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Abstract

Nonlocal operators with integral kernels have become a popular tool for designing
solution maps between function spaces, due to their efficiency in representing
long-range dependence and the attractive feature of being resolution-invariant. In
this work, we provide a rigorous identifiability analysis and convergence study for
the learning of kernels in nonlocal operators. It is found that the kernel learning is
an ill-posed or even ill-defined inverse problem, leading to divergent estimators in
the presence of modeling errors or measurement noises. To resolve this issue, we
propose a nonparametric regression algorithm with a novel data adaptive RKHS
Tikhonov regularization method based on the function space of identifiability.
The method yields a noisy-robust convergent estimator of the kernel as the data
resolution refines, on both synthetic and real-world datasets. In particular, the
method successfully learns a homogenized model for the stress wave propagation
in a heterogeneous solid, revealing the unknown governing laws from real-world
data at microscale. Our regularization method outperforms baseline methods in
robustness, generalizability and accuracy.

1 Introduction

Nonlocal operators are increasingly used to represent nonlocal or long-range dependence, with
numerous applications in such as nonlocal and fractional diffusion [1, 2, 8, 11, 15, 16, 54, 56, 58],
homogenization problems [62, 61, 41, 40], fast partial differential equations (PDE) solvers [45, 46,
39, 32], control problems [46, 26], subsurface transport [5, 29, 30, 51, 52], multi-agent systems
with nonlocal interaction [44, 43, 33], phase transitions [3, 9, 14], nonlocal network in machine
learning [57, 37] and image processing [7, 19, 42, 31, 20, 24]. Motivated by these applications, an
important inverse problem emerges: to learn the integral kernels of the nonlocal operators from
data. Such kernel functions, with examples including the Gaussian kernel and Green’s functions, are
resolution-invariant and reveals the law of nonlocal interaction, thus they are fundamental for the
nonlocal operators. However, despite a long line of work on nonlocal model learning, there is limited
theoretical characterization of this inverse problem, even in the linear setting. In this paper, we aim to
fill the gap by studying the learning of kernels in nonlocal diffusion operators from data.

Suppose that we are given data consisting of discrete noisy observations of function pairs:
D = {(ui, fi)}Ni=1 = {(ui(xj), fi(xj)) : j = 1, . . . , J}Ni=1, (1)

where (ui, fi) are pairs of real-valued continuous functions on a bounded open connected set Ω ⊂ Rd
and {xj ∈ Ω} are spatial mesh points. The task is to learn an optimal kernel function φ fitting a
nonlocal operator Lφ[u] = f to the data, in the form:

Lφ[u](x) =

∫
Ω

φ(|y − x|)[u(y)− u(x)]dy = f(x),∀x ∈ Ω. (2)
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This operator is nonlocal in the sense that it depends on the function u non-locally through the
convolution of u(y)− u(x), unlike a (local) differential operator (see Appendix C for more details).
Here the data pairs can be functions, solutions to PDEs or images [62, 61, 42].

Our goal is to infer the kernel φ from data via nonparametric regression, so as to address the general
situations that there is limited information to derive a parametric form or constraints for the kernel,
which can be either smooth or singular. The regression utilizes the linear dependence of the operator
on the kernel, making it possible to treat the large size functional data in a scalable fashion.

Three challenges are to be overcome. First, the function space of identifiability (FSOI) is yet to be
specified properly, otherwise the inverse problem can be ill-defined in the sense that there are multiple
kernels fitting the data. This is fundamentally different from classical nonparametric regression that
learns a function Y = φ(X) from random samples {(Xi, Yi)} from the joint distribution of (X,Y ),
for which the FSOI is L2(ρ) with ρ being the distribution of X and the optimal estimator is the
conditional expectation. Second, the kernel estimator should be resolution independent and converge
in a proper function space when the data resolution refines, so that it can be applied to problems and
simulation tasks with different grids or discretization methods and provides a guaranteed modeling
accuracy. Third, beyond resolution invariance, the estimator should be robust to imperfect data so as
to be applicable in real applications.

To overcome these challenges, we first introduce an exploration measure ρN , which is the counterpart
of the measure ρ in classical regression, quantifying the exploration of the kernel’s variable by data.
The support of ρN is where there is information from data to learn the kernel. With this measure,
we have the an ambient function space of learning L2(ρN ) that consists of functions that are square
integrable. Second, we study the identifiability of the kernel via the nonparametric regression, which
leads to two findings: (1) the FSOI is data-dependent, it can be a proper subspace of L2(ρN ), and
beyond the FSOI, the inverse problem is ill-defined; (2) even in the FSOI, the inverse problem is
ill-posed. Therefore, to ensure that the learning takes place inside the FSOI and to overcome the
ill-posedness, we introduce a novel regularization method that uses the norm of a system-intrinsic
data-adaptive reproducing kernel Hilbert space (SIDA-RKHS), whose closure is the FSOI. Finally,
in experimental studies, we compare our SIDA-RKHS regularization method with two common
Tikhonov/ridge regularizers that use l2 and L2 norms. Results on both benchmark problems with
synthetic data and real-world data show that only the SIDA-RKHS regularizer can consistently obtain
convergent estimators for all types of kernels, especially when the data is noisy.

We summarize our major contributions below:
1) We establish a rigorous identifiability theory for the nonparametric learning of kernels in nonlocal
operators, and for the first time specifying a data-adaptive function space of identifiability (FSOI,
see Lemma 2.4 and Theorem 2.1). The theory also indicates a pitfall of the nonlocal kernel learning
problem: the inverse problem is ill-defined beyond the FSOI and is ill-posed in the FSOI.
2) We introduce a nonparametric regression algorithm equipped with a novel regularization method
based on the SIDA-RKHS (see Section 2.3), which ensures that the learning takes place insider the
FSOI and overcomes the ill-posedness to yield a convergent estimator robust to noise.
3) We validate the theory and the proposed algorithm on a number of benchmark problems, including
various synthetic datasets and a real-world dataset where the governing law is unknown (see Section
3). Results show that the proposed algorithm provides a stable and converging estimator, while the
common Tikhonov/ridge regularizers with l2 or L2-norm fail this task.

1.1 Related Work

Nonlocal operators: The inverse problem for nonlocal diffusion has been studied in [27, 35] from
a single solution. To discover nonlocal physical laws from data, a parametric learning approach
has been proposed in [60, 61], where the coefficients of Bernstein polynomials are learnt with
physics-based constraints and a Tikhonov regularization. Beyond the linear nonlocal model and the
regression methods, nonlocal operators were further combined with neural networks, and nonlocal
kernel networks were developed for learning maps between high-dimensional variables in dynamical
systems or function spaces [39, 38, 59]. An attractive feature of these nonlocal kernel/operator
learning methods is the generalizability among approximations corresponding to different underlying
levels of resolution and discretization. However, as seen in [62, 61, 38, 59], none of them yield
estimator convergence when trained on finer resolution, and the test error may even increase, due
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to the ill-posedness of the inverse problem. In this work, we tackle this issue by introducing a new
regularization method based on a data-adaptive RKHS in a nonparametric learning approach.

Functional data analysis: Functional data analysis (see e.g., [25, 28, 18] and the references therein)
studies the learning an infinite-dimensional operator from functional data. In contrast, we focus on
learning a radial kernel in an operator, exploiting the low-dimensional structure of the operator, which
enables us to learn the kernel (hence the operator) from limited data.

Regularization methods: Our SIDA-RKHS regularization is a type of Tikhonov/ridge regularization
that adds a penalty term to the loss function. It differs from previous methods at the penalty term. The
commonly used penalty terms include the Euclidean norm in the classical Tikhonov regularization
[23, 22], the RKHS norm with an ad hoc reproducing kernel (often the Gaussian kernel) [12, 13], the
total variation norm in the Rudin-Osher-Fatemi method [50], or the L1 norm in LASSO [55]. Whereas
each of these penalty terms has their specific applications, none of them take into account of the FSOI,
which is fundamental for learning kernels in operators. Also, our regularization method is inspired by
the kernel flow method that learns hyper-parameters of the reproducing kernel [48, 21, 10], but our
reproducing kernel is determined by the system and the data. Given the importance of regularization
to overcome ill-posedness and overfitting, we expect our SIDA-RKHS regularization method to be
applicable to a wide range of linear inverse problems and machine learning methods.

2 Learning theory and algorithm

2.1 Nonparametric regression with regularization

We construct an estimator by minimizing the loss functional of mean square error:

E(φ) =
1

N

N∑
i=1

∫
Ω

|Lφ[ui](x)− fi(x)|2dx ≈ cΩ
N

N∑
i=1

J∑
j=1

|Lφ[ui](xj)− fi(xj)|2, (3)

where the constant cΩ depends on the mesh, e.g., cΩ = ∆x when d = 1 with uniform mesh size ∆x.
Hereafter, for simplicity of notation, we view (ui, fi) as continuous functions and write only the
integral form of all elements, as long as the approximation from the discrete data is clear.

Note that the loss functional is quadratic in φ because the nonlocal operator is linear in φ. Thus,
the minimizer of the loss functional is the least squares estimator (LSE), which is handy once
one selects a hypothesis space Hn = span{φk}nk=1 with basis functions φk. Specifically, for each
φ =

∑n
k=1 ckφk ∈ Hn, we can write the loss functional in (3) as E(c) = E(φ) = c>Anc− 2c>bn +CfN ,

where CfN = 1
N

∑N
i=1

∫
|fi(x)|2dx, and the normal matrix A and vector b are given by

An(k, l) = 〈〈φk, φl〉〉, bn(k) =
1

N

N∑
i=1

∫
Lφk

[ui](x)fi(x)dx, (4)
and the bilinear form 〈〈·, ·〉〉 is defined by

〈〈φ, ψ〉〉 =
1

N

N∑
i=1

∫
Rd

Lφ[ui](x)Lψ[ui](x)dx. (5)

The LSE is the minimizer of E(c):
φ̂Hn

=

n∑
k=1

ĉkφk, where ĉ = A
−1

n bn, (6)

where A−1
n is the inverse (or pseudo-inverse when the inverse does not exist) of An.

However, the above least squares regression encounters a big challenge in obtaining convergent
estimators for this ill-posed inverse problem (see Section 2.2). As a nonparametric method, it is often
necessary to select a relatively large hypothesis space to make the model flexible enough. However,
the large hypothesis space leads to a normal matrix that is often severely ill-conditioned. As a result,
the estimator in (6) oscillates violently when the data is imperfect due to either measurement noise or
model error, and the estimator does not converge when the data mesh refines.

Regularization methods overcome the ill-posedness by adding a penalty term to the loss functional:
Eλ(φ) = E(φ) + λR(φ), (7)

whereR(φ) is a regularization term, and λ is a hyper-parameter controlling the contribution of the
regularization term. Various penalty terms have been proposed, however, none of them take into
account of the function space of identifiability, which is at the foundation of learning (see Section
2.2). Based on it, we will introduce a data-adaptive RKHS regularization method (in Section 2.3).
Thus, it is different from classical regularization using an ad hoc RKHS [13, 4].
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2.2 Function space of identifiability

The identifiability theory characterizes the function space of learning. There are two key elements in
our identifiability theory: 1) an exploration measure, which is a probability measure that quantifies
the exploration of the kernel’s variable by the data, and 2) the function space of identifiability, in
which the loss functional has a unique minimizer. They are described as follows.

The exploration measure. As the first key element, we introduce first a novel measure on R+ that
quantifies the exploration of the independent variable of the kernel by the data. We assume the
radial kernel’s support to be in an interval [0, R0]. A given dataset may only explore part of this
interval. More specifically, the discrete data set in (1) explores only the pairwise distances |xj − xk|
in RJN = {rijk = |xj − xk| ≤ R0 : ui(xj) − ui(xk) 6= 0 for some i, j, k}, the set of all the pairwise
distances |xj − xk| with repetition. We define an empirical measure and its continuous limit

ρJN (dr) =

N∑
i=1

J∑
j,k=1

δ|xj−xk|(r)
wi(xj , xk)

|RJN |
, ρN (dr) =

N∑
i=1

∫
Ω

∫
Ω

δ|x−y|(r)
wi(x, y)

ZN
dxdy (8)

for r ∈ [0, R0], where |RJN | is the cardinality of the set RJN , δs(r) is the Kronecker delta function
with value 1 when s = r and with value zero otherwise, and Z is the normalizing constant. Here the
weight function is wi(x, y) = |ui(x)− ui(y)|.

The exploration measure plays an important role in the learning of the kernel. It reflects the strength of
exploration to |x− y| by the data |ui(x)− ui(y)| in the loss function, and it will act as a re-weighting
factor through the SIDA-RKHS regularization to be introduced in Section 2.3. Thus, we will use it to
quantify the accuracy of the kernel’s estimator in L2(ρN ) (or L2(ρJN ) for discrete data).

Main result: function space of identifiability. We define the function space of identifiability (FSOI)
as the largest linear space in which the loss functional has a unique minimizer. In other words, the
variational inverse problem of finding a unique minimizer of the loss functional is well-defined in this
space. In the following, we write only the continuous function space L2(ρN ), but all the arguments
apply to the discrete function space L2(ρJN ) in an obvious manner (see Remark 2.5).
Theorem 2.1 (Function space of identifiability). Consider the problem of learning the kernel φ by
minimizing the loss functional E in (3) with {ui, fi}Ni=1 being continuous in a bounded domain Ω.
Then, the function space of identifiability (FSOI), the largest subspace of L2(ρN ) in which E has a
unique minimizer, is the eigen-space of nonzero eigenvalues of LG, an integral operator defined by

LGφ(r) =

∫ ∞
0

φ(s)G(r, s)ρN (ds). (9)

Here the integral kernel G comes from data:

G(r, s) = [ρ′N (r)ρ′N (s)]−1G(r, s), (10)

where ρ′N is the density of ρN and G is

G(r, s) =
1

N

N∑
i=1

∫
|η|=1

∫
|ξ|=1

[∫
[ui(x+ rξ)− ui(x)] [ui(x+ sη)− ui(x)]dx] dξdη, (11)

for r, s ∈ supp(ρN ), and G(r, s) = 0 otherwise. Furthermore, the minimizer of E is

φ̂ = LG
−1PφfN ,

where P is the projection to the FSOI. Here φfN ∈ L
2(ρN ) is the Riesz representation of the bounded

linear functional defined by 〈φfN , ψ〉L2(ρN ) = 1
N

∑N
i=1

∫
2Lψ[ui](x)fi(x)dx, ∀ψ ∈ L2(ρN ).

When the data is continuous and noiseless, we have φfN = LGφtrue, then, the true kernel is the
unique minimizer, i.e., it is identifiable by the loss functional, since φ̂ = LG

−1PφfN = φtrue. When
the data is discrete or noisy, the unique minimizer is an optimal estimator in the FSOI, and it is
expected to converge to the true kernel when the perturbations to φfN vanishes, which happens when
the data mesh refines and the noise reduces.

The proof of Theorem 2.1 is based on the uniqueness of zero of the Fréchet derivative of the loss
functional, which becomes clear from the following lemma. Their proofs are deferred to Appendix A.
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Lemma 2.2. The Fréchet derivative of the loss functional E in L2(ρN ), with LG defined in (9) and
φfN defined in Theorem 2.1, is ∇E(φ) = 2(LGφ− φ

f
N ).

Remark 2.3 (Examples of FSOI). Here we show the FSOI in three simple cases with N = 1 (i.e.,
with a single pair of functions (u1, f1)) and d = 1. In the first two cases we consider u1 ≡ 1 and
u1(x) = x, both of which give f1 ≡ 0 for any radial kernel φ, revealing no information about the
kernel. In either case, we have G(r, s) ≡ 0, which follows from (11) (or (19) in the appendix),
hence, the FSOI is a null space, detecting that the data provides no information about the kernel. In
contrast, in the third case we consider u1(x) = x2, and f(x) will vary with the kernel, hence reveal
information about the kernel; on the other hand, we have G(r, s) = 4r2s2, leading to a non-empty
FSOI. Thus, these cases highlight the importance and meaning of the data-dependent FSOI.

System-intrinsic data-adaptive RKHS. Theorem 2.1 highlights two fundamental challenges: the
inverse problem is well-defined only in the FSOI, and it is ill-posed in the FSOI because it involves
the inverse of a compact operator LG (as shown in the next lemma). Fortunately, the integral kernel G
defines a reproducing kernel Hilbert space (RKHS), which provides a regularization norm to ensure
the learning to take place in the FSOI and to overcome the ill-posedness. This RKHS is system
intrinsic as it depends on the structure of the system of nonlocal operators, and it is data-adaptive,
utilizing both the exploration measure and the data {ui}. Thus, we call it SIDA-RKHS.
Lemma 2.4 (Characterization of the SIDA-RKHS). Suppose that the data {ui} are continuous in Ω.
Then, the following statements hold true.
(a) The integral kernel G defined in (10) is positive semi-definite.

(b) The integral operator LG : L2(ρN ) → L2(ρN ) defined in (9) is compact and positive semi-
definite, and we have, for any φ, ψ ∈ L2(ρN ),

〈〈φ, ψ〉〉 = 〈LGφ, ψ〉L2(ρN ). (12)

(c) The RKHS HG with G as reproducing kernel satisfies HG = LG
1/2(L2(ρN )), and its inner

product satisfies 〈φ, ψ〉HG
= 〈LG

−1/2φ,LG
−1/2ψ〉L2(ρN ) for any φ, ψ ∈ HG.

(d) The eigenvalues of LG converges to zero, and its eigen-functions {ψk}k form a complete or-
thonormal basis of L2(ρN ). For any φ =

∑
k ckψk, we have

〈〈φ, φ〉〉 =
∑
k

λkc
2
k, ‖φ‖2L2(ρN ) =

∑
k

c2k, ‖φ‖2HG
=
∑
k

λ−1
k c2k, (13)

where the last equation is restricted to φ ∈ HG.

Input: The data {ui, fi}Ni=1 = {ui(xj), fi(xj)}N,Ji,j=1 to construct the nonlocal model Lφ[u] = f .
Output: Estimator φ̂
1. Estimate the exploration measure ρJN as in (8), and denote R the upper bound of its support.
2. Get regression data (see Appendix B).
3. Select a class of hypothesis spacesHn = span{φk}nk=1 with n in a proper range.
4. For n in the range

4a) Compute (An, bn, Bn) forHn = span{φk}nk=1 with Bn = (〈φk, φl〉L2(ρJ
N

))1≤k,l≤n;
4b) If the basis matrix Bn is singular, stop and remove n from the range;
4c) Solve the generalized eigenvalue problem AnV = BnΛV , where Λ is the diagonal matrix of eigenval-

ues and V >BnV = In;
4d) Compute the RKHS-norm matrix Brkhs = (V ΛV >)−1;
4e) Use the L-curve method find an optimal estimator φ̂λ∗n .

5. Select the optimal dimension n∗ (and degree if using B-spline basis) that has the minimal loss value (along
with other cross-validation criteria if available). Return the estimator φ̂ =

∑n∗

k=1 c
k
n∗φk.

Algorithm 1: Nonparametric learning of the nonlocal kernel with SIDA-RKHS regularization

Remark 2.5 (Discrete data). When the space L2(ρJN ) is a discrete vector space due to discrete data,
we learn the kernel on finitely many points {rk}nk=1 explored by the data. In this case, the integral
kernel G in (11) becomes a positive semi-definite matrix in Rn×n, so is G in (10). Now the operator
LG is defined by the matrix G on the weighted vector space Rn and its eigenvalues is the generalized
eigenvalue of (G,Bn) with Bn being a basis matrix Bn(i, j) =

∑n
k=1 φi(rk)φj(rk)ρJN (rk), where
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{φi} are linearly independent basis functions of the hypothesis space H. As a result, the FSOI is
the vector space spanned by the eigenvectors with nonzero eigenvalues. Furthermore, the norm of
the SIDA-RKHS HG in (13) can be computed directly from the eigen-decomposition. This norm is
better suited for regularization even when the FSOI has the same dimension as L2(ρJN ) (or dense in
it). As data mesh refines, these vector spaces converges to the corresponding function spaces.

2.3 Algorithm: LSE with SIDA-RKHS regularization

Based on the function space of identifiability, we introduce next a nonparametric learning algorithm
with SIDA-RKHS regularization. The algorithm consists of three steps. First, we utilize the data to
estimate the exploration measure and the support of the kernel. Based on them, we set a class of
hypothesis spaces, with their dimensions, i.e., the number of basis functions, in a proper range moving
from under-fitting to over-fitting. For the hypothesis space Hn = span{φk}nk=1, we compute the
basis matrix Bn = (〈φk, φl〉L2(ρJN ))1≤k,l≤n ∈ Rn×n. Second, we assemble the regression matrices
from data for each of these hypothesis spaces. We approximate the integrals by Riemann sum or
other numerical integrator. Finally, we identify an estimator with SIDA-RKHS regularization for
each of these hypothesis spaces by the L-curve method [22] and select the one with the best fitting.
We summarize the method in Algorithm 1, with its full details provided in Section B.

The core innovations are the exploration measure and the regularization using the SIDA-RKHS norm.
Importantly, they bring little extra computational cost. The exploration measure is available directly
from data. The SIDA-RKHS norm is computed directly from the triplet (An, bn, Bn) using the
generalized eigenvalue problem as detailed in the algorithm.

Our SIDA-RKHS regularization uses the RKHS normR(φ) = c>Brkhsc, where Brkhs is defined in
(4d) in Algorithm 1. It differs from the commonly-used Tikhonov/ridge regularization using either
the l2-norm that setsR(φ) =

∑
k c

2
k or the L2(ρJN )-norm that setsR(φ) = c>Bnc. We note that the

three norms become the same when Bn = In and all the eigenvalue of An are 1.

3 Tests on synthetic and real-world data
We test our method on both synthetic data and real-world data in 1D examples. On each dataset, we
compare our SIDA-RKHS regularizer with two baseline regularizers using the l2 and L2(ρJN ) norm
(denoted as l2 and L2, respectively). All three regularizers use the same L-curve method to select
the hyper-parameter λ as described in Appendix D.2. Importantly, they all use a projection to the
FSOI (i.e., projecting the normal vector into the FSOI) to avoid an ill-defined inversion. We do not
compare with other penalty norms, such as total variation or LASSO, because it is difficult to modify
them to take into account the FSOI (and we leave it for future study).

In synthetic data examples, we systematically examine the method with three representative types
of kernels considering both noiseless and noisy data. Since the ground-truth kernel is known, we
study the convergence of estimators to the true kernel as the data mesh refines. We also apply our
method to a real-world dataset for stress wave propagation in a heterogeneous bar, with the goal of
constructing a homogenized model from microscale data. Since there is no ground-truth, we examine
the performance of estimators by studying their physical stability and capability of reproducing the
wave motion on a cross-validation dataset. All datasets and codes used will be released on GitHub.

Settings for the learning algorithm. In implementation of Algorithm 1, we use B-spline basis
functions consisting of piece-wise polynomials with degree 2 so that the estimated kernel is twice
differentiable (see Section D.1 for a brief introduction of B-splines). The knots of B-splines are
evenly spaced on interval [0, R], with one additional knots at 0 to make the first basis nonzero at
x = 0. We select the dimension with minimal loss from a sequence of dimensions in the range
b R∆xc × [0.2, 1] as long as the basis matrix Bn is well-conditioned.

3.1 Examples with synthetic data
Numerical settings. We consider three kernels: a sine kernel, a Gaussian kernel, and a fractional
Laplacian kernel (specified below). They represent bounded smooth single-scale, bounded multiscale
and singular multiscale kernels, with increasing level of challenges to learn from discrete data due
to the numerical error in approximation of the integrals. They act on the same set of functions
{ui}i=1,2 with u1 = sin(x)1[−π,π](x) and u2(x) = cos(x)1[−π,π](x). In the ground-truth model,
the integral Lφ[ui] is computed by the adaptive Gauss-Kronrod quadrature method, which is much
more accurate than the Riemann sum integrator that we will use in the learning stage. To create
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discrete datasets with different resolutions, for each ∆x ∈ 0.0125× {1, 2, 4, 8, 16}, we take values
{ui, fi}Ni=1 = {ui(xj), fi(xj) : xj ∈ [−40, 40], j = 1, . . . , J}Ni=1, where xj is a point on the
uniform grid with mesh size ∆x.

For each kernel, we consider both noiseless and noisy data with different noise levels, with a noise-to-
signal-ratio (nsr) taking values {0, 0.5, 1, 2}. Here the noise is added as fi(xj) = Lφ[ui] + ηi,j for
each i, j, where {ηi,j} are independent and identically distributed N (0, σ2) and the noise-to-signal-
ratio is the ratio between σ and the average L2 norm of fi.

The three ground-truth kernels are specified as follows.
• Sine kernel. The sine kernel is φtrue(r) = sin(6r)1[0,10](r). This sine kernel represent a smooth

oscillating kernel in the same class as the data ui. The estimated support is in [0, R] with R = 11.02.
• Gaussian kernel. The Gaussian kernel φtrue is the Gaussian density centered at 5 with standard

deviation 1. This kernel represents a smooth kernel. It has R = 11.58.
• Fractional Laplacian kernel. It is a truncated version of the fractional Laplacian kernel that

has been widely studied in fractional and nonlocal diffusions (see e.g., [8, 2, 16, 56]). We set
φtrue(r) = cd,sr

−(d+2s)1[0.1,6](x) + 10d+2s1[0,0.1](x) with exponent s = 0.5 and d = 1, where
cd,s = 4sπ−d/2Γ(d/2 + s)Γ(−s). It is almost singular with multiscale values and its values near the
singularity are crucial to the operator. It has R = 6.51.
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Figure 1: (a): Typical estimators from noisy data with noise-to-signal-ratio nsr = 1 and ∆x = 0.025.
(b): the relative L2(ρJN ) errors of these estimators. Bold numbers highlight the best method. The
SIDA-RKHS regularizer consistently obtains accurate estimators in all three cases.

Performance of the regularizers. We present the typical estimators and the convergent rate of the
estimator as data mesh refines, i.e., the exponent α s.t. ‖φ̂− φtrue‖L2(ρJN ) = O((∆x)α). Figure 1
shows typical estimators for the three examples from noisy data with a noise-to-signal ratio nsr=1
and ∆x = 0.025. The hypothesis space’s dimension is selected by minimal loss value. All three
regularizers are able to estimate the Sine kernel accurately and the Fractional Laplacian kernel
reasonably. The SIDA-RKHS regularizer significantly outperforms the regularizers with l2 or L2-
norm in the example of the Gaussian kernel.
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(a) Convergence rates as mesh refines
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(b) Error decay as number of data pair increases
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Figure 2: (a) The means and standard deviations of the convergence rates as mesh refines in 100
independent simulations. Here, we stress the goal is to seek an accurate estimator with a consistent
rate, and the SIDA-RKHS regularizer obtains consistent rates for noisy data. We also note that the
SIDA-RKHS regularizer has deceivingly lower rates for noiseless data. However, it actually has
more accurate estimators (see Figure 4 in appendix). (b) Error decay as the number of data pairs
increases when nsr = 1 and ∆x = 0.0125. No rate of convergence is expected here since the data
are deterministic (see text).

The SIDA-RKHS regularizer’s superior performance is further validated by the rates of convergence
when ∆x decreases, from 100 independent simulations with noises with nsr ∈ {0, 0.5, 1, 2}, as
shown in Figure 2. It has rates generally higher than those of the other two regularizers when the data
gets more noisy. Here the rates for the smooth kernels are higher than the rate for the singular kernel,
because the order of numerical error in the Riemann sum integrator are higher (see [17]).
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Increasing the number of data pairs. Sine the operator is linear, only linearly independent data
brings new information for the learning, thus we use data {ui(x)}Ni=1 = {sin(ix), cos(ix)}N/2i=1 .
Figure 2(b) shows that as N of increases, the estimators become more accurate but without a
convergence rate. Note that the data pairs do not provide independent (random) samples of ρN , which
also varies with data. Thus, our learning problem is fundamentally different from regression for
random samples and we do not expect a convergence rate N−1/2. An interesting future direction is
to design experiments to collect informative data to enlarge the FSOI and accelerate the convergence.

In summary, the SIDA-RKHS regularizer consistently obtains accurate convergent estimators when
data mesh refines for either noiseless or noisy data. On the contrary, the regularizers with l2 norm or
L2 norm, are not robust to noise and may fail to converge, due to their negligence of the FSOI.

3.2 Homogenization of wave propagation in meta-material

Figure 3: Real-world application: wave propagation in a heterogeneous bar with ordered microstructure of
period L = 0.4, and the estimated support of the kernel has a bound R = 1.65.

We seek a nonlocal homogenized model for the stress wave propagation in a one-dimensional
heterogeneous bar with a periodic microstructure. For this problem, the goal is to obtain an effective
surrogate model from high-fidelity (HF) datasets generated by solving classical wave equation,
acting at a much larger scale than the size of the microstructure. Differing from previous examples,
this problem has no ground-truth kernel. Therefore, we evaluate the estimator by measuring its
effectiveness of reproducing HF data in applications that are subject to different loading conditions
with a much longer time from the problems used as training data.

For both training and validation purposes we use the HF dataset generated by the direct numerical
solver (DNS) introduced in [53], which provides exact solutions of velocities including the appropriate
jump conditions for the discontinuities in stress that occur at waves. Although the DNS has high
accuracy on wave velocity, it is not suitable for long-term prediction because it requires the modeling
of wave propagation through thousands of microstructural interfaces, which makes the computational
cost prohibitive. To accelerate the computation, we approximate the HF model by a nonlocal model:

∂ttu(x, t)− Lφ[u](x, t) = g(x, t), for (x, t) ∈ Ω× [0, T ], (14)

where Lφ is a nonlocal operator in the form of (2) with a kernel φ being supported in [0, R].

Experiment settings. We consider four types of data: three for training and one for validation of
our algorithm. Three types of training datasets are employed: In Type 1 dataset, the bar is subject to
an oscillating source g(x, t); In Type 2 dataset, a boundary velocity loading ∂tu(−50, t) = cos(jt) is
applied; In Type 3 dataset, all settings are the same as in Type 2, except that the cos(jt) type loading
is replaced by sin(jt). In all training datasets we consider a relatively small domain Ω = [−50, 50]
and short time t ∈ [0, 2]. Two spatial resolutions, ∆x = 0.05 and ∆x = 0.025 are considered, which
we denote as the “coarse” and “fine” datasets, respectively.

With these three types of training datasets, we design three experiment settings to validate our method:
• Coarse dataset 1: we train the estimator using “coarse” dataset of Types 1 and 2.
• Coarse dataset 2: we train the estimator using “coarse” dataset of Types 1 and 3. By comparing the
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learnt estimator from this setting with the result from setting 1, we mean to investigate the sensitivity
of the inverse problem with respect to the choice of datasets.
• Fine dataset: we train the estimator using “fine” dataset of Types 1 and 2. By comparing the learnt
estimator from this setting with the result from setting 1, we aim to check the convergence of the
estimator with increasing data resolution. Note that the problem might becomes more ill-posed when
decreasing ∆x. Therefore, proper regularization is expected to become more important.

Additionally, we create a validation dataset, denoted as Type 4 dataset, very different from the training
dataset. It considers a much longer bar (Ω = [−133.3, 133.3]), under a different loading condition
from the training dataset, and with a 50 times longer simulation time (t ∈ [0, 100]). Therefore, the
cross-validation error checks the generalizability of the estimators.

Results assessment. We present the learnt estimators in Figure 3. Since there is no ground-truth
kernel, we assess the performance of each estimator based on three criteria. Firstly, we report in
Figure 3(b) the prediction L2 error of displacement on the cross validation dataset at T = 100.
Secondly, we report in Figure 3(d) the resultant estimators the group velocity curves from our model
and compare them with the curves computed with DNS. These curves directly depicts how much
our surrogate model reproduces the dispersion properties in the heterogeneous material. At last, the
learnt model should provide a physically stable material model. To check this, we also report the
dispersion curve in 3(e). Its positivity indicates that the learnt nonlocal model is physically stable.

Performance of the estimators. Comparing the three estimators in Figure 3(c), one can see that
only the SIDA-RKHS regularizer obtains consistent estimators in all three experiment settings. The
oscillatory estimators of regularizers with l2 or L2-norm verify the ill-posedness, and highlight the
importance of using proper regularizers in nonlocal operator learning methods. The dispersion curves
in Figure 3(e) stress the importance of regularizer from another aspect of view: our SIDA-RKHS
regularizer provides physically stable material models in all settings, while the regularizers with l2 or
L2-norm may result in highly oscillatory and non-physical models.

We further examine the regularized estimator in terms of its capability in reproducing DNS simulations
through the prediction error of u on the cross validation dataset. When ∆x = 0.025, it takes about 48
hours for the DNS simulation to generate one sample, while the homogenized nonlocal model only
requires less than 20 minutes. From 3(b), we can see that when ∆x = 0.05, all three regularizers
are robust and able to reproduce the DNS simulation with a reasonable accuracy (∼ 20%). When
we increase the data resolution to ∆x = 0.025, the estimated nonlocal model from l2 regularizer
becomes unstable, which again verifies our analysis: when the data mesh refines, the kernel learning
problem becomes more ill-posed and a good regularizer becomes a necessity. Meanwhile, both the
L2 and SIDA-RKHS regularizers lead to a more accurate estimator, indicating a trend of convergence.
On both datasets, the SIDA-RKHS regularizer obtains the most accurate estimators.

3.3 Limitations and future directions

Non-radial high-dimensional kernels. When the kernel is radial, our algorithm is readily applicable to
higher dimensions (see Appendix B). When the kernel is non-radial high-dimensional, however, the
regression will face the well-known curse-of-dimensionality, but our identifiability theory remains
valid. Thus, a future direction is to utilize methods such as kernel-regression or neural networks and
further develop the SIDA-RKHS regularization.
Convergence analysis. We have obtained convergent regularized estimators, but a convergence
analysis is left as future work. The main difficulty to overcome is the complex combination of three
factors: operator spectrum decay, the errors from numerical integration and noise, and regularization.

4 Conclusion

We have characterized the identifiability pitfall in the learning of kernels in nonlocal operators,
and proposed a new regularization method to fix this issue and achieve estimator convergence.
In particular, we have established a rigorous identifiability theory for the nonparametric learning
of kernels in nonlocal diffusion operators, specifying the function space of identifiability. Based
on the theory, we have introduced a nonparametric regression algorithm equipped with a data
adaptive RKHS regularization method. Tests on synthetic and real-world datasets show that the our
algorithm consistently obtains accurate and convergent estimator, outperforming common benchmark
regularizers. Our method addresses the critical estimator diverging phenomena observed in previous
nonlocal operator learning methods, and the proposed framework provides a promising new direction
towards overcoming the ill-posedness to achieve convergence in operator learning.
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A Proofs

Proof of Lemma 2.4. Part (a) follows directly from the definition of G. Recall that a bivariate
function G is positive semi-definite iff for any (c1, . . . , cm) ∈ Rm and any {rj}mj=1 ⊂ Rd, the sum∑m
k=1

∑m
j=1 ckcjG(rk, rj) ≥ 0 (see e.g. [6, 13, 36]). Then, noting that from (11) and (10) we have

m∑
k=1

m∑
j=1

ckcjG(rk, rj)

=
1

N

N∑
i=1

∫
|η|=1

∫
|ξ|=1

∫ m∑
k=1

m∑
j=1

ckcj
[ui(x+ rkξ)− ui(x)][ui(x+ rjη)− ui(x)]

ρ′N (rj)ρ′N (rk)
dx

 dξdη
=

1

N

N∑
i=1

∫
|η|=1

∫
|ξ|=1

∫ ∣∣∣∣∣
m∑
k=1

ck
[ui(x+ rkξ)− ui(x)]

ρ′N (rk)
dx

∣∣∣∣∣
2
 dξdη ≥ 0.

Thus, G is positive semi-definite.

For Part (b), the operator LG is compact because G ∈ L2(ρN × ρN ), which follows from the fact
that each ui is bounded (thus, G is also bounded). Also, since G is positive semi-definite, so is LG.
The equation (12) follows from (16).

Part (c) is a standard operator characterization of the RKHS HG (see e.g., [13]).

For Part (d), the eigenfunctions are orthonormal and the eigenvalues decay to zero because the
operator LG is positive semi-definite and compact, as shown in Part (b). The first equation in (13)
follows from (12), and the second equation follows from the orthogonality of the eigenfunctions. At
last, if φ ∈ HG, by the characterization of HG’s inner product in Part (c), we have the third equation
in (13).

Proof of Lemma 2.2. Recall that with the bilinear form 〈〈·, ·〉〉, defined in (5), we can rewrite the loss
functional as

E(φ) = 〈〈φ, φ〉〉 − 1

N

N∑
i=1

∫
2Lφ[ui](x)fi(x)dx+ Cf , (15)

where CfN = 1
N

∑N
k=1

∫
|fi(x)|2dx. Then, the derivative∇E(φ) follows from (12) and a rewriting

of the bilinear form:

〈〈φ1, φ2〉〉 =
1

N

N∑
i=1

∫ [∫ ∫
φ1(|z|)[ui(x+ z)− ui(x)]φ2(|y|)[ui(x+ y)− ui(x)]dydz

]
dx

=
1

N

N∑
i=1

∫ ∫
φ1(|z|)φ2(|y|)

[∫
[ui(x+ z)− ui(x)][ui(x+ y)− ui(x)]dx

]
dydz

=

∫ ∞
0

∫ ∞
0

φ1(r)φ2(s)G(r, s)drds =

∫ ∞
0

∫ ∞
0

φ1(r)φ2(s)G(r, s)ρN (dr)ρN (ds), (16)

with G and G given in (11) and (10), where the last equality is a re-weighting by ρN .

Proof of Theorem 2.1 . By Lemma 2.2, the Fréchet derivative of the loss functional is ∇E(φ) =

2(LGφ− φ
f
N ). Thus, the loss functional has a unique minimizer only in the function space where

∇E(φ) has a unique zero, that is, the operator LG has an inversion. The largest such a space is the
eigenspace expanded by all eigenfunctions with non-zero eigenvalues of LG. Furthermore, projecting
φfN to this sapce, we have the the minimizer φ̂ = LG

−1PφfN as given in the theorem.

B Algorithm: nonparametric regression with SIDA-RKHS regularization

In this section we provide detailed description of the algorithm proposed in Section 2.3.
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Our algorithm consists of three steps. First, we utilize the data to estimate the exploration measure and
the support of the kernel. Based on them, we set a class of hypothesis spaces, with their dimensions
i.e., the number of basis functions, in a proper range moving from under-fitting to over-fitting. Second,
we assemble the regression matrices vectors from data for each of the hypothesis spaces. Finally, we
identify the estimators with SIDA-RKHS regularization for these hypothesis spaces and select the
one with the best fitting.

To start, we assume that the discrete data {ui(xj), fi(xj)}Ni=1 comes with equidistant mesh points
{xj = j∆x}Jj=0. For simplicity, we consider only the 1D case, and the extension to multi-
dimensional cases is straightforward. We note that the current problem setting assumes data on mesh
points, thus the data size increases exponentially as the dimension increases, which is the well-known
curse-of-dimensionality. To overcome this curse-of-dimensionality, one can consider other settings
with mesh-free representation of data by random samples and a loss functional based on expectations
(see, e.g. [34]), and this is beyond the scope of the current study.

Step 1: Set a class of hypothesis spaces. We set a class of data-adaptive hypothesis spaces with
their dimensions set to range from under-fitting to over-fitting. The key is the exploration measure
and the support of the kernel estimated data. The exploration measure ρJN is computed from data as
in (8), which uses only the information from ui. To estimate the support of the kernel, we extract
the additional information from {fi} as follows. We set the data-adaptive support of the kernel to be
[0, R] with R defined by

R = 1.1 min{Rρ,max{|Lfi − L
u
i |, |R

f
i −R

u
i |}Ni=1}, (17)

where (Lui , R
u
i ) and (Lfi , R

f
i ) are the lower and upper bounds of the supports supp(ui) and supp(fi)

respectively, and Rρ is the maximum of the support of ρJN . That is, the support of the kernel lies
inside the support of the exploration measure, and it is the maximal interaction range indicated by the
difference between supports of ui and fi, which extracts the additional information in the data {fi}.
Here the multiplicative factor 1.1 is an artificial factor to enlarge the range, so that the supports of the
basis functions will fully cover the explored region. To avoid unbounded support in the data-based
estimation in (17), in numerical experiments we set a threshold to be 10−8 when estimating supports
of ui, fi and ρJN . This truncation narrows the interaction range.

The estimated support of the kernel is the region explored by data. Outside of the region, the data
provides little information about the kernel. Thus, we focus on learning the kernel in this region and
set the local basis functions to be supported in it. Furthermore, we constrain the exploration measure
to be supported in [0, R]. For simplicity of notation, we still denote it by ρJN or ρN .

With the exploration measure and the support of the kernel, we select a class of basis functions
{φk}nk=1 and a range of n for the hypothesis space Hn = span{φk}nk=1. The basis function
can be either global basis functions such as Bernstein polynomials as those used in [60, 62] and
trigonometric functions, or local basis functions such B-spline polynomials (see Appendix D.1 for
a brief introduction). We focus on local basis functions because they are more flexible to adaptive
to local structure of the kernel. To set the range for n, we note that the mesh points of the kernel’s
independent variable explored by data are {k∆x : k = 1, . . . , b R∆xc}. Meanwhile, the basis function
should be linearly independent in L2(ρJN ) so that the basis matrix

Bn = (〈φk, φl〉L2(ρJN ))1≤k,l≤n ∈ Rn×n (18)

is non-singular. Thus, we set the range of n to be in b R∆xc × [0.2, 1] such that Bn is non-singular
while covering a wide range of dimensions. For example, when we use piecewise constant basis,
we can set n = b R∆xc, and we get Bn = Diag(ρJN ). Thus, we estimate the kernel as a vector of its
values on the mesh points, with L2(ρJN ) being a vector space with a discrete-measure ρJN .

Step 2: Assemble regression matrices and vectors. We assemble the regression matrix An and
vector bn, as defined in (4), for each hypothesis spaces Hn = span{φk}nk=1. Together with the
basis matrix Bn in (18), the triplet (An, bn, Bn) is all we need for regression with SIDA-RKHS
regularization in the next step.

To avoid repeated reading of data, we extract the regression data that can be used for all hypothesis
spaces by utilizing the regression structure, which requires reading the data only once. Note that to
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compute An(k, k′) = 〈〈φk, φk′〉〉 for any pair of basis functions, with the bilinear form defined in (16),
we only needG defined in (11). We note that when d = 1, the integral

∫
|η|=1

g(η)dη = g(η)+g(−η),
therefore, we have

G(r, s) =
1

N

N∑
i=1

∫
[ui(x+ r) + ui(x− r)− 2ui(x)][ui(x+ s) + ui(x− s)− 2ui(x)]dx (19)

for r, s ∈ supp(ρN ). Similarly, for a basis function φi, to compute b(i) in (4), which can be re-
written as bn(k) = 1

N

∑N
i=1

∫
Lφk

[ui](x)fi(x)dx =
∫ R

0
φk(r)gfN (r)dr, we only need the function

gfN defined by

gfN (r) =
1

N

N∑
i=1

∫
Ω

∫
|ξ|=1

[ui(x+ rξ)− ui(x)]fi(x)dξ dx. (20)

Let rl = l∆x for l = 1, . . . , b R∆xc, which are all the mesh points the data explore. Then, all the
regression data we need in the original data (1) are{

G(rl, rl′), g
f
N (rl), ρ

J
N (rl′), with l, l′ = 1, . . . , b R

∆x
c
}
, (21)

where G, gfN and ρJN are defined respectively in (11), (20) and (8).

With these regression data, the triplet (An, bn, Bn) can be efficiently evaluated for any basis functions
using a numerical integrator to approximate the corresponding integrals. For example, with Riemann
sum approximation, we compute the normal matrix An and vector bn and the basis matrix Bn as

An(k, k′) = 〈〈φk, φk′〉〉 ≈
∑
l,l′

φk(rl)φk′(rl′)G(rl, rl′))∆x
2,

bn(k) ≈
∑
l

φk(rl)g
f
N (rl))∆x,

Bn(k, k′) ≈
∑
l

φk(rl)φk′(rl)ρ
J
N (rl)∆x.

(22)

Step 3: Regress with SIDA-RKHS regularization. Our SIDA-RKHS regularization method uses
the norm of the SIDA-RKHS so as to ensure the learning to take space in the function space of
identifiability as discussed in Section 2.2. That is, our estimator is the minimizer of the regularized
loss in (7) with the regularization normR(φ) = ‖φ‖2HG

defined in (13).

Computation of the RKHS norm. We can effectively approximate the RKHS norm ‖φ‖2HG
using the

triplet (An, bn, Bn). It proceeds in two steps. First, we solve the generalized eigenvalue problem
AnV = BnV Λ, where Λ is a diagonal matrix of the generalized eigenvalues and the matrix V has
columns being eigenvectors orthonormal in the sense that V >BnV = In. Here these eigenvalues
approximate the eigenvalue of LG in (9), and ψ̂k = Vjkφj approximates the eigenfunctions of LG.
Then, we compute the square RKHS norm of φ =

∑
i ciφi as

‖φ‖2HG
= c>Brkhsc, with Brkhs = (V ΛV >)−1, (23)

where the inverse is taken as pseudo-inverse, particularly when Λ has zero eigenvalues.

With the RKHS-norm ready, we write the regularized loss for each function φ =
∑
i ciφi as

Eλ(φ) = c>(An + λBrkhs)c− 2c>bn + CfN . The regularized estimator is

φ̂λ =

n∑
i=1

ciλφi, cλ = (An + λBrkhs)
−1bn. (24)

We will select the hyper-parameter that balances the loss E and the regularization term by the widely-
used L-curve method [22]. It identifies the optimal hyper-parameter as the maximizer of the curvature
of the curve (see Section D.2).
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C Nonlocal Operators

In this section we introduce the classical and nonlocal Laplacian (diffusion) operators relevant to this
paper.

Given a scalar function u(x) : Ω→ R, the classical Laplacian operator is defined as ∆u := ∇ · ∇u
and boundary value problems on the domain Ω related to ∆ are often associated with the Sobolev
space H1(Ω). On the other hand, when incorporating long-range interactions into the model such
that where every point x ∈ Ω is interacting with a finite neighborhood of points, a nonlocal Laplacian
operator is then given by

Lφ[u](x) :=

∫
Ω̂

φ(x, y)(u(y)− u(x))dy, x ∈ Ω,

where φ(x, y) is a kernel function which should be specified problem by problem, Ω̂ = Ω ∪ ΩI and

ΩI := {y ∈ Rd\Ω such that φ(x, y) 6= 0 for some x ∈ Ω}

is the interaction domain of Ω. This work aims to learn the kernel function φ from data.

In this paper we further adopt the popular choice that the interacting neighborhood of each point
x ∈ Ω is a Euclidean ball surrounding x, i.e., B(x,R) := {y ∈ Rd : |y − x| < R}. Here R is
the interaction radius or horizon. This fact has implications on the boundary conditions that are
prescribed on a collar of thickness R outside the domain Ω, that we have the interaction domain
ΩI= {y ∈ Rd\Ω : dist(y, ∂Ω) < R}. Without loss of generality, we consider homogeneous Dirichlet
conditions in our examples on ΩI , i.e. u|ΩI

= 0. Moreover, we focus on the radial kernel such that
φ(x, y) := φ(|x− y|), which is widely employed in nonlocal problems accounting for homogenized
properties (see, e.g., [16]). However, we point out that it is actually straightforward, with more
complicated notations and labor in coding, to extend the current framework to non-equidistant cases
or low-dimensional non-radial cases.

D B-spline basis functions and the L-curve method

D.1 B-spline basis functions

B-spline is a class of piecewise polynomials, and is capable of representing the local information of
the target function. Here we review briefly the recurrence definition and properties of the balanced
B-splines, for more details we refer to the Chapter 2 of [49] and [47].

Given a non-decreasing sequence of real numbers {r0, r1, . . . , rm} (called knots), the B-spline basis
functions of degree p, denoted by {Ni,p}m−pi=0 , is defined recursively as

Ni,0(r) =

{
1, ri ≤ r < ri+1,
0, otherwise,

Ni,p(r) =
r − ri

ri+p − ri
Ni,p−1(r) +

ri+p+1 − r
ri+p+1 − ri+1

Ni+1,p−1(r).

(25)

The B-spline basis has the following properties:

• Each function Ni,p is a nonnegative local polynomial of degree p, supported on [ri, ri+p+1];
• At a knot with multiplicity k, it is p− k times continuously differentiable. Hence, the smoothness

increases with the degree but decreases when the knot multiplicity increases;
• The basis satisfies partition unity: for each r ∈ [ri, ri+1],

∑
j Nj,p(r) =

∑i
j=i−pNj,p(r) = 1.

We set the knots to be a uniform partition of the support of ρ, [Rmin, Rmax],

Rmin = r0 ≤ r1 ≤ · · · ≤ rm = Rmin.

We set the basis functions of the hypothesisH, whose dimension is n = m− p, to be

φi(r) = Ni,p(r), i = 1, . . . ,m− p.

Thus, the basis functions {φi} are piecewise degree-p polynomials with knots adaptive to ρ.
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D.2 Hyper-parameter selection by the L-curve method

We select the parameter λ by the L-curve method [22, 34]. Let l be a parametrized curve in R2:

l(λ) = (x(λ), y(λ)) := (log(E(φ̂λ), log(R(φ̂λ)),

where E(φ̂λ) = c>λAncλ−2c>λ bn+CfN , andR(φ) is the regularization term, for example,R(φ̂λ) =

‖φ̂λ‖2HG
= c>λBrkhscλ. The optimal parameter is the maximizer of the curvature of l. In practice,

we restrict λ in the spectral range [λmin, λmax] of the operator LG,

λ0 = arg max
λmin≤λ≤λmax

κ(l(λ)) = arg max
λmin≤λ≤λmax

x′y′′ − x′y′′

(x′ 2 + y′ 2)3/2
, (26)

where λmin and λmax are computed from the smallest and the largest generalized eigenvalues of
(An, Bn). This optimal parameter λ0 balances the loss E and the regularization (see [22] for more
details). In practice, instead of computing the second order derivatives, we compute the curvature by
the reciprocal of the radius of the interior circle of three consecutive points1.

E Additional numerical results for synthetic data examples

This section provides additional numerical results for the examples with synthetic data.

Figure 4 shows that the SIDA-RKHS regularizer leads to converging estimators in all three examples
for both noisy and noiseless data, whereas the l2-norm and the L2-norm regularizers’ estimators have
slow convergent rates or even no convergence when the data is noisy.

Figure 4: Convergence of the estimators as the data mesh-size ∆x refines, along with the values
of the loss function. The SIDA-RKHS regularizer consistently converges for both noiseless and
noisy data, with better rates (slope) than the other two regularizers for noisy data. Note that for the
fractional kernel, it has a lower rate though being more accurate.
We note that the performance of these regularizers depends on the optimal regularization strength λ0,
which is selected by the L-curve method introduced in Section D.2. In our tests, all regularizers can
successfully select the optimal λ0 for most of the time, and the SIDA-RKHS regularizer has the most
well-shaped L-curve, which leads to the most robust regularization (see Figure 5 for typical L-curve
plots).

F Detailed Real-world Dataset Experiment Settings

In this section we provide further experiment details for the real-world dataset studied in 3.2.

For both training and validation purposes we generate data using high-fidelity (HF) simulations
for the propagation of stress waves within the microstructure of the heterogeneous, linear elastic

1Are Mjaavatten (2022). Curvature of a 1D curve in a 2D or 3D space (https://www.mathworks.com/
matlabcentral/fileexchange/69452-curvature-of-a-1d-curve-in-a-2d-or-3d-space), MAT-
LAB Central File Exchange.
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Figure 5: Typical L-curve plots for the selection of the optimal regularization parameter λ0 for the
Gaussian kernel with ∆x = 0.05 and nsr = 1. From left to right: the l2, L2 and SIDA-RKHS
regularizers. All regularizers successfully select the optimal λ0, and the SIDA-RKHS regularizer has
the most well-shaped L-curve.

bar. In the following, we use û to denote the HF solution, to distinguish the HF dataset from the
homogenized solution of (14). The HF-model is a classical wave equation: the displacement û(x, t)
satisfies, for (x, t) ∈ Ω× [0, T ] with Ω ⊂ R,

∂ttû(x, t)− LHF [û](x, t) = g(x, t), (27)

with a force loading term g(x, t), proper boundary conditions and initial conditions û(x, 0) = 0,
∂tû(x, 0) = 0. Considering the heterogeneous bar of two materials depicted in Figure 3, (27)
describes the stress wave propagating with speed c1 =

√
E1/ρ in material 1 and speed c2 =

√
E2/ρ

in material 2. We solve the HF-model (27) by the direct numerical solver (DNS) introduced in [53].
The DNS employs the characteristic line method, which provides exact solutions of velocities. For
each grid point xj ∈ Ω at time step tn = n∆t, where ∆t is the time step size, with the calculated
exact velocity v̂(xj , t

n) and the estimated displacement from the last time step û(xj , t
n−1) we update

the HF displacement by
û(xj , t

n) = û(xj , t
n−1) + ∆tv̂(xj , t

n).

With the above procedure, we then consider various boundary velocity loading ∂tûi(x, t), x ∈ ∂Ω,
and force loading gi(x, t) scenarios, and solve for the corresponding HF displacement field ûi(x, t).
Resultant data pairs {ûi, gi}Ni=1 = {ûi(xj , tn), gi(xj , t

n) : j = 1, . . . , J}N,T/∆ti=1,n=0 are employed as
the training and validation datasets. Discretization parameters for the DNS solver are set to ∆t = 0.01
and max ∆x = 0.01.

The homogenization problem is then to learn the kernel of the nonlocal operator Lφ that approximates
the operator LHF from data {û, f} generated by LHF [û] = f , where f = ∂ttû− g. Discretizing the
time derivative in (14) with the central difference scheme, we obtain

1

∆t2
(ûn+1(x)− 2ûn(x) + ûn−1(x))− g(x, tn) := fn(x),

where ûn(·) := û(·, tn) denotes the solution at time tn. Given D = {ûni (x), fni (x)}N,T/∆ti=1,n=1, our
goal is to learn the kernel φ. The loss functional is

E(φ) =
∆t

NT

N∑
k=1

T/∆t∑
n=1

‖Lφ[ûnk ]− fnk ‖2L2(Ω). (28)

F.1 Settings on real-world data

In the learning problem, we consider four types of data and use the first three for training and the last
one for validation of our algorithm. For all data we set L = 0.2, ∆t = 0.02, E1 = 1, E2 =, ρ = 1,
and the symmetric domain Ω = [−b, b]. The estimated support of the kernel has a bound R = 1.65.
Two spatial resolutions, ∆x = 0.05 and ∆x = 0.025 are considered, which we denote as the “coarse”
and “fine” datasets, respectively.

Type 1 Oscillating source (20 samples in total). b = 50, T = 2, g(x, t) =

exp−( 2x
5jL )2 exp−( t−0.8

0.8 )2 cos2( 2πx
jL ), where j = 1, 2, · · · , 20.
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Type 2 Plane wave with cos loading (11 samples in total). b = 50, T = 2, g(x, t) = 0 and
∂tu(−50, t) = cos(jt), where the loading frequency j = 0.35, 0.70, · · · , 3.85.

Type 3 Plane wave with sin loading (11 samples in total). b = 50, T = 2, g(x, t) = 0 and
∂tu(−50, t) = sin(jt), where the loading frequency j = 0.35, 0.70, · · · , 3.85.

Type 4 Wave packet (3 samples in total). b = 133.3, T = 100, g(x, t) = 0 and ∂tu(−b, t) =
sin(jt) exp

(
−(t/5− 3)2

)
, for j = 1, 2, 3.

Notice that the validation dataset (Type 4 dataset) is under a different loading condition from the
training dataset, and with a much longer simulation time.
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