ““
E rYt0:tLs ,E rYt0Yt1s , . . . ,E

“
YtL´1

YtL
‰‰

is the vector of the first moments and of
temporal correlations at consecutive observation times. The empirical generalized
moments ξ are computed from data by Monte Carlo approximation:

E rξpYt0:tLqs « EM rξpYt0:tLqs :“ 1

M

Mÿ

m“1

ξpY pmqt0:tLq, (2.1)

which converges at the rate M´1{2 by the Central Limit Theorem, since the M
trajectories are independent. Meanwhile, since the state space model (hence the
distribution of the state process) is known, for any putative observation function f ,



4 QINGCI AN, YANNIS KEVREKIDIS, FEI LU AND MAURO MAGGIONI

we approximate the moments of the process pfpXtqqq by simulating M 1 independent
trajectories of the state process pXtq:

E rξpfpXqt0:tLqs «
1

M 1
M 1ÿ

m“1

ξpfpXqpmqt0:tLq . (2.2)

Here, with some abuse of notation, fpXqpmqt0:tL :“ pfpXpmqt0 q, . . . , fpXpmqtL qq. The
number M 1 can be as large as we can afford from a computational perspective;
note of course that the calculations above a trivially parallelizable over trajectories.
In what follows, since M 1 can be chosen large – only subject to computational
constraints – we consider the error in this empirical approximation negligible and
work with E rξpfpXqt0:tLqs directly.

We estimate the observation function f˚ by minimizing a notion of discrepancy
between these two empirical generalized moments:

pf “ arg min
fPH

EM pfq, with EM pfq :“ dist pEM rξpYt0:tLqs,E rξpfpXqt0:tLqsq2 , (2.3)

where f is restricted to some suitable hypothesis space H, and distp¨, ¨q is a suitable
distance between the moments to be specified later. We choose H to be a subset of
an n-dimensional function space, spanned by basis functions tφiu, within which we

can write pf “ řn
i“1 pciφi. By the law of large numbers, EM pfq tends almost surely

to Epfq :“ dist pE rξpYt0:tLqs ,E rξpfpXqt0:tLqsq2.
It is desirable to choose the generalized moment functional ξ and the hypothesis

space H so that the minimization in (2.3) can be performed efficiently. We select
the functional ξ so that the moments E rξpfpXqt0:tLqs, for f “ řn

i“1 ciφi, can be
efficiently evaluated for all pc1, . . . , cnq. To this end, we choose linear functionals or
low-degree polynomials, so that we only need to compute the moments of the basis
functions once, and use these moments repeatedly during the optimization process,
as discussed in Section 2.2. The selection of the hypothesis space is detailed in
Section 2.3.

2.2. Loss functional and estimator. The generalized moments we consider in-
clude the first and the second moments, and the one-step temporal correlation:

ξpYt0:tLq :“ pYt0:tL , Y
2
t0:tL , Yt0Yt1 , . . . , YtL´1

YtLq P R3L`2.

The loss functional in (2.3) is then chosen in the following form: for weights
w1, . . . , w3 ą 0,

Epfq :“w1
1

L

Lÿ

l“1

ˇ̌
ErfpXtlqs ´ ErYtls|2

loooooooooooooooomoooooooooooooooon
E1pfq

`w2
1

L

Lÿ

l“1

ˇ̌
ErfpXtlq2s ´ ErY 2

tl
sˇ̌2

looooooooooooooooomooooooooooooooooon
E2pfq

` w3
1

L

Lÿ

l“1

ˇ̌
ErfpXtlqfpXtl´1

qs ´ ErYtlYtl´1
sˇ̌2

loooooooooooooooooooooooooomoooooooooooooooooooooooooon
E3pfq

.

(2.4)

In principle, these weights are selected to balance the contributions of these terms,
and we set them according to data as detailed in (4.1).

Let the hypothesis space H be a subset of the span of a linearly independent set
tφiuni“1, which we specify in the next section. For f “ řn

i“1 ciφi P H, we can write
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the loss functionals E1pfq in (2.4) as

E1pfq “ 1

L

Lÿ

l“1

ˇ̌
ˇ̌
nÿ

i“1

ciE rφipXtlqs ´ E rYtls
ˇ̌
ˇ̌
2

“ cJA1c´ 2cJb1 ` b̃1, (2.5)

where b̃1 :“ 1
L

řL
l“1 E rYtls2, and the matrix A1 and the vector b1 are given by

A1pi, jq :“ 1

L

Lÿ

l“1

E rφipXtlqsE rφjpXtlqslooooooooooooomooooooooooooon
A1,lpi,jq

, b1piq :“ 1

L

Lÿ

l“1

E rφipXtlqsE rYtlsloooooooooomoooooooooon
b1,lpiq

.

(2.6)
Similarly, we can write E2pfq and E3pfq in (2.4) as

E2pfq “ 1

L

Lÿ

l“1

ˇ̌
ˇ̌
nÿ

i“1

cicj E rφipXtlqφjpXtlqsloooooooooomoooooooooon
A2,lpi,jq

´E
“
Y 2
tl

‰
loomoon
b2,l

ˇ̌
ˇ̌
2

,

E3pfq “ 1

L

Lÿ

l“1

ˇ̌
ˇ̌
nÿ

i“1

cicj E
“
φipXtl´1

qφjpXtlq
‰

loooooooooooomoooooooooooon
A3,lpi,jq

´E
“
Ytl´1

Ytl
‰

looooomooooon
b3,l

ˇ̌
ˇ̌
2

.

(2.7)

Thus, with the above notations in (2.6)-(2.7), the minimizer of the loss functional
Epfq over H is

pfH :“
nÿ

i“1

pciφi , pc :“ arg min
cPRn s.t.

řn
i“1 ciφiPH

Epcq, where

Epcq :“ w1rcJA1c´ 2cJb1 ` b̃1s `
3ÿ

k“2

wk
1

L

Lÿ

l“1

ˇ̌
cJAk,lc´ bk,l

ˇ̌2
.

(2.8)

Here, with an abuse of notation, we denote Epřn
i“1 ciφiq by Epcq.

In practice, with data tY pmqrt1:tN suMm“1, we approximate the expectations involv-

ing the observation process pYtq by the corresponding empirical means as in (2.1).
Meanwhile, we approximate the expectations involving the state process pXtq by
Monte Carlo as in (2.2), using M 1 trajectories. We assume that the sampling errors
in the expectations of pXtq, i.e. in the terms tAk,lu3k“1, are negligible, since the ba-
sis tφiu can be chosen to be bounded functions (such as B-spline polynomials) and
M 1 can be as large as we can afford. We approximate tbk,lu3k“1 by their empirical
means tbMk,lu3k“1:

b1,lpiq “ E rφipXtlqsE rYtls « E rφipXtlqs
1

M

Mÿ

m“1

Y
pmq
tl

“: bM1,lpiq , (2.9)

b2,l “ E
“|Ytl |2

‰ « 1

M

Mÿ

m“1

|Y pmqtl
|2 “: bM2,l , (2.10)

b3,l “ E
“
Ytl´1

Ytl
‰ « 1

M

Mÿ

m“1

Y
pmq
tl´1

Y
pmq
tl

“: bM3,l . (2.11)

Then, with b
M

1 “ 1
L

řL
l“1 b

M
1,l and rbM1 “ 1

LM

řL
l“1

řM
m“1

´
Y
pmq
tl

¯2

, the estimator

from data is
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pfH,M “
nÿ

i“1

pciφi, pc “ arg min
cPRn s.t.

řn
i“1 ciφiPH

EM pcq, where

EM pcq “ w1rcJA1c´ 2cJbM1 `rbM1 s `
3ÿ

k“2

wk
1

L

Lÿ

l“1

ˇ̌
cJAk,lc´ bMk,l

ˇ̌2
.

(2.12)

The minimization of EM pcq can be performed with iterative algorithms, with each
optimization iteration, with respect to c, performed efficiently since the data-based

matrices and vectors, A1, b
M

1 and tAk,l, bMk,lu3k“2, only need to be computed once.
The main source of sampling error is the empirical approximation of the moments
of the process pYtq. We specify the hypothesis space in the next section and provide
a detailed algorithm for the computation of the estimator in Section 2.4.

Remark 2.1 (Moments involving Itô’s formula). When the data trajectories are
continuous in time (or when they are sampled with a high frequency in time), we
can utilize additional moments from Itô’s formula. Recall that for f P C2

b , applying
Itô formula for the diffusion process in (1.1), we have

fpXt`∆tq ´ fpXtq “
ż t`∆t

t

∇f ¨ bpXsqdWs `
ż t`∆t

t

LfpXsqds,
where the operator L is

Lf “ ∇f ¨ a` 1

2
Hesspfq : bJb. (2.13)

Hence, E r∆Ytls “ E
“
Lf˚pXtl´1

q‰∆t`op∆tq, where ∆Ytl “ Ytl´Ytl´1
. Thus, when

∆t is small, we can consider matching the generalized moments

E4pfq “ 1

L

Lÿ

l“1

ˇ̌
ˇ̌E

“
LfpXtl´1

q‰∆t´ E r∆Ytls
ˇ̌
ˇ̌
2

. (2.14)

Similarly, we can further consider the generalized moments E rYt∆Yts and Varp∆Ytq
and the corresponding quartic loss functionals. Since they require the moments of
the first- and second-order derivatives of the observation function, they are helpful
when the observation function is smooth with bounded derivatives.

2.3. Hypothesis space and optimal dimension. We let the hypothesis space
H be a class of bounded functions in spantφiuni“1,

H :“ tf : f “
nÿ

i“1

ciφi : ymin ď fpxq ď ymax for all x P supppsρT qu, (2.15)

where the basis functions tφiu are to be specified below, and the empirical bounds

ymin :“ mintY pmqtl
uL,Ml,m“1, ymax :“ maxtY pmqtl

uL,Ml,m“1

aim to approximate the upper and lower bounds for f˚. Here the dimension n will
be selected adaptive to data to avoid under- and over-fitting, as detailed in Algo-
rithm 1. Note that the hypothesis space H is a bounded convex subset of the linear
space spantφiuni“1. While the pointwise bound constraints are for all x, in practice,
for efficient computation, we apply these constraints at representative points, for
example at the mesh-grid points used when the basis functions are piecewise poly-
nomials. One may apply stronger constraints, such as requiring time-dependent
bounds to hold at all times: yminptq ď řn

i“1 cifipxq ď ymaxptq for each time t, where

yminptq and ymaxptq are the minimum and maximum of the data set tY pmqt uMm“1.
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Basis functions. As basis functions tφiu for the subspace containing H we choose
B-spline basis consisting of piecewise polynomials (see Appendix B.1 for details). To
specify the knots of B-spline functions, we introduce a density function sρLT , which
is the average of the probability densities tptluLl“1 of tXtluLl“1:

sρLT pxq “
1

L

Lÿ

l“1

ptlpxq LÑ8ÝÝÝÑ sρT pxq “ 1

T

ż T

0

ptpxqdt, (2.16)

when tL “ T and max1ďlďL |tl ´ tl´1| Ñ 0. Here sρLT (and its continuous time limit
sρT pxq) describes the intensity of visits to the regions explored by the process pXtq.
The knots of the B-spline function are from a uniform partition of rRmin, Rmaxs,
the smallest interval enclosing the support of sρLT . Thus, the basis functions tφiu
are piecewise polynomials with knots adaptive to the state space model which de-
termines sρLT .
Dimension of the hypothesis space. It is important to select a suitable dimension
of the hypothesis space to avoid under- or over-fitting. We select the dimension in
two steps. First, we introduce an algorithm, namely Cross-validating Estimation of
Dimension Range (CEDR), to estimate the range of the dimension from the qua-
dratic loss functional E1. Its main idea is to avoid the sampling error amplification
due to an unsuitably large dimension. The sampling error is estimated from data
by splitting the data into two sets. Then, we select the optimal dimension that
minimizes the 2-Wasserstein distance between the measures of data and prediction.
See Appendix B.1 for details. Here we use the 2-Wasserstein distance because it is

sensitive to small changes in pf caused by overfitting, and at the same time it can
be efficiently computed even for large-sample datasets.

2.4. Algorithm. We summarize the above method of nonparametric regression
with generalized moments in Algorithm 1. It minimizes a quartic loss function
with the upper and lower bound constraints, and we perform the optimization with
multiple initial conditions (see Appendix B.2 for the details).

Input: The state space model and data tY
pmq
t0:tL

u
M
m“1 consisting of multiple trajectories of

the observation process.

Output: Estimator pf .
1: Estimate the empirical density sρLT in (2.16) and find its support rRmin, Rmaxs.
2: Select a basis type, Fourier or B-spline, with an estimated dimension range r1, N s (by

Algorithm 2), and compute the basis functions as described in Section 2.3 using the
support of sρLT .

3: for n “ 1 : N do
4: Compute the moment matrices in (2.6)-(2.7) and the vectors bMk,l in (2.11).
5: Find the estimator pcn by optimization with multiple initial conditions. Compute

and record the values of the loss functional and the 2-Wasserstein distances.
6: Select the optimal dimension n (and degree if B-spline basis) that has the minimal

2-Wasserstein distance in (B.5). Return the estimator pf “ řn
i“1 c

i
nφi.

Algorithm 1. Estimating the observation function by nonpara-
metric generalized moment methods

Computational complexity. The computational complexity is driven by the con-
struction of the normal matrix and vectors and the evaluation of the 2-Wasserstein
distances, which have complexity of order Opn2LMq and OpnLMq, respectively, for
an overall complexity Oppn2 ` nqLMq.
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2.5. Tolerance to noise in the observations. The (generalized) moment method
can tolerate large additive observation noise if the distribution of the noise is known.
The estimation error caused by the noise is at the scale of the sampling error, which
is negligible when the sample size is large.

Specifically, suppose that we observe tY pmqt0:tLuMm“1 from the observation model

Ytl “ f˚pXtlq ` ηtl , (2.17)

where tηtlu is sampled from a process pηtq that is independent of pXtq and has
moments

Erηts “ 0, Cps, tq “ Erηtηss, for s, t ě 0. (2.18)

A typical example is when η being identically distributed independent Gaussian
noise N p0, σ2q, which gives Cps, tq “ σ2δpt´ sq.

The algorithm in Section 2 applies the noisy data with only a few changes. First,
note that the loss functional in (2.4) involves only the moments ErYts, ErY 2

t s and
ErYtlYtl´1

s, which are moments of f˚pXtq. When Yt in (2.17) has observation noise
specified above, we have

Erf˚pXtqs “ ErYts ´ Erηts “ ErYts;
Erf˚pXtqf˚pXsqs “ ErYtYss ´ Erηtηss “ ErYtYss ´ Cpt, sq

for all t, s ě 0. Thus, we only need to change the loss functional to be

Epfq “w1
1

L

Lÿ

l“1

ˇ̌
ErfpXtlqs ´ ErYtls|2 ` w2

1

L

Lÿ

l“1

ˇ̌
ErfpXtlq2s ´ ErY 2

tl
s ` Cpt, tqˇ̌2

` w3
1

L

Lÿ

l“1

ˇ̌
ErfpXtlqfpXtl´1

qs ´ ErYtlYtl´1
s ` Cpt, sqˇ̌2 .

(2.19)
Similar to (2.12), the minimizer of the loss functional can be then computed as

pfH,M “
nÿ

i“1

pciφi, pc “ arg min
cPRn s.t.

řn
i“1 ciφiPH

EM pcq, where

EM pcq “ w1rcJA1c´ 2cJbM1 `rbM1 s ` w2
1

L

Lÿ

l“1

ˇ̌
cJA2,lc´ bM2,l ` Cptl, tlq

ˇ̌2

` w3
1

L

Lÿ

l“1

ˇ̌
cJA3,lc´ bM3,l ` Cptl, tl`1q

ˇ̌2
,

(2.20)

where all the A-matrices and b-vectors are the same as before (e.g., in (2.6)–(2.7)
and (2.11)).

Note that the observation noise introduces sampling errors through bM1 , bM2,l and

bM2,l, which are at the scale Op 1?
M
q. Also, note the A-matrices are independent

of the observation noise. Thus, the observation noise affects the estimator only
through the sampling error at the scale Op 1?

M
q, the same as the sampling error in

the estimator from noiseless data.

3. Identifiability. We discuss in this section the identifiability of the observation
function by the loss functionals in the previous section. We show that E1, the
quadratic loss functional based on the 1st-order moments in (2.5), can identify the
observation function in the L2psρLT q-closure of a reproducing kernel Hilbert space
(RKHS) that is intrinsic to the state space model. In addition, the loss functional E4
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in (2.14), based on the Itô formula, enlarges the function space of identifiability. We
also discuss, in Section 3.2, some limitations of the loss functional E in (2.19), that
combines the quadratic and quartic loss functionals: in particular, symmetries or
sampling from a stationary measure may prevent us from identifying the observation
function when using only generalized moments. The starting point is a definition
of identifiability, which is a generalization of the uniqueness of minimizer of a loss
function in parametric inference (see e.g., [3, page 431] and [8]).

Definition 3.1 (Identifiability). We say that the observation function f˚ is iden-
tifiable by a data-based loss functional E on a function space H if f˚ is the unique
minimizer of E in H.

When the loss functional is quadratic (such as E1 or E4), it has a unique minimizer
in a Hilbert space if and only if its Frechét derivative is invertible in the Hilbert
space; thus, the main task is to find such function spaces [21,23,25]. We will specify
such function spaces for E1 and/or E4 in Section 3.1. We note that these function
spaces do not take into account the constraints of upper and lower bounds, which
generically lead to minimizers near or at the boundary of the constrained set. This
consideration applies also to the piecewise quadratic functionals E2 and E3, which
can be viewed as providing additional constraints (see Section 3.2).

3.1. Identifiability by quadratic loss functionals. We consider the quadratic
loss functionals E1 and E4, and show that they can identify the observation func-
tion in the L2psρLT q-closure of reproducing kernel Hilbert spaces (RKHSs) that are
intrinsic to the state space model.

Assumption 3.2. We make the following assumptions on the state space model.

‚ The coefficients in the state space model (1.1) satisfy a global Lipschitz con-
dition, and therefore also a linear growth condition: there exists a constant
C ą 0 such that |apxq ´ apyq| ` |bpxq ´ bpyq| ď C|x ´ y| for all x, y P R, and
|apxq| ` |bpxq| ď Cp1 ` |x|q. We assume that infxPR bpxq ą 0 for all x P R.
Furthermore, we assume that X0 has a bounded density.

‚ The observation function f˚ satisfies suptPr0,tLs E
“|f˚pXtq|2

‰ ă 8.

Theorem 3.3. Given discrete-time data tY pmqt0:tLuMm“1 from the state space model
(1.1) satisfying Assumption 3.2, let E1 and E4 be the loss functionals defined in
(2.4) and (2.14). Denote ptpxq the density of the state process Xt at time t, and
recall that sρLT in (2.16) is the average, in time, of these densities. Let L˚ be the
adjoint of the 2nd-order elliptic operator L in (2.13). Then,

(a) E1 has a unique minimizer in H1, the L2psρLT q closure of the RKHS HK1
with

reproducing kernel

K1px, x1q “ 1

sρLT pxqsρLT px1q
1

L

Lÿ

l“1

ptlpxqptlpx1q, (3.1)

for px, x1q such that sρLT pxqsρLT px1q ą 0, and K1px, x1q “ 0 otherwise. When the

data is continuous (LÑ8), we have K1px, x1q “ 1
sρT pxqsρT px1q

1
T

şT
0
ptpxqptpx1qdt.

(b) E4 has a unique minimizer in H4, the L2psρLT q closure of the RKHS HK4 with
reproducing kernel

K4px, x1q “ 1

sρLT pxqsρLT px1q
1

L

Lÿ

l“1

L˚ptlpxqL˚ptlpx1q, (3.2)
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for px, x1q such that sρLT pxqsρLT px1q ą 0, and K4px, x1q “ 0 otherwise. When the

data is continuous, we have K4px, x1q “ 1
sρT pxqsρT px1q

1
T

şT
0
L˚ptpxqL˚ptpx1qdt.

(c) E1 ` E4 has a unique minimizer in H, the L2psρLT q closure of the RKHS HK
with reproducing kernel

Kpx, x1q “ 1

sρLT pxqsρLT px1q
1

L

Lÿ

l“1

“
ptlpxqptlpx1q ` L˚ptlpxqL˚ptlpx1q

‰
, (3.3)

for px, x1q such that sρLT pxqsρLT px1q ą 0, and Kpx, x1q “ 0 otherwise. Simi-

larly, we have Kpx, x1q “ 1
sρT pxqsρT px1q

1
T

şT
0
rptpxqptpx1q`L˚ptpxqL˚ptpx1qsdt for

continuous data.

In particular, f˚ is the unique minimizer of these loss functionals if f˚ is in H1,
H4 or H.

To prove this theorem, we first introduce an operator characterization of the
RKHS HK1

in the next lemma. Similar characterizations hold for the RKHSs HK4

and HK .

Lemma 3.4. The function K1 in (3.1) is a Mercer kernel, that is, it is continuous,
symmetric and positive semi-definite. Also, K1 is square integrable in L2psρLT ˆ sρLT q,
and it defines a compact positive integral operator LK1

: L2psρLT q Ñ L2psρLT q:

rLK1
hspx1q “

ż
hpxqK1px, x1qsρLT pxqdx. (3.4)

Also, the RKHS HK1
has the operator characterization: HK1

“ L
1{2
K1
pL2psρLT qq and

t?λiψiu8i“1 is an orthonormal basis of the RKHS HK1
, where tλi, ψiu are the pairs

of positive eigenvalues and corresponding eigenfunctions of LK1
.

Proof. Since the densities tptlu are smooth, the kernel K1 is continuous on the
support of sρLT and it is symmetric. It is positive semi-definite (see Appendix A for
a definition) because for any pc1, . . . , cnq P Rn and px1, . . . , xnq, we have

nÿ

i,j“1

cicjKpxi, xjq “ 1

L

Lÿ

l“1

nÿ

i,j“1

cicj
ptlpxiqptlpxjq
sρLT pxiqsρLT pxjq

“ 1

L

Lÿ

l“1

˜
nÿ

i“1

ci
ptlpxiq
sρLT pxiq

¸2

ě 0.

Thus, K1 is a Mercer kernel.
To show that K1 is square integrable, note first that ptlpxq ď max1ďkďL ptkpxq ď

LsρLT pxq for any x. Thus for each x, x1, we have

1

L

Lÿ

l“1

ptlpxqptlpx1q ď L2sρLT pxqsρLT px1q

and K1px, x1q ď L. It follows that K1 is in L2psρLT ˆ sρLT q.
Since K1 is positive definite and square integrable, the integral operator LK1

is
compact and positive. The operator characterization follows from Theorem A.3.

Remark 3.5. The above lemma is only applicable to discrete-time observations
because it uses the bound K1px, x1q ď L. When the data is continuous in time
on r0, T s, we have K1 P L2psρT ˆ sρT q if the support of sρT is compact, since pt is
uniformly bounded above, i.e. ptpxq ď maxyPR,sPr0,T s pspyq ă 8, since it is a regular
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solution of a Fokker-Planck equation which is uniformly elliptic by Assumption 3.1
(see e.g., [10, Chapter 6]). Thus for each x, x1, we have

1

T

ż T

0

ptpxqptpx1qdt ď
ˇ̌
ˇ̌
ˇ
1

T

ż T

0

ptpxq2 dt
ˇ̌
ˇ̌
ˇ

1{2 ˇ̌
ˇ̌
ˇ
1

T

ż T

0

ptpx1q2 dt
ˇ̌
ˇ̌
ˇ

1{2

“ sρT pxq1{2sρT px1q1{2 max
yPR,sPr0,T s

pspyq
by Cauchy-Schwartz for the first inequality. Then,

K1px, x1q “ 1

sρT pxqsρT px1q
1

T

ż T

0

ptpxqptpx1qdt ď sρT pxq´1{2sρT px1q´1{2 max
yPR,sPr0,T s

pspyq.

It follows that K1 is in L2psρT ˆ sρT q:ż ż
K2

1 px, x1qsρT pxqsρT px1qdxdx1 ď |supppsρT q| max
yPR,sPr0,T s

pspyq2 ă 8.

When sρT has non-compact support, it remains to be proved that K1 P L2psρT ˆ sρT q.
Proof of Theorem 3.3. The proof for (a)–(c) are similar, so we focus on (a) and only
sketch the proof for (b)–(c).

To prove (a), we only need to show the uniqueness of the minimizer, because
Lemma 3.4 has shown that K1 is a Mercer kernel. Furthermore, note that by
Lemma 3.4, the L2psρLT q closure of the RKHS HK1

is H1 “ spantψiu8i“1, the closure
in L2psρLT q of the eigenspace of LK1

with non-zero eigenvalues, where LK1
is the

operator defined in (3.4).
For any f P H1, denoting h “ f ´ f˚, we have ErfpXtqs ´ ErYts “ ErhpXtqs for

each t (recall that Yt “ f˚pXtq). Hence, we can write the loss functional as

E1pfq “ 1

L

Lÿ

l“1

ˇ̌
ErfpXtlqs ´ ErYtls|2

“ 1

L

Lÿ

l“1

ˇ̌
ErhpXtlqs|2 “

ż ż
hpxqhpx1q 1

L

Lÿ

l“1

ptlpxqptlpx1qdxdx1

“
ż ż

hpxqhpx1qK1px, x1qsρLT pxqsρLT px1qdxdx1 ě 0.

(3.5)

Thus, E1 attains its unique minimizer in H1 at f˚ if and only if E1pf˚ ` hq “ 0
with h P H1 implies that h “ 0. Note that the second equality in (3.5) implies that
E1pf˚`hq “ 0 if and only if ErhpXtlqs “ 0, i.e.

ş
hpxqptlpxqdx “ 0, for all tl. Then,ş

hpxqptlpxqptl px
1q

sρLT px1qdx “ 0 for each tl and x1. Thus, the sum of them is also zero:

0 “
ż
hpxq 1

L

Lÿ

l“1

ptlpxqptlpx1q
sρLT px1qsρLT pxq

sρLT pxqdx “
ż
hpxqK1px, x1qsρLT pxqdx

for each x1. By the definition of the operator LK1 , this implies that LK1h “ 0.
Thus, h “ 0 because h P H1.

The above arguments hold true when the kernel K1 is from continuous-time data:

one only has to replace 1
L

řL
l“1 by the averaged integral in time. This completes

the proof for (a).
The proofs of (b) and (c) are the same as above except the appearance of the

operator L˚. Note that E4 in (2.14) reads E4pfq “ 1
L

řL
l“1 |E rLfpXtlqs ´ E r∆Ytls|2,
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thus, it differs from E1 only at the expectation E rLfpXtlqs. By integration by parts,
we have

E rLfpXsqs “
ż
Lfpxqpspxqdx “

ż
fpxqL˚pspxqdx

for any f P C2
b . Then, the rest of the proof for Part (b) follows exactly as above

with K1 and LK1 replaced by K4 and LK4 .

The following remarks highlight the implications of the above theorem. We
consider only E1, but all the remarks apply also to E4 and E1 ` E4.

Remark 3.6 (An operator view of identifiability). The unique minimizer of E1 in

H1 defined in Theorem 3.3 is the zero of its Frechét derivative: pf “ L´1
K1
LK1f˚,

which is f˚ if f˚ P H1. In fact, note that with the integral operator LK1 , we can
write the loss functional E1 as

E1pfq “ xf ´ f˚, LK1
pf ´ f˚qyL2psρLT q.

Thus, the Frechét derivative of E1 over L2psρLT q is ∇E1pfq “ LK1
pf ´ f˚q and we

obtain the unique minimizer. Furthermore, this operator representation of the
minimizer conveys two important messages about the inverse problem of finding the
minimizer of E1: (1) it is ill-defined beyond H1, and in particular, it is ill-defined
on L2psρLT q when LK1 is not strictly positive; (2) the inverse problem is ill-posed on
H1, because the operator LK1 is compact and its inverse L´1

K1
is unbounded.

Remark 3.7 (Identifiability and normal matrix in regression). Suppose Hn “
spantφiuni“1 and denote f “ řn

i“1 ciφi with φi being basis functions such as B-
splines. As shown in (2.5)-(2.6), the loss functional E1 becomes a quadratic function

with normal matrix A1 “ 1
L

řL
l“1A1,l with A1,l “ uJl ul, where the vector ul “

pE rφ1pXtlqs , . . . ,E rφnpXtlqsq P Rn. Thus, the rank of the matrix A1 is no larger
than mintn,Lu. Note that A1 is the matrix approximation of LK1 on the basis
tφiuni“1 in the sense that

A1pi, jq “ xLK1
φi, φjyL2psρLT q,

for each 1 ď i, j ď n. Thus, the minimum eigenvalue of A1 approximates the
minimal eigenvalue of LK1 restricted in Hn. In particular, if Hn contains a nonzero
element in the null space of LK1 , then the normal matrix will be singular; if Hn is
a subspace of the L2psρLT q closure of HK1

, then the normal matrix is invertible and
we can find a unique minimizer.

Remark 3.8 (Convergence of estimator). For a fixed hypothesis space, the esti-
mator converges to the projection of f˚ in HXH1 as the data size M increases, at
the rate OpM´1{2q, with the error coming from the Monte Carlo estimation of the
moments of observations. With data-adaptive hypothesis spaces, we are unable to
prove the minimax rate of convergence as in classical nonparametric regression, due
to the lack of a coercivity condition [23, 26], since the eigenvalues of the compact
operator LK1

converge to zero. A minimax rate would require an estimate on the
spectral decay of LK1 , which we leave for future research.

Remark 3.9 (Regularization using the RKHS). The RKHS HK1 provides a data-
adaptive regularization norm in the Tikhonov regularization (see [25]).
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Examples of the RKHS. We emphasize that the reproducing kernel and the RKHS
are intrinsic to the state space model (including the initial distribution). We demon-
strate the kernels by analytically computing them when the process pXtq is either
the Brownian motion or the Ornstein-Uhlenbeck (OU) process. For simplicity,
we consider continuous-time data. Recall that when the diffusion coefficient in
the state space model (1.1) is a constant, the second-order elliptic operators L is
Lf “ ∇f ¨ a` 1

2b
2∆f , and its adjoint operator L˚ is

L˚ps “ ´∇ ¨ papsq ` 1

2
b2∆ps,

where ps denotes the probability density of Xs.

Example 3.10 (1D Brownian motion). Let a “ 0 and b “ 1. Assume p0pxq “ δx0
,

i.e., X0 “ x0. Then, Xt is the Brownian motion starting from x0 and ptpxq “
1?
2πt

e´
px´x0q

2

2t . We have sρT pxq “ 1
T

şT
0
ptpxqdt “ x´x0

T
?
π

Γp´ 1
2 ,
px´x0q2

2T q and

K1px, x1q “ 1

sρT pxqsρT px1q
1

T

ż T

0

pspxqpspx1qds

“ TΓp0, px´x0q2`px1´x0q2
2T q

2px´ x0qpx1 ´ x0qΓp´ 1
2 ,
px´x0q2

2T qΓp´ 1
2 ,
px1´x0q2

2T q ,

where Γps, xq :“ ş8
x
ts´1e´tdt is the upper incomplete Gamma function. Also, we

have

L˚pspxq “ φ2ps, xqpspxq, with φ2ps, xq “
ˆ

1

s2
px´ x0q2 ´ 1

s

˙
.

Thus, the kernels K4 in (3.2) and K in (3.3) from continuous-time data are

K4px, x1q “ 1

sρT pxqsρT px1q
1

T

ż T

0

φ2ps, xqφ2ps, x1qpspxqpspx1qds;

Kpx, x1q “ 1

sρT pxqsρT px1q
1

T

ż T

0

p1` φ2ps, xqφ2ps, x1qqpspxqpspx1qds.

Example 3.11 (Ornstein-Uhlenbeck process). Let apxq “ θx and b “ 1 with θ ą 0.

Assume p0pxq “ δx0 , i.e., X0 “ x0. Then, Xt “ e´θtx0 `
şt
0
e´θpt´sqdBs. It has

a distribution N pe´θtx0,
1
2θ p1 ´ e´2θtqq, thus ptpxq “ 1?

2πσt
expp´ px´xt

0q2
2σ2

t
q, where

xt0 :“ e´θtx0 and σ2
t :“ 1

2θ p1 ´ e´2θtq. Computing the spatial derivatives, we have

L˚pspxq “ 1
2

” px´xs
0q2

σ4
s

´ 1
σ2
s

ı
pspxq ´ pθxpspxqq1 “ φ2ps, xqpspxq, where

φ2ps, xq :“
„ px´ x0q2

2σ4
s

´ 1

2σ2
s

´ θ ` θ

σ2
s

xpx´ xs0q

.

The reproducing kernels K1 in (3.1), K4 in (3.2) and K in (3.3) are

K1px, x1q “ 1

sρT pxqsρT px1q
1

T

ż T

0

pspxqpspx1qds;

K4px, x1q “ 1

sρT pxqsρT px1q
1

T

ż T

0

φ2ps, xqφ2ps, x1qpspxqpspx1qds;

Kpx, x1q “ 1

sρT pxqsρT px1q
1

T

ż T

0

p1` φ2ps, xqφ2ps, x1qqpspxqpspx1qds.
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In particular, when the process is stationary, we have K1px, x1q ” 1 and K4px, x1q “
0 because L˚ps “ 0 when pspxq “ 2θ?

2π
expp´θx2q is the stationary density.

3.2. Non-identifiability due to stationarity and symmetry. When the hy-
pothesis space H has a dimension larger than the RKHS’s, the quadratic loss func-
tional E1 may have multiple minimizers. The constraints of upper and lower bounds,
as well as the loss functionals E2 and E3, can help identifying the observation func-
tion. However, as we show next, identifiability may still not hold due to symmetry
and/or stationarity.
Stationary processes. When the process pXtq is stationary, we have limited informa-
tion from the moments in our loss functionals. We have E1pfq “ |E rYt1 s ´ E rfpXt1qs|

2

with K1px, x1q ” 1, so E1 can only identify a constant function. Also, the loss func-
tional E4 is identically 0 because

L˚ps “ Bsps “ 0 ô ErLhpXsqs “ 0 for any h P C2
b .

In other words, the function space of identifiability with E1 ` E4 is the space of
constant functions. Meanwhile, the quartic loss functionals E2 and E3 also pro-

vide limited information: they become E2 “ ˇ̌
ErfpXt1q2s ´ ErY 2

t1s
ˇ̌2

and E3 “
|ErfpXt2qfpXt1qs ´ ErYt2Yt1s|2, the second-order moment and the temporal cor-
relation at a single pair of times.

To see the ensuing limitations, consider the finite-dimensional hypothesis space
H in (2.15). As in (2.12), with f “ řn

i“1 ciφi, the loss functional becomes

Epfq “cJA1c´ 2cJbM1 ` |ErYt1s|2 `
3ÿ

k“2

ˇ̌
cJAk,1c´ bMk,1

ˇ̌2
,

where A1 is a rank-one matrix, and
ř3
k“2 |cJAk,1c´ bMk,1|2 only adds two additional

constraints. Thus, E has multiple minimizers in a linear space with dimension
greater than 3. One has to resort to the upper and lower bounds in (2.15) for
additional constraints, which lead to minimizers on the boundary of the resulting
convex set.
Symmetry. When the distribution of the state process Xt is symmetric, a moment-
based loss functional may not distinguish the true observation function from its
symmetric counterpart. More specifically, if a transformation R : RÑ R preserves
the distribution, i.e., pXt, t ě 0q and pRpXtq, t ě 0q have the same distribution, then
ErfpXtqs “ E rf ˝RpXtqs and ErfpXtqfpXsqs “ E rf ˝RpXtqf ˝RpXsqs. Thus, our
loss functional will not distinguish f from f ˝ R. This is of course reasonable: the
two functions yield the same observation process (in terms of the distribution), thus
the observation data does not provide the information necessary for distinguishing
f from f ˝R.

Example 3.12 (Brownian motion). Consider the standard Brownian motion Xt,
whose distribution is symmetric about x “ 0 (because the two processes pXt, t ě 0q
and p´Xt, t ě 0q have the same distribution). Let the transformation R be Rpxq “
´x. Then, the two functions fpxq and fp´xq lead to the same observation process,
thus they cannot be distinguished from the observations.

4. Numerical examples. We demonstrate the effectiveness and limitations of our
algorithm using synthetic data in representative examples. The algorithm works
well when the state space model’s densities vary appreciably in time to yield a
function space of identifiability whose distance to the true observation function is
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small. In this case, our algorithm leads to a convergent estimator as the sample
size increases. We also demonstrate that when the state process (i.e., the Ornstein-
Uhlenbeck process) is stationary or symmetric in distribution (i.e., the Brownian
motion), the loss functional can have multiple minimizers in the hypothesis space,
preventing us from identifying the observation functions (see Section 4.3).

4.1. Numerical setup. The synthetic data tY pmqt0:tLuMm“1 with tl “ l∆t are gener-
ated from the state space model, which is solved by the Euler-Maruyama scheme
with a time-step ∆t “ 0.01 for L “ 100 steps. We consider sample sizes M P
tt103.5`j∆u : j “ 0, 1, 2, 3, 4, ∆ “ 0.0625u to test the convergence of the estimator.

To estimate the moments in the A-matrices and b-vectors in (2.6)–(2.7) by Monte

Carlo, we generate a new set of independent trajectories tXpmqtl
uM 1

m“1 with M 1 “ 106.

We emphasize that these samples of X are independent of the data tY pmqt0:tLuMm“1.
Inference algorithm. We follow Algorithm 1 to search for the global minimum of the
loss functionals in (2.12). The weights for the Ek’s are wk “ L

?
M{}mY

k }, where
} ¨ } is the Euclidean norm on RL, and for l “ 0, 1, ¨ ¨ ¨ , L´ 1,

mY
k plq “

1

M

Mÿ

m“1

pY pmqtl
qk for k “ 1, 2 and mY

3 plq “
1

M

Mÿ

m“1

Y
pmq
tl

Y
pmq
tl`1

. (4.1)

For each example, we test hypothesis spaces, spanned by B-splines with degree in
t0, 1, 2, 3u, with a dimension selected by Algorithm 2 in the range r1, N s. We select
the optimal dimension and degree with the minimal 2-Wasserstein distance between
the predicted and true distribution of Y . The details are presented in Section C.

Results assessment and presentation. We present three aspects of the estimator pf :

‚ Estimated and true functions. We compare the estimator with the true
function f˚, along with the L2psρLT q projection of f˚ to the linear space expanded
by the elements of H.

‚ 2-Wasserstein distance. We present the 2-Wasserstein distance (see (B.5))

between the distributions of Ytl “ f˚pXtlq and pfpXtlq for each time with training
data and a new set of randomly generated data of size 106. The new (test) data

has Y
pmq
tl

“ f˚pXpmqtl
q, i.e., the X’s and Y ’s are generated in pairs, while in the

training data the X’s and Y ’s are generated independently. This pairing can lead
to an effect on the 2-Wasserstein distance, which depends only on the empirical
distribution of the samples, but such effect is negligible in our experiments due
to the large sample size.

‚ Convergence of L2psρLT q error. We test the convergence of the estimator in
L2psρLT q as the sample size M increases. The L2psρLT q error is computed by the
Riemann sum approximation. We present the mean and standard deviation of
L2psρLT q errors from 20 independent simulations. The convergence rate is also
highlighted, and we compare it with the minimax convergence rate in classical
nonparametric regression (see e.g., [14,26]), which is s

2s`1 with s´1 being the de-
gree of the B-spline basis. This minimax rate is not available yet for our method,
see Remark 3.8.

4.2. Examples. The state space model we consider is a stochastic differential equa-
tion with the double-well potential

dXt “ pXt ´X3
t qdt` dBt, Xt0 „ pt0 (4.2)
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(a) Process (Xt) (b) Process  for sine function (Yt) f* = (c) Process  for sine-cosine(Yt) f* = (d) Process  for arch function (Yt) f* =

Figure 1. Empirical densities from the data trajectories of the process
pXtlq in (4.2) and the observation processes pYtlq with f˚ “ fi, where fi’s
are the three observation functions in (4.3). Since we do not have data

pairs between pX
pmq
tl

, Y
pmq
tl

q, these empirical densities are the available
information from data. Our goal is to find the function f˚ in the operator
that maps the densities of tXtlu to the densities of tYtlu.

where the density of Xt0 is the average of N p´0.5, 0.2q and N p1, 0.5q. The dis-
tribution of Xt0:tL is non-symmetric and far from stationary (see Figure 1(a)); we
therefore expect that the quadratic loss functional E1 provides a rich RKHS space
for learning.

We consider three observation functions f representing typical challenges: nearly
invertible, non-invertible, and non-invertible discontinuous, in the set supppsρT q:

Sine function: f1pxq “ sinpxq;
Sine-Cosine function: f2pxq “2 sinpxq ` cosp6xq;
Arch function: f3pxq “

`´2p1´ xq3 ` 1.5p1´ xq ` 0.5
˘
1xPr0,1s.

(4.3)

These functions are shown in 2(a)–4(a). They lead to observation processes with
dramatically different distributions, as shown in Fig.1(b-d).

(a) Estimator with n=9, deg=1 (b) Wasserstein distance (c) Convergence rate
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Figure 2: Learning results of Sine function f1pxq “ sinpxq with model (4.1).
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Figure 3: Learning results of Sine-Cosine function f2pxq “ 2 sinpxq ` cosp6xq with model (4.1).
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Figure 4: Learning results of Arch function f3 with model (4.1).

The learning results for these three functions are shown in Figure 2–4. For each of these three ob-
servation functions, we present the estimator with optimal hypothesis space, the 2-Wasserstein distance
and the convergence of the estimator.

Sine function: Fig. 2a shows the estimator with degree-1 B-spline basis with dimension n “ 9 for
M “ 106, which is selected according the 2-Wasserstein distance. The L2ps⇢L

T q error is 0.0245 and the

16

Figure 2. Learning results of Sine function f1pxq “ sinpxq with model (4.2).

The learning results for these three functions are shown in Figure 2–4. For each
of these three observation functions, we present the estimator with the optimal
hypothesis space, the 2-Wasserstein distance in prediction and the convergence of
the estimator in L2psρLT q (see Section 4.1 for details).

Sine function: Fig. 2(a) shows the estimator with degree-1 B-spline basis with
dimension n “ 9 for M “ 106. The L2psρLT q error is 0.0245 and the relative error is
3.47%. Fig. 2(b) shows that the Wasserstein distances are small at the scale 10´3, in
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Figure 4: Learning results of Arch function f3 with model (4.1).

low convergence rate and the large variance to the high-frequency component cosp6xq, which is harder
to identify from moments than than the low frequency component sinpxq.

Arch function: Fig. 4a shows the estimator with degree-0 B-spline basis with dimension n “ 45.
The L2ps⇢L

T q error is 0.0645 and the relative error is 14.44%. Fig. 4b shows that the Wasserstein distances
are small at the scale 10´2. Fig. 4c shows that the convergence rate of the L2ps⇢L

T q error is 0.17, less than
the would-be minimax rate 1

3 « 0.33.
Arch function with observation noise: To demonstrate that our method can tolerate large

observation noise, we present the estimation results from noisy observations of the Arch function, which
is the most difficult among the three examples. Suppose that the observation noise ⇠ in (2.17) is
iid N p0, 0.25q. Note that the average of E

“|Yt|2
‰

is about 0.2, so the signal-to-noise ratio is about
Er|Y |2s
Er⇠2s « 0.8. Thus, we have a relatively large noise. However, our method can identify the function

using the moments of the noise as discussed in Section 2.5. Fig. 5a shows the estimator with degree-1
B-spline basis with dimension n “ 24. The L2ps⇢L

T q error is 0.1220 and the relative error is 27.32%.
Fig. 5b shows that the Wasserstein distances are small at the scale 10´3. The Wasserstein distances is
approximated from samples of the noisy data Y “ ftruepXq ` ⇠ and the noisy prediction pY “ pfpXq ` ⇠.
Fig. 5c shows that the convergence rate of the L2ps⇢L

T q error is 0.14. The estimation is not as good as
the noise-free case because the noisy observation data lead to milder lower and upper bound restrictions
in (2.15). We emphasize that the tolerance to noise is exceptional for such an ill-posed inverse problem,
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(a) Estimator with n=13, deg=2 (b) Wasserstein distance (c) Convergence rate

Figure 3. Learning results of Sine-Cosine function f2pxq “ 2 sinpxq `
cosp6xq with model (4.2).
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Figure 3: Learning results of Sine-Cosine function f2pxq “ 2 sinpxq ` cosp6xq with model (4.1).
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Figure 4: Learning results of Arch function f3 with model (4.1).

The learning results for these three functions are shown in Figure 2–4. For each of these three ob-
servation functions, we present the estimator with optimal hypothesis space, the 2-Wasserstein distance
and the convergence of the estimator.

Sine function: Fig. 2a shows the estimator with degree-1 B-spline basis with dimension n “ 9 for
M “ 106, which is selected according the 2-Wasserstein distance. The L2ps⇢L

T q error is 0.0245 and the
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(a) Estimator with n=45, deg=0 (b) Wasserstein distance (c) Convergence rate

Figure 4. Learning results of Arch function f3 with model (4.2).

agreement with the sampling error since we used 106 samples. Fig. 2(c) shows that
the convergence rate of the L2psρLT q error is 0.46. This rate is close to the minimax
rate 2

5 “ 0.4.
Sine-Cosine function: Fig. 3(a) shows the estimator with degree-2 B-spline

basis with dimension n “ 13. The L2psρLT q error is 0.1596 and the relative error
is 9.90%. Fig. 3(b) shows that the Wasserstein distances are at the scale of 10´2.
Fig. 3(c) shows that the convergence rate of the L2psρLT q error is 0.26, less than the
classical minimax rate 3

7 « 0.42. Note also that the variance of the L2 error does
not decrease as M increases. In comparison with the results for f1 in Fig.2(a), we
attribute this relatively low convergence rate and the large variance to the high-
frequency component cosp6xq, which is harder to identify from moments than the
low frequency component sinpxq.

Arch function: Fig. 4(a) shows the estimator with degree-0 B-spline basis
with dimension n “ 45. The L2psρLT q error is 0.0645 and the relative error is 14.44%.
Fig. 4(b) shows that the Wasserstein distances are small, at the scale 10´2. Fig. 4(c)
shows that the convergence rate of the L2psρLT q error is 0.17, less than the would-be
minimax rate 1

3 « 0.33.
Arch function with observation noise: To demonstrate that our method

can tolerate large observation noise, we present the estimation results from noisy
observations of the Arch function, which is the most difficult among the three ex-
amples. Suppose that the observation noise ξ in (2.17) is iid N p0, 0.25q. Note that
the average of E

“|Yt|2
‰

is about 0.2, so the signal-to-noise ratio is rather small, at

Er|Y |2s{Erξ2s « 0.8. Nevertheless, our method can identify the function using the
moments of the noise as discussed in Section 2.5. Fig. 5(a) shows the estimator with
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Figure 5: Learning results of Arch function f3 with model (4.1) and i.i.d Gaussian observation noise.

identifying such functions, due to two issues: (i) the uniform partition often misses the jump dis-
continuities (even the projection of f˚ has a large error); and (ii) the moments we considered depend
on the observation function non-locally, thus, they provide limited information to identify the true
function from its local perturbations. We leave it for future research to overcome these difficulties
by searching the jump discontinuities and by introducing moments detecting local information.

4.3 Limitations

We demonstrate by examples the non-identifiability due to symmetry and stationarity.

Symmetric distribution Let the state model be the Brownian motion with initial distribution
Unifp0, 1q. The state process pXtq has a distribution that is symmetric with respect to the line
x “ 1

2 , i.e., the processes pXtq and p1 ´ Xtq have the same distribution. Thus, with the reflection
function Rpxq “ 1 ´ x, the processes fpXtq and f ˝ RpXtq have the same distribution, and the
observation data does not provide information for distinguishing f from f ˝ R. The loss functional
(2.4) has at least two minima.

Figure 6 shows that our algorithm finds the reflection of the true function f˚ “ sinpxq. The
hypothesis space H has B-spline basis functions with degree 2 and dimension 58. Our estimator is
close to f˚ ˝ Rpxq “ sinp1 ´ xq. Its L2ps⇢L

T q error is 1.1244 and its reflection’s L2ps⇢L
T q error is 0.0790.

Both the estimator and its reflection correctly predict the distribution of the observation process
pYtq.

Stationary process When the diffusion process pXtq is stationary, the loss functional (2.4) pro-
vides limited information about the observation function. As discussed in Section 3.2, the matrix
A1 has rank 1, and E2 “ 0 and E3 “ 0 lead to only two more constraints. The constraints from the
upper and lower bounds in (2.15) play a major role in leading to a minimizer at the boundary of
the convex set H.

Figure 7 shows the learning results with the stationary Ornstein-Uhlenbeck process dXt “
´Xtdt ` dBt and with the observation function f˚pxq “ sinpxq. The stationary density of pXtq is
N p0, 1

2q. Due the limited information, the estimator has a large L2ps⇢L
T q error, which is 0.2656 and

its prediction has large 2-Wasserstein distances oscillating near 0.1290.
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Figure 5. Learning results of Arch function f3 with model (4.2) and

i.i.d Gaussian observation noise.

degree-1 B-spline basis with dimension n “ 24. The L2psρLT q error is 0.1220 and the
relative error is 27.32%. Fig. 5(b) shows that the Wasserstein distances are small, of
order 10´3. The Wasserstein distances are approximated from samples of the noisy

data Y “ ftruepXq ` ξ and of the noisy prediction pY “ pfpXq ` ξ. Fig. 5(c) shows
that the convergence rate of the L2psρLT q error is 0.14. The estimation is not as good
as the noise-free case, also because the noisy observation data lead to slightly lower
and upper bound constraints in (2.15).

We consider this tolerance and robustness to noise to be quite surprising for such
an ill-posed inverse problem, and the main reason for it is the use of moments,
which average the noise so that the error occurs at scale Op1{?Mq.

We have also tested piecewise constant observation functions. Our method has
difficulty in identifying such functions, due to two issues: (i) the uniform partition
often misses the jump discontinuities (even the projection of f˚ has a large error);
and (ii) the moments we considered depend on the observation function non-locally,
thus, they provide limited information to identify the true function from its lo-
cal perturbations. We leave it for future research to overcome these difficulties
by searching the jump discontinuities and by introducing moments detecting local
information.

4.3. Limitations. We demonstrate by examples the non-identifiability due to sym-
metry and stationarity.
Symmetric distribution. Let the state space model be the Brownian motion with
initial distribution Unifp0, 1q. The state process pXtq has a distribution that is
symmetric with respect to the line x “ 1

2 , i.e., the processes pXtq and p1 ´ Xtq
have the same distribution. Thus, with the reflection function Rpxq “ 1 ´ x, the
processes fpXtq and f ˝RpXtq have the same distribution, and the observation data
does not provide information for distinguishing f from f ˝ R. The loss functional
(2.4) has at least two minima.

Figure 6 shows that our algorithm finds the reflection of the true function f˚ “
sinpxq. The hypothesis space H has B-spline basis functions with degree 2 and
dimension 58. Our estimator is close to f˚ ˝ Rpxq “ sinp1 ´ xq. Its L2psρLT q error
is 1.1244 and its reflection’s L2psρLT q error is 0.0790. Both the estimator and its
reflection correctly predict the distribution of the observation process pYtq.
Stationary process. When the diffusion process pXtq is stationary, the loss functional
(2.4) provides limited information about the observation function. As discussed in
Section 3.2, the matrix A1 has rank 1, and E2 “ 0 and E3 “ 0 lead to only two
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(a) Estimator with n=58, deg=2 (b) Wasserstein distance
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Figure 6: Learning results of f˚pxq “ sinpxq with the state model being Xt “ Bt`X0 where X0 „ Unifp0, 1q. Due
to the symmetry with respect to the line x “ 1

2 , the estimator pfpxq and its reflection pfp1´xq are indistinguishable
by the loss functional and they lead to similar prediction of the distribution of tYtl
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Figure 7: Learning results of f˚pxq “ sinpxq with stationary Ornstein-Uhlenbeck process. Due to limited
information from the moments, the estimator is inaccurate due to its reliance on the upper and lower bound
constraints.

is suitable for large sets of unlabeled data. Moreover, it can deal with challenging cases when the
observation function is non-invertible. We address the fundamental issue of identifiability from first-order
moments. We show that the function spaces of identifiability are the closure of RKHS spaces intrinsic to
the state model. Numerical examples show that the first two moments and temporal correlations, along
with upper and lower bounds, can identify functions ranging from piecewise polynomials to smooth
functions and tolerate considerable observation noise. The limitations of this method, such as non-
identifiability due to symmetry and stationarity, are also discussed.

This study provides a first step in the unsupervised learning of latent dynamics from abundant
unlabeled data. There are several directions calling for further exploration: (i) a mixture of unsupervised
and supervised learning that combines unlabeled data with limited labeled data, particularly for high-
dimensional functions; (ii) enlarging the function space of learning, either by construction of more
first-order generalized moments or by designing experiments to collect more informative data; (iii) joint
estimation of the observation function and the state model.
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Figure 6. Learning results of f˚pxq “ sinpxq with the state space
model being Xt “ Bt`X0 where X0 „ Unifp0, 1q. Due to the symmetry

with respect to the line x “ 1
2
, the estimator pfpxq and its reflection

pfp1 ´ xq are indistinguishable by the loss functional and they lead to
similar prediction of the distribution of tYtlu.

more constraints. The constraints from the upper and lower bounds in (2.15) play
a major role in leading to a minimizer at the boundary of the convex set H.

Figure 7 shows the learning results with the stationary Ornstein-Uhlenbeck pro-
cess dXt “ ´Xtdt ` dBt and with the observation function f˚pxq “ sinpxq. The
stationary density of pXtq is N p0, 1

2 q. Due to the limited information, the estimator

has a large L2psρLT q error, which is 0.2656 and its prediction has large 2-Wasserstein
distances oscillating near 0.1290.
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Figure 7: Learning results of f˚pxq “ sinpxq with stationary Ornstein-Uhlenbeck process. Due to limited
information from the moments, the estimator is inaccurate due to its reliance on the upper and lower bound
constraints.

is suitable for large sets of unlabeled data. Moreover, it can deal with challenging cases when the
observation function is non-invertible. We address the fundamental issue of identifiability from first-order
moments. We show that the function spaces of identifiability are the closure of RKHS spaces intrinsic to
the state model. Numerical examples show that the first two moments and temporal correlations, along
with upper and lower bounds, can identify functions ranging from piecewise polynomials to smooth
functions and tolerate considerable observation noise. The limitations of this method, such as non-
identifiability due to symmetry and stationarity, are also discussed.

This study provides a first step in the unsupervised learning of latent dynamics from abundant
unlabeled data. There are several directions calling for further exploration: (i) a mixture of unsupervised
and supervised learning that combines unlabeled data with limited labeled data, particularly for high-
dimensional functions; (ii) enlarging the function space of learning, either by construction of more
first-order generalized moments or by designing experiments to collect more informative data; (iii) joint
estimation of the observation function and the state model.
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Fig7

(a) Estimator with n=58, deg=2 (b) Wasserstein distance

Figure 7. Learning results of f˚pxq “ sinpxq with stationary Ornstein-
Uhlenbeck process. Due to limited information from the moments, the
estimator is inaccurate.

5. Discussions and conclusion. We have proposed a nonparametric learning
method to estimate the observation functions in nonlinear state space models. It
matches the generalized moments via constrained regression. The algorithm is suit-
able for large sets of unlabeled data. Moreover, it can deal with challenging cases
when the observation function is non-invertible. We address the fundamental issue
of identifiability from first-order moments. We show that the function spaces of
identifiability are the closure of RKHS spaces intrinsic to the state space model.
Numerical examples show that the first two moments and temporal correlations,
along with upper and lower bounds, can identify functions ranging from piecewise
polynomials to smooth functions and tolerate considerable observation noise. The
limitations of this method, such as non-identifiability due to symmetry and station-
arity, are also discussed.
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This study provides a first step in the unsupervised learning of latent dynamics
from abundant unlabeled data. Several directions are calling for further exploration:
(i) a mixture of unsupervised and supervised learning that combines unlabeled data
with limited labeled data, particularly for high-dimensional functions; (ii) enlarging
the function space of learning, either by construction of more first-order generalized
moments or by designing experiments to collect more informative data; (iii) joint
estimation of the observation function and the state space model.

Appendix A. A review of RKHS. We review the definitions and properties
of the positive definite functions, the Mercer kernel, the reproducing kernel Hilbert
space (RKHS), and the related integral operator, see e.g., [7] for them on a compact
domain [35] for them on a non-compact domain.
Positive definite functions. The following is a real-variable version of the definition
of positive definite functions in [1, p.67].

Definition A.1 (Positive definite function). Let X be a nonempty set. A function
G : X ˆ X Ñ R is positive definite if and only if it is symmetric (i.e. Gpx, yq “
Gpy, xq) and

řn
j,k“1 cjckGpxj , xkq ě 0 for all n P N, tx1, . . . , xnu Ă X and c “

pc1, . . . , cnq P Rn. The function φ is strictly positive definite if the equality hold
only when c “ 0 P Rn.

Theorem A.2 (Properties of positive definite kernels). Suppose that k, k1, k2 :
X ˆX Ă Rd ˆ Rd Ñ R are positive definite kernels. Then

(a) k1k2 is positive definite. ( [1, p.69])

(b) Inner product xu, vy “ řd
j“1 ujvj is positive definite ( [1, p.73])

(c) fpuqfpvq is positive definite for any function f : X Ñ R ( [1, p.69]).

RKHS and positive integral operators. Let pX, dq be a metric space and G : XˆX Ñ
R be continuous and symmetric. We say that G is a Mercer kernel if it is positive
definite (as in Definition A.1). The RKHS HG associated with G is defined to be
closure of spantGpx, ¨q : x P Xu with the inner product

xf, gyHG
“

n,mÿ

i“1,j“1

cidjGpxi, yjq

for any f “ řn
i“1 ciGpxi, ¨q and g “ řm

j“1 djGpyj , ¨q. It is the unique Hilbert

space such that: (1) the linear space spantGp¨, yq, y P Xu is dense in it; (2) it
has the reproducing kernel property in the sense that for all f P HG and x P X,
fpxq “ xGpx, ¨q, fyG (see [7, Theorem 2.9]).

By means of the Mercer Theorem, we can characterize the RKHS HG through
the integral operator associated with the kernel. Let µ be a nondegenerate Borel
measure on pX, dq (that is, µpUq ą 0 for every open set U Ă X). Define the integral
operator LG on L2pX,µq by

LGfpxq “
ż

X

Gpx, yqfpyqdµpyq.

The RKHS has the operator characterization (see e.g., [7, Section 4.4] and [35]):

Theorem A.3. Assume that G is a Mercer kernel and G P L2pXˆX,µbµq. Then

1. LG is a compact positive self-adjoint operator. It has countably many positive
eigenvalues tλiu8i“1 and corresponding orthonormal eigenfunctions tφiu8i“1.
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Note that when zero is an eigenvalue of LG, the linear space H “ spantφiu8i“1

is a proper subspace of L2pµq.
2. t?λiφiu8i“1 is an orthonormal basis of the RKHS HG.
3. The RKHS is the image of the square root of the integral operator, i.e., HG “

L
1{2
G pL2pX,µqq.

Appendix B. Algorithm details.

B.1. B-spline basis and dimension of the hypothesis space. The choice of
hypothesis space is important for the nonparametric regression. One can use global
basis functions such as polynomials or Fourier basis when the observation function
is known in prior to be smooth. On the other hand, when the observation function
may be discontinuous, local basis functions such as B-splines or wavelets improve
the estimation. In all our numerical experiments we choose the basis functions
to be the B-splines, as we assume only limited information about the observation
function. To select an optimal dimension of the hypothesis space, we introduce
a new algorithm to estimate the range for the dimension and then we select the
optimal dimension that minimizes the 2-Wasserstein distance between the measures
of data and prediction.
B-Spline basis functions. We briefly review the definition of B-spline basis functions
and we refer to [30, Chapter 2] and [27] for details. Given a nondecreasing sequence
of real numbers, called knots, pr0, r1, . . . , rmq, the B-spline basis functions of degree

p, denoted by tNi,pum´p´1
i“0 , are defined recursively as

Ni,0prq “
"

1, ri ď r ă ri`1

0, otherwise
,

Ni,pprq “ r ´ ri
ri`p ´ riNi,p´1prq ` ri`p`1 ´ r

ri`p`1 ´ ri`1
Ni`1,p´1prq.

Each function Ni,p is a nonnegative local polynomial of degree p, supported on
rri, ri`p`1s. At a knot with multiplicity k, it is p ´ k times continuously differen-
tiable. Hence, the differentiability increases with the degree but decreases when the
knot multiplicity increases. The basis satisfies a partition unity property: for each

r P rri, ri`1s, řj Nj,pprq “
ři
j“i´pNj,pprq “ 1.

We set the knots of the spline functions to be a uniform partition of rRmin, Rmaxs
(the support of the measure sρLT in (2.16)) Rmin “ r0 ď r1 ď ¨ ¨ ¨ ď rm “ Rmin.
For any choice of degree p, we set the basis functions of the hypothesis space H,
contained in a subspace with dimension n “ m´ p, to be

φiprq “ Ni,pprq, i “ 0, . . . ,m´ p´ 1.

Thus, the basis functions tφiu are piecewise degree-p polynomials with knots adap-
tive to sρLT .
Dimension of the hypothesis space. The choice of dimension n of H is important to
avoid under- and over-fitting: we choose it by minimizing the 2-Wasserstein distance
between the empirical distributions of observed process pYtq and that predicted
by our estimated observation function. To reduce the computational burden, we
proceed in 2 steps: first we determine a rough range for n, and then within this
range we select the dimension with the minimal Wasserstein distance.

Step 1: we introduce an algorithm, called Cross-validating Estimation of Dimen-
sion Range (CEDR), to estimate the range r1, N s for the dimension of the hypothesis
space, based on the quadratic loss functional E1. Its main idea is to restrict N to
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avoid overly amplifying the estimator’s sampling error, which is estimated by split-
ting the data into two sets. It incorporates the function space of identifiability in
Section 3.1 into the SVD analysis [9, 16] of the normal matrix and vector from E1.

The CEDR algorithm estimates the sampling error in the minimizer of loss func-
tional E1 through SVD analysis in three steps. First, we compute the normal matrix
A1 and vector b1 in (2.6) by Monte Carlo; to estimate the sampling error in b1, we
compute two copies, b and b1, of b1 from two halves of the data:

bpiq “ 1

L

Lÿ

l“1

E rφipXtlqs
2

M

t M
2 uÿ

m“1

Y
pmq
tl

,

b1piq “ 1

L

Lÿ

l“1

E rφipXtlqs
2

M

Mÿ

m“t M
2 u`1

Y
pmq
tl

.

(B.1)

Second, we implement an eigen-decomposition to find an orthonormal basis of
L2psρLT q, the default function space of learning. The matrix A1 is a representa-
tion of the integral operator LK1

in Lemma 3.4 on H “ spantφiuni“1, and LK1
’s

eigenvalues are solved by the generalized eigenvalue problem

A1u “ λBu, where B “ pxφi, φjyL2psρLT qq (B.2)

(see [21, Theorem 5.1]). Denote the eigen-pairs by tσi, uiu, where the eigenvalues
tσiu are non-increasingly ordered and the eigenvectors are subject to normalization
uJi Buj “ δi,j . Thus, we have A1 “ řn

i“1 σiuiu
J
i (assuming that all σi’s are positive;

otherwise, we drop those zero eigenvalues). The least-squares estimators from b

and b1 are c “ řn
i“1

uJi b
σi
ui and c1 “ řn

i“1
uJi b

1

σi
ui, respectively. Third, the difference

between their function estimators represents the sampling error (with ∆c “ c´ c1)

gpnq :“} pf ´ pf 1}2L2psρLT q “ }
nÿ

k“1

∆ckφk}2L2psρLT q “
nÿ

i,j“1

∆cixφi, φjyL2psρLT q∆cj “ ∆cJB∆c

“
nÿ

i,j“1

uJi pb´ b1q
σi

uJi Buj
uJj pb´ b1q

σj
“

nÿ

i“1

r2
i ,

(B.3)

where ri “ |uJi pb´b1q|
σi

. The ratio ri is in the same spirit as the Picard projection

ratio
|uJi b|
σi

in [16], which is used to detect overfitting. Note that the eigenvalues
σi will vanish as n increases because the operator LK1 is compact. Clearly, the
sampling error gpnq should be less than }f˚}2L2psρLT q, which is the average of the

second moments. Thus, we set N to be

N “ maxtk ě 1 : gpkq ď τu, where τ “ 1

LM

L,Mÿ

l“1,m“1

|Y pmqtl
|2. (B.4)

We note that this threshold is relatively large, neglecting the rich information in g,
a subject worthy of further investigation.

Algorithm 2 summarizes the above procedure.
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Input: The state space model and data tY
pmq
t0:tL

u
M
m“1.

Output: A range r1, N s for the dimension of the hypothesis space for further selection.
1: Estimate the empirical density sρT in (2.16) and find its support rRmin, Rmaxs.
2: Set n “ 1 and gpnq “ 0. Estimate the threshold τ in (B.4).
3: while gpnq ď τ do
4: Set nÐ n` 1. Update the basis functions, Fourier or B-spline, as in Section 2.3.
5: Compute normal matrix A1 in (2.6) by Monte Carlo. Also, compute b and b1 in

(B.1).

6: Eigen-decomposition of A1 as in (B.2); return A1 “
řn
i“1 uiσiu

T
i with uJi Buj “

δi,j .

7: Compute the Picard projection ratios: ri “
|uJi pb´b

1q|

σi
for i “ 1, . . . , n and gpnq “řn

i“1 r
2
i .

8: Return N “ n.

Algorithm 2. Cross-validating Estimation of Dimension Range

(CEDR) for hypothesis space

Step 2: We select the dimension n and degree for B-spline basis functions to be the
one with the smallest 2-Wasserstein distance between the distribution of the data

and that of the predictions. More precisely, let µftl and µ
pf
tl

denote the distributions

of Ytl “ fpXtlq and of pfpXtlq, respectively. Let Ftl and pFtl denote their cumulative

distribution functions (CDF), with F´1
tl

and pF´1
tl

being their inverses. We compute

Ftl from the data and pFtl from independent simulations, approximate their inverses
using quantiles, and consider the root mean squared 2-Wasserstein distance

˜
1

L

Lÿ

l“1

W2pµftl , µ
pf
tl
q2
¸1{2

, with W2pµftl , µ
pf
tl
q2 “

ż 1

0

pF´1
tl
prq ´ pF´1

tl
prqq2dr . (B.5)

This method of computing the Wasserstein distance is based on an observation in [5],
and it has been used in [20,29]. Recall that the 2-Wasserstein distance W2pµ, νq of
two probability measures µ and ν over Ω with finite second order moments is defined

as W2pµ, νq :“ infγPΓpµ,νq
´ş

ΩˆΩ
|x´ y|2dγpx, yq

¯1{2
, where Γpµ, νq denotes the set

of all measures on ΩˆΩ with µ and ν as marginals. Let F and G be the CDFs of µ
and ν respectively, and let F´1 and G´1 be their quantile functions. Then the L2

distance of the quantile functions d2pµ, νq :“
´ş1

0
|F´1prq ´G´1prqdr|2

¯1{2
is equal

to the 2-Wasserstein distance W2pµ, νq.
B.2. Optimization with multiple initial conditions. With the convex hypoth-
esis space in (2.15), the minimization in (2.12) is a constrained optimization prob-
lem and it may have multiple local minima. Note that the loss functional EM pcq
in (2.12) consists of a quadratic term and two quartic terms. The quadratic term,
which represents EM1 in (2.5), has a Hessian matrix A1 which is often not full rank
because it is the average of rank-one matrices by its definition (2.6), in which case
the quadratic term has a valley of minima in the kernel of A1. The two quartic
terms have valleys of minima at the intersections of the ellipse-shaped manifolds
tc P Rn : cJAk,lc “ bMk,luLl“1 for k “ 2, 3. Symmetry in the distribution of the state

process will also lead to multiple minima (see Section 3.2 for more discussions, and
the numerical examples).
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To reduce the possibility of obtaining a local minimum, we search for a mini-
mizer from multiple initial conditions. We consider the following initial conditions:
(1) the least squares estimator for the quadratic term; (2) the minimizer of the
quadratic term in the hypothesis space, which is solved by least squares with lin-
ear constraints using c©MATLAB function lsqlin, starting from the LSE estimator;
(3) the minimizers of the quartic terms over the hypothesis space, which is found
by constrained optimization through c©MATLAB fmincon with the interior-point
search. Among the minimizers obtained from these initial conditions, we finally
take the one leading to the smallest 2-Wasserstein distance.

Appendix C. Selection of dimension and degree of the B-spline basis. We
demonstrate the selection of the dimension and degree of the B-spline basis functions
of the hypothesis space. As described in Section 2.3, we select the dimension and
degree in two steps: we first select a rough range for the dimension by the Cross-
validating Estimation of Dimension Range (CEDR) algorithm; then we pick the
dimension and degree to be the ones with minimal 2-Wasserstein distance between
the true and estimated distribution of the observation processes.

The CEDR algorithm helps to reduce the computational cost by estimating the
dimension range for the hypothesis space. It is based on an SVD analysis of the
normal matrix A1 and vector b1 from the quadratic loss functional E1. The key idea
is to control the sampling error’s effect on the estimator in the metric of the function
space of learning. The sampling error is estimated by computing two copies of the
normal vector through splitting the data into two halves. The function space of
learning plays an important role here: it directs us to use a generalized eigenvalue
problem for the SVD analysis. This is different from the classical SVD analysis
in [16], where the information of the function space is neglected.

Fig8

(a) Wasserstein distances and  errors L2(ρL
T) (b) Sampling error indicator with threshold 
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Figure 8: The selection of the dimension and the degree of B-spline basis functions in the case of Sine-Cosine
function. In (a), the 2-Wasserstein distance reaches minimum among all cases when the degree is 2 and the knot
number is 15, at the same time as the L2ps⇢L

T q error reaches the minimum. Figure (b) shows the cross-validating
error indicator g (defined in (B.3)) for selecting the dimension range N , suggesting an upper bound N “ 60 with
the threshold.

error as the dimension increases. A future direction is to extract the information, along with the decay
of the integral operator, to find the trade-off between sampling error and approximation error.
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Figure 8. The selection of the dimension and the degree of B-spline
basis functions in the case of Sine-Cosine function. In (a), the 2-
Wasserstein distance reaches minimum among all cases when the degree
is 2 and the knot number is 15, at the same time as the L2

psρLT q error
reaches the minimum. Figure (b) shows the cross-validating error indi-
cator g (defined in (B.3)) for selecting the dimension range N , suggesting
an upper bound N “ 60 with the threshold.

Figure 8 shows the dimension selection by 2-Wasserstein distances and by the
CEDR algorithm for the example of sine-cosine function. To confirm the effective-
ness of our CEDR algorithm, we compute the 2-Wasserstein distances for all di-
mensions in (a), side-by-side with the CEDR sampling error indicator g in (b) with
relatively large dimensions tn “ 75´ deg| for deg P t0, 1, 2, 3u. First, the left figure
suggests that the optimal dimension and degree are n “ 13 and deg “ 2, where
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the 2-Wasserstein distance reaches minimum among all cases, and at the same time
as the L2psρLT q error. For the other degrees, the minimum 2-Wasserstein distances
are either reached before of after the L2psρLT q error. Thus, the 2-Wasserstein dis-
tance correctly selects the optimal dimension and degree for the hypothesis space.
Second, (a) shows that the CEDR algorithm can effectively select the dimension
range. With the threshold in (B.4) being τ “ 1.60, which is relatively large (repre-
senting a tolerance of 100% relative error), the dimension upper bounds are around
N “ 60 for all degrees, and the ranges encloses the optimal dimensions selected by
the 2-Wasserstein distance in (b).

Here we used a relatively large threshold for a rough estimation of the range
of dimension. Clearly, our cross-validating error indicator gpkq in (B.3) provides
rich information about the increase of sampling error as the dimension increases.
A future direction is to extract the information, along with the decay of the inte-
gral operator, to control, both in theory and algorithmically, the trade-off between
sampling error and approximation error.
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