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Abstract
Nonparametric estimation of nonlocal interaction kernels is crucial in various applications in-

volving interacting particle systems. The inference challenge, situated at the nexus of statistical
learning and inverse problems, comes from the nonlocal dependency. A central question is whether
the optimal minimax rate of convergence for this problem aligns with the rate of M´ 2β

2β`1 in classical
nonparametric regression, where M is the sample size and β represents the smoothness exponent of
the radial kernel. Our study confirms this alignment for systems with a finite number of particles.

We introduce a tamed least squares estimator (tLSE) that attains the optimal convergence rate
for a broad class of exchangeable distributions. The tLSE bridges the smallest eigenvalue of random
matrices and Sobolev embedding. This estimator relies on nonasymptotic estimates for the left tail
probability of the smallest eigenvalue of the normal matrix. The lower minimax rate is derived using
the Fano-Tsybakov hypothesis testing method. Our findings reveal that provided the inverse problem
in the large sample limit satisfies a coercivity condition, the left tail probability does not alter the
bias-variance tradeoff, and the optimal minimax rate remains intact. Our tLSE method offers a
straightforward approach for establishing the optimal minimax rate for models with either local or
nonlocal dependency.
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1 Introduction
Consider the nonparametric regression of the radial interaction kernel φ : R` Ñ R in the model

Y “ RφrXs ` η, (1.1)

from data consisting of samples tpXm, Y mquMm“1 of the joint distribution of pX,Y q. Here Y and X are
RNˆd-valued random variables with N ě 3, denoted by Y “ pY1, . . . , YN qJ and X “ pX1, . . . , XN qJ.
The operator RφrXs “ pRφrXs1, ¨ ¨ ¨ , RφrXsN qJ represents the interaction between particles through
the kernel φ, its entries are defined by

RφrXsi “
1

N

ÿ

j‰i

φp|Xi ´ Xj |q
Xi ´ Xj

|Xi ´ Xj |
, i “ 1, . . . N , . (1.2)

where we write
ř

j‰i :“
řN

j“1,j‰i in short. The noise η in the model is independent of X and not
necessarily Gaussian.

Nonparametric regression is particularly suitable for estimating the kernel φ, thanks to the linear
dependence of Rφ on φ. A regression estimator is the minimizer of an empirical mean-square loss function

EM pφq “
M
ÿ

m“1

1

N
}Y m ´ RφrXms}2RNd (1.3)

over a hypothesis space that is adaptively chosen to avoid underfitting and overfitting.
The above nonparametric regression problem arises in the inference for systems of interacting par-

ticles or agents. Such systems are prevalent in collective dynamics in various fields, including flock-
ing [CS07, AH10, CDP18], opinion dynamics [MT14], kinetic granular media [CMV03, CGM07], to
name just a few. Driven by the applications, the past decade sees a burst of efforts on inferring
the system from data, including parametric [DMH23, MB22, LQ22], semi-parametric [BPP23], and
nonparametric [DMH22, YCY22, LZTM19, LMT21] approaches. Given often limited prior knowledge
about the kernel in applications, a nonparametric approach is desirable. In particular, the studies
[LZTM19, LMT21, LMT22] consider nonparametric inference of radial interaction kernels for first-order
stochastic differential equations in the form

dXptq “ RφrXptqsdt ` σdBptq , (1.4)

where Xptq “ pX1ptq, ¨ ¨ ¨ , XN ptqq represents the position of particles, Rφ is same as in (1.2) and Bptq is
a standard Brownian motion in RNd with σ ě 0 representing the scale of the random noise. The least
squares estimator is demonstrated to exhibit a convergence rate of

`

M
logM

˘´ 2β
2β`1 , where M is the number

of independent trajectories and β ě 1 represents the Hölder exponent of the true kernel. However, the
optimal minimax rate, namely the best convergence rate in the worst case, remains open.

This study aims to answer the optimal minimax rate question. We consider the simplified but generic
statistical model (1.1), which rules out the numerical error from the discretization of the differential
equations and the dependence between the components in trajectory data.
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1.1 Main results

This study establishes that the rate of M
´ 2β

2β`1 is the optimal minimax rate of convergence under a
coercivity condition that ensures the well-posedness of the inverse problem in the large sample limit.
Informally, we establish the following minimax rate:

inf
pφM

sup
φ˚PHpβq

Er}pφM ´ φ˚}2L2
ρ
s « M

´ 2β
2β`1 , as M Ñ 8,

where the infimum is among all estimators pφM inferred from data, and L2
ρ is the space of square-

integrable functions under the weight ρ, which is the probability measure of pairwise distances. Here the
hypothesis space Hpβq can be a Sobolev class W pβ, Lq or Hölder class Cpβ, Lq in Definitions 2.13–2.14).
Importantly, the rate also holds for the case β ď 1{2, which contains discontinuous functions.

A major innovation of our study is a new approach to prove the upper minimax rate. We introduce
a tamed least square estimator (tLSE) in Definition 3.1 and show that it achieves the optimal rate with a
straightforward proof. The proof is based on non-asymptotic estimates of the left tail probability of the
smallest eigenvalue of the normal matrix; see Theorem 3.6 and the subsequent discussion on technical
innovations.

To affirm that the upper minimax rate is optimal, we prove in Theorem 4.1 that the rate is also the
lower minimax rate. We accomplish this by applying the Fano-Tsybakov method in [Tsy08], which we
generalize to include the weight measure ρ. This involves careful construction of hypothesis functions
for hypothesis testing in Section 4.

1.2 Main difficulties and technical innovations

The optimal minimax rate is well-established for classical nonparametric estimation (see, e.g., [CS02b,
GKKW06, Tsy08] and the reference therein). In this classical setting, one estimates the function φ :
R Ñ R in the model Y “ φpZq ` η from sample data tpZm, Y mquMm“1, where the data Y depends
on locally on a single value of φ. A critical fact in this setting is that the conditional expectation
φpzq “ ErY |Z “ zs uniquely minimizes the large sample limit of the empirical squared loss, leading
to a well-posed inverse problem. Notable estimators achieving the minimax rate include the projection
estimator for deterministic Z data (see e.g., [Tsy08]), and the least squares estimator for random Z
using tools from the empirical process theory, which are based on covering arguments with the chaining
technique (see e.g., [VdV00] and [GKKW06, Chapter 19]).

However, nonlocal dependance presents a new challenge in interaction kernel estimation. The nonlocal
dependence means that the operator RφrXs depends on the kernel φ non-locally through the weighted
sum of multiple values of φ, similar to a convolution. Thus, this intersection of statistical learning and
deconvolution-type inverse problems raises significant hurdles in both well-posedness and constructing
estimators achieving the minimax rate.

To address these challenges, we show first that the inverse problem in the large sample limit is well-
posed for a large class of distributions of X satisfying Assumption 2.1. A key condition for well-posedness
is the coercivity condition studied in [LZTM19, LMT22, LLM`21, LL23], and we examine it in Lemma
2.9. Due to this condition, a universal convergence rate for all distributions is not feasible. Importantly,
the coercivity condition also ensures that the nonlocal dependence does not affect the minimax rate, as
discussed after Lemma 3.3.

Our major technical innovation lies in developing the tamed least square estimator with straightfor-
ward proof. The tLSE is zero when the minimal eigenvalue of the normal matrix is below a threshold,
and it is the least squares estimator otherwise. That is,

pφtlse
n,M “

n
ÿ

k“1

θtlsek ψk, where pθtlse1 , . . . , θtlsen qJ “ r sAM
n s´1

sbM
n 1tλminp sAM

n qą 1
4
cL̄u , (1.5)
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where the threshold cL̄ is the coercivity constant in Definition 2.6. Here sAM
n and sbM

n are the normal
matrix and norm vector for the regression over the hypothesis space Hn “ spantψkunk“1 with orthonormal
basis functions ψk. Note that only in the set tλminp sAM

n q ă 1
4cL̄u, the tLSE differs from the least squares

estimator pθlse1 , . . . , θlsen qJ “ r sAM
n s:

sbM
n , where r sAM

n s: denotes the Moore-Penrose inverse of sAM
n . A

crucial observation in our proof is that the optimal minimax rate is attained if the probability of the
set tλminp sAM

n q ă 1
4cL̄u does not affect the bias-variance tradeoff. This leads to the study of the left

tail probability of λminp sAM
n q with the dimension n « M

1
2β`1 chosen from the tradeoff, aiming for a

non-asymptotic bound exponentially decaying in M .
We establish two non-asymptotic estimates for the left tail probability of the smallest eigenvalue of

the normal matrix. Lemma 3.11 shows that with the coercivity condition alone and an application of
the Bernstein’s inequality for random matrices, we have

P
󲷤

λminpĀM
n q ď p1 ´ εqcL̄

(

ď 2n exp

ˆ

´
c1ε

2M

c2n2 ` c3ε

˙

,@ε P p0, 1q,

where c1, c2, c3 are positive constants universal for ε, n and M . This estimate enables a simple proof of
the minimax rate for the tLSE when the true function has a smoothness exponent β ą 1{2. We also
extend the optimal rate to β ď 1{2, under an additional assumption on the fourth moment of RφrXs in
Assumption 2.17. This extension relies on an improved bound for the left tail probability of the smallest
eigenvalue in Lemma 3.12:

P
"

λminpĀM
n q ď

1 ´ ε

2
cL̄

*

ď exp
`

c4n ´ c5ε
2M

˘

,@ε P p0, 1q,

where c4, c5 are positive constants universal for n and M . The primary tool is the PAC-Bayes inequality
introduced in [Oli16, Mou22] to analyze the left tail of random matrices. We note that our fourth-moment
assumption on RφrXs is an extension to the function space setting from a fourth-moment assumption
on covariance matrices in [Oli16, Mou22]. Notably, this assumption is supported by fractional Sobolev
embedding theorems when β ě 1{4, as elaborated in Remark 2.18. It remains open to study the case
β P p0, 1{4q, which we discuss in Section 3.4.

Table 1 summarizes these left tail probabilities and their applicable range of β in the minimax rate.

Table 1: The left tail probability bounds and applicable range of β in the minimax rate.

Left tail probability Method Assumptions Range of β
n exp

´

´ c1ε2M
c2n2`c3ε

¯

Bernstein’s Ineq. Assum. 2.12 β ą 1{2

exp
`

c4n ´ c5ε
2M

˘

PAC-Bayes Ineq. Assum. 2.12 and 2.17 β ě 1{4

1.3 Summary of the tLSE method

The tLSE offers a novel and efficient method for proving the minimax rate in nonparametric regression,
applicable to models with either local or nonlocal dependency. As long as the coercivity condition holds,
the proof is largely the same for both types of models. The process involves decomposing the L2

ρ error
of the estimator pφn,M in (1.5) into bias and variance components, and seeking a bias-variance tradeoff
in three steps:

• Variance Control: Control the variance term by the sum of a fast vanishing term n
M from the

well-conditioned parts of the tLSE, an exponentially decaying concentration term that arises
from the left tail probability for the smallest eigenvalue of the normal matrix and has the form
exp pan ´ bnMq with anM ´ bnMM Ñ ´8 for the optimal dimension tnMu, and an additional bias
term in cases of nonlocal dependence.
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• Bias Control: Control the bias term by n´2β by considering functions in the Sobolev class Wρpβ, Lq.

• Optimal Dimension Selection: Select the dimension to be n « M
1

2β`1 to get the optimal rate.

The tLSE method applies to both local and nonlocal models, and we summarize the bias-variance
tradeoff in Figure 1.

Figure 1: The bias-variance tradeoff in the tLSE approach for local and nonlocal models. Here a local
model is Y “ φpXq ` η with X,Y P R1 in classical nonparametric regression; and nonlocal model refers
to Y “ RφrXs ` η in (1.1) satisfying the coercivity condition. The left tail probability and the nonlocal
bias do not affect the bias-variance tradeoff that is dominated by the bias and the sampling error.

We note that there are many other methods of achieving the optimal minimax rates using more
delicate tools and assumptions. In particular, other LSEs must overcome a significant challenge in
achieving the optimal minimax rate. The LSE has to deal with the negative moments of the normal
matrices or, equivalently, the small ball probability of the smallest eigenvalue. It remains open to
establishing such a bound using the recent developments in [Mou22] on the negative moments of sample
covariance matrices. The regularized LSEs have to be defined with a delicate regularization and one has
to deal with the bias-variance tradeoff. Another commonly used approach based on empirical process
theory [CS02b, LMT21, LMT22] bounds the variance term uniformly on the function spaces via defect
function and covering techniques. This approach leads to a suboptimal rate with a logarithmic factor
due to a fixed cover. The chaining technique [Gee00, GKKW06] may remove the logarithmic factor with
additional effort. On the contrary, the tLSE straightforwardly achieves the optimal rate without using
any covering technique.

1.4 Summary of main contributions and insights

This study makes two key contributions:

1. Optimal rate of convergence for interaction kernel learning. We have established the optimal
convergence rate M

´ 2β
2β`1 for learning the interaction kernel in Model (1.1) with a wide range of

distributions. Moreover, this optimal rate applies to Sobolev classes with β ď 1
2 . This encompasses

widely used discontinuous functions such as piecewise constant functions.

2. Introduction of the Tamed Least Square Estimator (tLSE): The tLSE represents a new and efficient
method for proving the minimax rate in nonparametric regression. A key insight is that the
optimal minimax rate depends on whether the bias-variance tradeoff can remain unaffected by the
left tail probability of the smallest eigenvalue of the normal matrix. This revelation is crucial for
advancement in our understanding of nonparametric regression. It establishes a connection between
the minimax rate, the left tail probability of the smallest eigenvalue of the random normal matrix,
and fractional Sobolev embedding.

The insights gained from this study pave the way for future research on the minimax rate for non-
parametric regression regarding models with nonlocal dependence. The inverse problem in the large
sample limit plays a fundamental role. We’ve focused on scenarios where the inverse problem is well-
posed, finding that the optimal minimax rate M

´ 2β
2β`1 is consistent for regression with both local and
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nonlocal dependencies. In contrast, when the inverse problem is ill-posed, i.e., with a zero coercivity
constant, the optimal rate, if it exists, is expected to be slower than M

´ 2β
2β`1 since the current rate bears

a constant depending on the reciprocal of the coercivity constant. Thus, exploring the convergence rate
without the coercivity condition remains an open and intriguing area for further investigation.

Additionally, our study has centered on convergence in the sample size M while keeping the number
of particles N finite. An intriguing direction for future research lies in examining the convergence rate as
N increases. Given that the inverse problem in the limit of N “ 8 becomes an ill-posed deconvolution,
we conjecture that the convergence rate will be slower than N

´ 2β
2β`1 and may depend on the spectrum

of the normal operator.

1.5 Related work

Minimax rate for nonparametric regression. The study of the minimax rate in nonparametric
regression is a well-established and extensively explored topic within inference and learning. Due to
the vastness of the literature, we direct readers to [GKKW06, Tsy08, CS02b, NR19], among others,
for comprehensive reviews. For lower minimax rates, this study utilizes the Fano-Tsybakov hypothesis
testing method [Tsy08], and the van Trees method [GL95] is a viable alternative.

For the upper minimax rate, notable estimators achieving the optimal rate without the logarithmic
term include the projection estimator for deterministic input data (see, e.g., [Tsy08]), and the least
squares estimator whose rate is proved by using the empirical process theory with covering arguments
and chaining technique (see, e.g., [VdV00] and [GKKW06, Chapter 19]). Additionally, we note that
the empirical process theory with a covering argument is widely used, and it applies to the interaction
kernel estimation (see, e.g., [LZTM19, LMT22, LMT21]). However, it leads to a sub-optimal rate with
a logarithmic factor when using a fixed cover. The chaining technique may remove the logarithmic
factor by constructing a sequence of covers and additional assumptions, but the nonlocal dependence
will further complicate the proof. Our tamed least square estimator (tLSE) stands out for its simplicity
and broad applicability to nonparametric regression problems with either local or nonlocal dependencies.

Inference for systems of interacting particles. A large amount of literature has been devoted
to the inference for systems of interacting particles, and we can only sample a few here. Parametric
inference has been studied in [DMH23, SKPP21, AHPP23, LQ22, Kas90, Che21] for the drift and in
[HLL19] for the diffusion. Nonparametric inference on estimating the drift Rφ, but not the kernel φ, has
been studied in [YCY22, DMH22]. The semi-parametric inference in [BPP23] estimates the interaction
kernel. All these studies consider the case when N Ñ 8 from a single long trajectory of the system.
Inference of the mean-field equations has also been studied in [MB22, MTB22, LL22, DMH22]. The
closest to this study are [LZTM19, LMT21, LMT22], where the rate for learning the interaction kernels

from multiple trajectories is
`

M
logM

˘´ 2β
2β`1 , is suboptimal due to the use of supremum norm in the covering

number argument. Building on these results, our study achieves the optimal rate in a simplified static
model (1.1), advancing the understanding of the inference problem.

Nonparametric deconvolution. Nonlocal dependence is a key feature in nonparametric deconvolu-
tion, particularly in estimating probability densities as studied in [Fan91, Mei09], among others. In such
contexts, the underlying inverse problem in the large sample limit typically manifests as an ill-posed
deconvolution challenge. The established optimal rate for these scenarios is M

´ 2β
2β`2α`1 , where α is

the decay rate of the Fourier transform’s derivative of the convolution kernel. In contrast, our study
navigates a well-posed inverse problem made possible through the coercivity condition, differentiating it
from the typical deconvolution framework.

Linear regression for parametric inference and random matrices. The normal matrix sAM
n

in our study resembles the sample covariance matrix 1
M

řM
m“1 x

mpxmqJ in linear regression y « θJx
from samples tpxm, ymqu of a distribution on Rn ˆ R. Therefore, the analysis of this normal matrix can
draw parallels from the study of sample covariance matrices with independent columns or entries, as
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explored in [Mou22, KM15, MWY23, LTV21, MP14, Tik18, Ver18, Wai19, Yas15]. With notation Φm “
pRψ1rXms, . . . , RψnrXmsq P RNdˆn “ for each sample Xm, our least squares estimator can be analogized
to a linear regression estimator for Y « θJΦ with a normal matrix ĀM

n “ 1
MN

řM
m“1rΦmsJΦm “

1
MN

řM
m“1

řN
i“1rΦm

i,¨s
JΦm

i,¨. Because of the dependence between tΦm
i,¨u

N
i“1, sAM

n can not be viewed as
an example of a sample covariance matrix with independent columns or entries. It’s worth noting
that there is ongoing interest in the study of sample covariance matrix with dependence, see, e.g.,
[BVZ21, MM22, Oli16, SN19, Ver20]. Compared to these studies, the random matrices in nonparametric
regression are the normal matrices depending on the basis functions. Notably, we extend the fourth-
moment condition for the PAC-Bayesian method in [Oli16] to a function space setting and find an
intriguing connection with fraction Sobolev embedding.

Notations. Throughout the paper, we use C to denote universal constants independent of the sample
size M and the dimension n. The notation in Cβ denotes a constant depending on the subscript. We
use Eφ˚ to denote the expectation w.r.t. the joint distribution of pX,Y q in Model (1.1) where Y depends
on both X, η and the true interaction kernel φ˚. We omit the dependence on φ˚, i.e., E “ Eφ˚ , if the
random variable only relies on pX, ηq. We denote L2

ρ norm by }f}2
Lq
ρ

“
ş

|fprq|2ρprqdr and the supermom
norm by }f}8. Table 2 summarizes the main notations.

Table 2: Notations

Notations Description

M , N Sample size and number of particles
ρ Exploration measure of pairwise distances in Definition 2.3

L̄, cL̄ The normal operator in (2.2) and its coercivity constant in Lemma 2.9
Wρpβ, Lq , Cpβ, Lq Sobolev and Hölder classes in Definitions 2.13-2.14
H “ spantψkunk“1 Hypothesis space spanned by basis functions

AM
n , bM

n Normal matrix and normal vector in (3.2)

The rest of the paper is organized as follows. We study the inverse problem in the large sample limit
in Section 2. In the process, we introduce assumptions and function spaces. Section 3 introduces the
tLSE and proves that the tLSE achieves the optimal rate, establishing an upper minimax rate. Section
4 proves the lower minimax rate via the hypothesis testing scheme. We present the technical proofs in
the Appendix.

2 Settings and inverse problem in large sample limit
At the foundation of inference is the well-posedness of the inverse problem in the large sample limit.
This section builds the foundation by imposing constraints on the distributions of X and the noise in
Section 2.1, setting a weighted function space in Section 2.2, and showing that the inverse problem is
well-posed (see Section 2.3). As last, Section 2.4 introduces the Sobolev and Hölder classes.

2.1 Assumptions on distributions

Recall that the data tpXm, Y mquMm“1 are i.i.d. samples of pX,Y q satisfying the model in (1.1). The joint
distribution depends on the distributions of X, the noise η, and the interaction kernel φ. We make the
subsequent assumptions on the distributions of X and η. Recall that a random vector X “ pX1, . . . , XN q
has an exchangeable distribution if the joint distributions of tXiuiPI and tXiuiPIπ are identical, where
I Ă t1, . . . , Nu and Iπ is a permutation of I.

Assumption 2.1 (Distribution of X) We assume the entries of the pr0, 1sdqbN -valued random vari-
able X “ pX1, . . . , XN q satisfy the following conditions:
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pA1q The random vector X “ pX1, . . . , XN q has an exchangeable distribution.

pA2q For each pair tXi ´ Xj , Xi ´ Xj1u with j ‰ j1 and j, j1 ‰ i, there exists a σ-algebra Xi such that
the pair are conditionally independent.

pA3q For each pair tXi ´ Xj , Xi ´ Xj1u with j ‰ j1 and j, j1 ‰ i, it has a continuous joint probability
density function.

Here, Assumptions pA1q–pA3q are mild conditions to simplify the inverse problem of estimating
the kernel φ, and weaker constraints may replace them with more careful arguments as in [LMT22,
LLM`21]. The exchangeability in pA1q simplifies the exploration measure in Lemma 2.4. The conditional
independence in pA2q, together with the exchangeability, enables the coercivity condition for the inverse
problem to be well-posed, as detailed in Lemma 2.9. The continuity in Assumption pA3q ensures that
the exploration measure has a continuous density, which is used in proving the lower bound minimax
rate in Section 4.

A sufficient condition for Assumptions pA1q-pA2q is that pX1, . . . , XN q are conditionally i.i.d. in
the sense that there exists a σ-algebra X such that tXiuNi“1 are i.i.d. igven X . The exchangeability
follows from the fact that Pt

ŞN
i“1Xi P Aiu “ Er

śN
i“1 Er1tXiPAiu | X ss “ Er

śN
i“1 Er1tXπpiqPAiu | X ss “

Pt
ŞN

i“1Xπpiq P Aiu for any permutation π. Also, the random variables Xi ´ Xj and Xi ´ Xj1 are
conditionally independent given Xi and X . We note that exchangeability has a long history in probability,
statistics, and interacting particle systems. For example, [DF29, DF80, Hof09, Kal05, LN81, LMT22]
and references therein. Random variables in an exchangeable infinite sequence are conditional i.i.d. by
the well-known De Finetti theorem (e.g., [Kal05, Theorem 1.1]).

Examples of X “ pX1, . . . , XN q satisfying pA1q–pA3q are prevalent in applications. A convenient
example is X with i.i.d. components. In particular, when X has i.i.d. components being uniformly
distributed on r0, 1s, we can compute the joint distribution explicitly further to analyze the inverse
problem in the large sample limit as explained in Remark 2.10; see Section A.1.

More importantly, consider the interacting particle system (1.4) represented in the discrete form
using the Euler-Maruyama scheme for the stochastic differential equation. Specifically, when X is the
random vector Xptk`1q in

Xptk`1q “ Xptkq ` RφrXptkqs△t ` σ△W ptkq

with △t “ tk`1 ´ tk, △W ptkq “ W ptk`1q´W ptkq and Xptkq has an exchangeable distribution. Assump-
tion pA1q is fulfilled since Xptk`1q “ pX1ptk`1q, ¨ ¨ ¨ , XN ptk`1qq forms an exchangeable random vector.
Additionally, given Xi “ σtXptkq,Wiptk`1qu, the pairs Xjptk`1q ´ Xiptk`1q and Xj1ptk`1q ´ Xiptk`1q
are independent, satisfying Assumption pA2q. Clearly, Assumption pA3q also holds within this context.

Assumption 2.2 (Distribution of noise.) The noise η is independent of the random array X. More-
over, we assume the following conditions:

pB1q The entries of the noise vector η “ pη1, . . . , ηN q are i.i.d. centered with finite variance σ2
η and a

bounded fourth-moment.

pB2q The density pη of η satisfy that D cη ą 0:
ż

RNd

pηpuq log
pηpuq

pηpu ` vq
du ď cη}v}2, @ v P RNd.

The fourth-moment assumption pB1q on the noise is mild. The density assumption pB2q on the noise
is also the commonly-used one in nonparametric learning (see e.g., [Tsy08, page 91]). For example, when
η „ N p0,σ2

ηIdqbN , the equality holds with cη “ Nd{p2σ2
ηq. But let us remark that the noise can be

non-Gaussian. The fourth-moment assumption on the noise is for convenience and may be removed.
We note that our minimax lower bound in Theorem 4.1 requires only Assumption pB2q, whereas our
matching minimax upper bound in Theorem 3.5 requires only Assumption pB1q which is more relaxed.
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2.2 Exploration measure

The first step in the regression is to set a function space of learning. We set the default function space
of learning to be L2

ρ by defining measure ρ quantifying the exploration of the interaction kernel by the
data. The exploration measure is the counterpart of the probability measure of the independent variable
in classical statistical learning.

Definition 2.3 (Exploration measure) The exploration measure ρ of the independent variable of the
interaction kernel in (1.2) is the large sample limit of the empirical measure ρM of the data tXmuMm“1:

ρpAq “ lim
MÑ8

ρM pAq “
1

NpN ´ 1q

N
ÿ

i,j“1,i‰j

Pp|Xi ´ Xj | P Aq, (2.1)

where A Ă R` is any Lebesgue measurable set and ρM pAq “ 1
MNpN´1q

řM
m“1

řN
i,j“1,i‰j 1p|Xm

i ´Xm
j |PAq.

Lemma 2.4 (Exploration measure under exchangeability) Under Assumption 2.1, the measure
ρ is the distribution of |X1 ´ X2| and has a continuous density.

Proof. The exchangeability in Assumption pA1q implies that the distributions of Xi ´Xj and X1 ´X2

are the same for any i ‰ j. Hence, by definition the exploration measure is the distribution of the
random variable |X1 ´ X2|:

ρpAq “ Pp|X1 ´ X2| P Aq

It has a continuous density by Assumption pA3q.

2.3 Inverse problem in the large sample limit

We show that the inference via minimizing the loss function in the large sample limit is a deterministic
inverse problem. Importantly, the inverse problem is well-posed under Assumption 2.1.

Definition 2.5 (Normal Operator) For Model (1.2), the normal operator L̄ : L2
ρ Ñ L2

ρ is

xL̄φ,ψyL2
ρ

“
1

N

N
ÿ

i“1

ErxRφrXsi, RψrXsiyRds, @φ,ψ P L2
ρ. (2.2)

Definition 2.6 (Coercivity condition) A self-adjoint linear operator L̄ : L2
ρ Ñ L2

ρ is coercive on L2
ρ

with a constant cL̄ ą 0 if
xL̄φ,φyL2

ρ
ě cL̄}φ}2L2

ρ
, @φ P L2

ρ.

In other words, Er}RφrXs}2RNds ě NcL̄}φ}2L2
ρ

for all φ P L2
ρ.

Remark 2.7 (Coercivity condition on a hypothesis space.) It is of practical and theoretical in-
terest to define the coercivity condition on a subset of L2

ρ, particularly when the normal operator is not
coercive on L2

ρ. Specifically, we say that L̄ satisfies a coercivity condition in a hypothesis space H with
a constant cH ą 0 if xL̄φ,φyL2

ρ
ě cH}φ}2L2

ρ
for all φ P H. We refer to [LLM`21, LZTM19, LMT21,

LMT22, LL23] for more discussions.

Proposition 2.8 (Inverse problem in the large sample limit) Under Assumption 2.1, the large
sample limit of the empirical mean square loss function EM pφq in (1.3) is

E8pφq “ E
„

1

N
}Y ´ RφrXs}2RNd

ȷ

“ xL̄φ,φyL2
ρ

´ 2xL̄φ˚,φyL2
ρ

` σ2
ηd.

Moreover, the expected loss function E8pφq is uniformly convex in L2
ρ if and only if L̄ is coercive; and

the true function φ˚ is the unique minimizer when L̄ is coercive.
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Proof. Recall that Y “ Rφ˚rXs ` η and η is centered. Then by the definition of L̄, we have

Eφ˚

„

1

N
}Y ´ RφrXs}2RNd

ȷ

“
1

N
E

“

}RφrXs}2RNd ` xRφrXs, Rφ˚rXsy2RNd ` }η}2RNd

‰

“ xL̄φ,φyL2
ρ

´ 2xL̄φ˚,φyL2
ρ

` σ2
ηd.

The Hessian of E8 is ∇2E8 “ 2L̄, where ∇2 denotes the second-order Fréchet derivative in L2
ρ.

Hence, the loss function is uniformly convex if and only if L̄ is coercive. Additionally, the minimizer of
E8 is a solution to 0 “ ∇E8pφq “ 2L̄φ ´ 2L̄φ˚. Thus, if L̄ is coercive, the unique minimizer is φ˚.

Proposition 2.8 implies that the inverse problem of minimizing the loss function is well-posed if and
only if L̄ is coercive. The next lemma shows that L̄ is coercive with a constant cL̄ ě N´1

N2 . For simplicity,
we denote

rij “ |Xi ´ Xj |, rij “
Xi ´ Xj

rij
“

Xi ´ Xj

|Xi ´ Xj |
. (2.3)

We define a operator LG : L2
ρ Ñ L2

ρ to be

xLGφ,ψyL2
ρ

“ Erφpr12qψpr13qxr12, r13ys. (2.4)

Lemma 2.9 (Properties of the normal operator) Under Assumptions pA1q–pA2q, the operator L̄
in Definition 2.5 is self-adjoint and has a decomposition

L̄ “
pN ´ 1qpN ´ 2q

N2
LG `

N ´ 1

N2
I, (2.5)

where the operator LG in (2.4) is positive. Hence, L̄ is coercive with a coercivity constant

cL̄ ě
N ´ 1

N2
. (2.6)

Also, under Assumptions pA1q–pA2q, we have

›

›L̄
›

›

op “ sup
}φ}

L2
ρ

“1
xL̄φ,φy ď 1 . (2.7)

Proof. Note by Assumption pA1q, the components of X are exchangeable, rij and rij1 are independent
conditional on a σ-albegra Xi for any i “ 1, ¨ ¨ ¨ , N . By exchangeability, Erφprijqφprij1qxrij , rij1ys “
Erφpr12qφpr13qxr12, r13ys for all j ‰ j1 and Er|φprijqrij |2s “ Er|φpr12qr12|2s “ Er|φpr12q|2s for all i ‰ j.
By the conditionally independence Assumption pA2q, we have

Erφpr12qφpr13qxr12, r13y|X1s “ xErφpr12qr12|X1s,Erφpr13qr13|X1sy

and Erφpr12qr12|X1s “ Erφpr13qr13|X1s by exchangeability. Hence,

Erφpr12qφpr13qxr12, r13ys “ ErErφpr12qφpr13qxr12, r13y|X1ss

“ ErxErφpr12qr12|X1s,Erφpr13qr13|X1sys

“ Er
ˇ

ˇErφpr12qr12|X1s
ˇ

ˇ

2
s ě 0.

This means xLGφ,φy ě 0 for any φ. In other words, LG is positive.

10



Moreover, the decomposition (2.5) follows from

xL̄φ,φyL2
ρ

“
1

N
ErxRφrXs, RφrXsyRNds “

1

N3

N
ÿ

i“1

ÿ

j‰i

ÿ

j1‰i

Erφprijqφprij1qxrij , rij1ys

“
N ´ 1

N2
Erφpr12q2s `

pN ´ 1qpN ´ 2q
N2

Erφpr12qφpr13qxr12, r13ys

“

B ˆ

N ´ 1

N2
I `

pN ´ 1qpN ´ 2q
N2

LG

˙

φ,φ

F

L2
ρ

.

Thus, L̄ is coercive with the constant in (2.6) because LG is positive. Additionally, the second equation
above also implies (2.7).

Remark 2.10 (Sharp coercivity constant) The lower bound for the coercivity constant in (2.6) is
sharp. It is achieved when the operator LG is compact, which is true under relatively weak constraints
on X by noticing that it is an integral operator (see e.g.,[LZTM19, LLM`21, LMT22]). For example,
LG is a compact integral operator when X is uniformly distributed on r0, 1s3 illustrated in Section A.1.
Hence, the coercivity constant defined in (2.6) is cL̄ “ N´1

N2 .

Remark 2.11 (Differences from classical nonparametric estimation.) A key distinction between
the nonparametric estimation of the function φ in the classical model represented as Y “ φpXq ` η, and
our model, Y “ RφrXs ` η, lies in the nature of the normal operator in the large sample limit. For
the classical model, the normal operator is the identity operator (which follows by replacing the model in
Definition 2.5), and the inverse problem in the large sample limit is always well-posed. Conversely, in
our model, the normal operator may lack coercivity. This difference stems from the nonlocal dependence
of Rφ on φ, where RφrXs depends on a convolution of multiple values of φ. Although Assumption pA2q
guarantees the coercivity of the normal operator, this nonlocal dependence introduces an additional bias
term in the analysis of the least squares estimator, and we control this bias by relying on the coercivity
condition, see (3.6) in Lemma 3.3.

2.4 Sobolev class and Hölder class

The function classes play a crucial role in nonparametric regression as they quantify the smoothness of
the functions. In this section, we recall the definitions of the Sobolev and Höder classes and introduce
two key assumptions on the functions.

Throughout this study, we consider a set of orthonormal basis functions of L2
ρpr0, 1sq, denoted by

tψku8
k“1. Furthermore, we impose a uniform bound condition on the basis tψku8

k“1 to streamline the anal-
ysis. For example, such basis functions can be the weighted trigonometric functions ψkpxq “ 2 sinp2kπxq?

ρpxq

when ρ is bounded below by a positive constant.

Assumption 2.12 (Uniformly bounded basis functions) The orthonormal basis functions tψku are
complete and uniformly bounded with Cmax “ supkě1 }ψk}8 ă 8.

The following Sobolev class is a conventional function class (see e.g., [Tsy08, Defintion 1.12]) for
controlling the bias in the bias-variance tradeoff in the proof of the upper minimax rate.

Definition 2.13 (Sobolev class) Let tψku8
k“1 be a complete orthonormal basis of L2

ρpr0, 1sq. For β ą 0
and L ą 0, define the Sobolev class Wρpβ, Lq Ă L2

ρ as

Wρpβ, Lq “

#

φ “
8
ÿ

k“1

θkψk P L2
ρpr0, 1sq : θ P Θpβ, Lq

+

,
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where Θpβ, Lq is the ℓ2-ellipsoid

Θpβ, Lq :“

#

θ “ pθkq8
k“1 P ℓ2 :

8
ÿ

k“1

k2βθ2k ď L

+

. (2.8)

The Hölder class is also widely used in nonparametric regression (see e.g.,[Tsy08, page 5]), particularly
in the proof of the lower minimax rate (see in Section 4).

Definition 2.14 (Hölder class) For β, L ą 0, the Hölder class Cpβ, Lq on r0, 1s is the set

Cpβ, Lq “
!

f : |f plqpxq ´ f plqpyq| ď L|x ´ y|β´l,@x, y P r0, 1s
)

, (2.9)

where f plq denotes the l “ tβu-th order derivative of functions f : r0, 1s Ñ R.

Remark 2.15 The weighted Sobolev class Wρpβ, Lq contains the Hölder class Cpβ, Lq when β is an
integer and when the basis functions are the weighted trigonometric functions. In fact, first note that by
definition, the Hölder class is a subset of the conventional Sobolev class defined as

W β
ρ pLq :“

"

f P L2
ρpr0, 1sq : f pβ´1q is absolutely continuous and

ż 1

0
|f pβqpxq|2ρpdxq ď L2

*

, (2.10)

since ρ’s density is continuous on r0, 1s by Lemma 2.4. Next, the weighted Sobolev class Wρpβ, Lq is
equivalent to W β

ρ pLq by the proof for [Tsy08, Proposition 1.14]. Combining these two facts, we obtain
that Cpβ, Lq Ă Wρpβ, Lq.

The Sobolev class Wρpβ, Lq quantifies the “smoothness” of a function in terms of its coefficient decay,
as the next lemma shows.

Lemma 2.16 Let φ “
ř8

k“1 θkψk P Wρpβ, Lq. Then
ř8

k“n`1 |θk|2 ď Ln´2β for all n ě 1. In particular,
}θ}2ℓ2 ď L and supk |θk|2 ď L.

Proof. It follows directly from the definition of the Sobolev class that

8
ÿ

k“n`1

|θk|2 ď n´2β
8
ÿ

k“n`1

k2β|θk|2 ď Ln´2β .

The last two statements also follow directly from the definition.
Next, we introduce a key assumption, namely the fourth-moment condition, for establishing the upper

minimax rate when β ď 1{2. Specifically, it is used in the application of the PAC-Bayesian inequality
in Lemma A.5 to quantify the left tail probability of the smallest eigenvalue of the normal matrix when
β ď 1{2, see Lemma 3.12. It is an extension of the fourth-moment condition on the distribution of the
input random vector in [Oli16, Eq.(3)] and [Mou22, Assumption 3] for linear regression for parameter
regression. Our innovation is to confine the condition to the functional space, which is important
for nonparametric regression. Interestingly, a natural connection emerges between our fourth-moment
condition and the fractional Sobolev embedding theorems such as [BCD11, Theorem 1.38, Theorem 1.66]
and [DNPV12, Theorem 6.7, Theorem 6.10].

Assumption 2.17 (Fourth-moment condition) Assume there exists a constant κ ą 0 such that

sup
φPWρpβ,Lq,}φ}

L2
ρ

“1

Er}RφrXs}4RNds

pEr}RφrXs}2RNdsq2
ď κ ă 8. (2.11)
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The fourth-moment condition is closely connected to fractional Sobolev embedding, as we shall
discuss in Remark 2.18. Note that by the exchangeability, we have

E
“

}RφrXs}4RNd

‰

“N2E
“

}RφrXs1}4Rd

‰

“ N2E

«

}
1

N

N
ÿ

j“2

φpr1jqr1j}4Rd

ff

ďN
N
ÿ

j“2

Er|φpr1jq|4s ď N2pN ´ 1qEr|φpr12q|4s “ N2 }φ}4L4
ρpr0,1sq .

Together with the coercivity condition Er}RφrXs}2RNds ě NcL̄}φ}2L2
ρ
, we have

sup
φPWρpβ,Lq,}φ}

L2
ρ

“1

Er}RφrXs}4RNds

pEr}RφrXs}2RNdsq2
ďc´2

L̄ sup
φPWρpβ,Lq,}φ}

L2
ρ

“1
}φ}4L4

ρpr0,1sq .

Thus, a sufficient condition for (2.11) is

sup
φPWρpβ,Lq,}φ}

L2
ρ

“1
}φ}4L4

ρpr0,1sq ď κc2L̄ . (2.12)

In other words, the L4 norm is controlled by the L2 norm and the Wρpβ, Lq bound, similar to the Sobolev
embedding.

Remark 2.18 (Connection with Sobolev Embedding) The fourth-moment condition holds when
β ě 1{4 by fractional Sobolev embedding theorems, provided that ρ has a probability density bounded
from below and above by positive constants. Specifically, following the definition of classical fractional
Sobolev space (see, e.g., [DNPV12]), we can define (weighted) fractional Sobolev space W β

ρ “ W β,2
ρ pr0, 1sq

as follows
W β

ρ :“
!

f P L2
ρpr0, 1sq : }f}

Wβ
ρ
:“ }f}L2

ρ
` rf s

Wβ
ρ

ă 8
)

, (2.13)

where the term rf s
Wβ

ρ
:“

´

ş1
0

ş1
0

|fpxq´fpyq|2

|x´y|1`2β ρpdxqρpdyq
¯

1
2 is a weighted semi-norm inspired by the so-called

Gagliardo (semi)norm of f . When 0 ă c ď ρ1pxq ď C ă 8, it is clear that the weighted Sobolev norm
and weighted Gagliardo (semi)norm are equivalent to the unweighted ones. Namely,

rf s
Wβ

ρ
„ rf sWβ “

ˆ
ż 1

0

ż 1

0

|fpxq ´ fpyq|2

|x ´ y|1`2β
dxdy

˙

1
2

,

}f}
Wβ

ρ
„ }f}Wβ “ }f}L2 ` rf sWβ .

Then by [DNPV12, Theorem 6.7], we have for any f P W β
ρ with β ă 1

2 and any q P r1, 2
1´2β s

}f}Lq
ρpr0,1sq ď Cβ,q }f}

Wβ
ρ pr0,1sq , (2.14)

for a constant Cβ,q ą 0. When β “ 1
2 , by [DNPV12, Theorem 6.10], we have (2.14) holds for any

q P r1,8q. Thus, applying these embedding inequalities with q “ 4 to bound }φ}L4
ρpr0,1sq as in (2.12) by

}φ}
Wβ

ρ pr0,1sq, we obtain κ “ C4
β,4c

´2
L̄ pL ` 1q4, provided that 2

1´2β ě 4, equivalently, β ě 1
4 .
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3 Upper bound minimax rate

In this section, we establish an upper minimax rate of M´ 2β
2β`1 by introducing the tamed least squares

estimator (tLSE), as detailed in Theorem 3.6. The tLSE not only achieves this rate efficiently but also
allows for a relatively simple proof. Its efficacy extends beyond the scope of this study, rendering the
tLSE a valuable tool in proving upper minimax rates for general nonparametric regression, as discussed
in Section 1.3.

3.1 A tamed least squares estimator

Given data tpXm, Y mquMm“1, we consider an estimator that minimizes the loss function of the empirical
mean square error in (1.3) over a hypothesis space Hn “ spantψkunk“1. Since Rφ is linear in φ, the loss
function is quadratic in φ, and one can solve the minimizer by least squares.

We introduce the forthcoming tamed least squares estimator.

Definition 3.1 (Tamed least squares estimator (tLSE)) The tamed least squares estimator in Hn “
spantψkunk“1 is pφn,M “

řn
k“1

pθkψk with pθn,M “ ppθ1, . . . , pθnqJ solved by

pθn,M “ r sAM
n s´1

sbM
n 1tλminp sAM

n qą 1
4
cL̄u “

#

0 , if λminp sAM
n q ď 1

4cL̄ ;

r sAM
n s´1

sbM
n , if λminp sAM

n q ą 1
4cL̄ .

(3.1)

where sAM
n and sbM

n are the normal matrix and normal vector, respectivly
$

’

’

’

’

&

’

’

’

’

%

sAM
n pk, lq “

1

MN

M
ÿ

m“1

xRψk
rXms, Rψl

rXmsyRNd , (3.2a)

sbM
n pkq “

1

MN

M
ÿ

m“1

xRψk
rXms, Y myRNd , (3.2b)

and the constant cL̄ is the coercivity constant in (2.6).

The threshold in (3.1), denoted as 1
4cL̄, can be eased to 1´󰂃

2 cL̄ for any 󰂃 P p0, 1q, as demonstrated in
Lemma 3.12.

We emphasize that the tLSE is not the widely used least squares estimator (LSE):

pθlse
n,M “ r sAM

n s:
sbM
n (3.3)

where A: of a matrix A denotes its Moore-Penrose inverse satisfying A:A “ AA: “ IrankpAq. The tLSE
differs from the LSE in the random set tλminp sAM

n q ď 1
4cL̄u: in this set, the tLSE simply is zero while the

LSE retrieves informatino from data by pseudo-inverse. The probability of this set decays exponentially
as M increases (see Section 3.3), making the tLSE and LSE the same with a high probability. However,
this probability is non-negalibile, as we show in Remark 3.2 below that the normal matrix may be
singular with a positive probability.

Remark 3.2 (Positive probability of a singular normal matrix) We construct an example show-
ing the normal matrix sAM

n can be singular with a positive probability. Consider N “ 3 and X1, X2, X3
iid„

Upr0, 1sq as follows. We have r12 “ |X1 ´ X2| „ ρprq “ 2p1 ´ rq1r0,1sprq and RφrXs “ 1
2φp|X1 ´

X2|q X1´X2
|X1´X2| ` 1

2φp|X1 ´ X3|q X1´X3
|X1´X3| . Let φprq “ 21r1{2,1sprq. Note that }φ}2L2

ρ
“

ş1
0 |φprq|2ρprqdr “

ş1
1{2 4 ¨ 2p1 ´ rqdr “ 1 . Thus, if φ is one of the basis functions in the defintion of ĀM

n , we have
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λminpĀM
n q ď 1

MN

řM
m“1 }RφrXms}2RNd . As a result,

P
󲷤

λminpĀM
n q “ 0

(

ěP
󲷤 1

M

M
ÿ

m“1

}RφrXms}2 “ 0
(

ě
`

P
󲷤

}RφrXs}2 “ 0
(˘M

ě

˜

P
!

č

i‰j

t|φp|Xi ´ Xj |q| “ 0u
)

¸M

ě

˜

P
!

3
č

i“1

tXi P r0, 1{8su
)

¸M

ě 8´3M .

For any N , we can show similarly that P
󲷤

λminpĀM
n q “ 0

(

ě
´

P
!

ŞN
i“1tXi P r0, 1{8su

)¯M
ě 1

8NM .

A major advantage of the tLSE over the LSE is its appealing effectiveness in proving the minimax
rate. The main challenge in proving the convergence rate for the LSE is to control the variance term
Er}pθlse

n,M ´ θ˚}2s uniformly in n, where θ˚ denotes the true parameter. Since the LSE uses the pseudo-
inverse, one has to study the negative moments of the normal matrices. However, as Remark 3.2
shows, the normal matrix can be singular with a positive probability; hence the negative moments
are unbounded. Thus, one has to either study additional conditions for the negative moments to be
uniformly bounded for all n, or properly study regularized least squares [GKKW06, Tsy08].

In contrast, the tLSE achieves the minimax rate with a notably simpler proof, requiring only the co-
ercivity condition. The key component is that the left tail probability of tλminp sAM

n q ď 1
4cL̄u is negligible

in the bias-variance tradeoff, which is realized by the ‘tamed’ variance term Er}pθlse
n,M1λminp sAM

n qďτ ´θ˚}2s.
The forthcoming lemma shows that in the large sample limit, the normal matrix is invertible. Then,

the tLSE is the same as the LSE, and it recovers the projection of the true function in the hypothesis
space with a controlled error.

Lemma 3.3 Under Assumption 2.1 and Assumption pB1q, and assume that the basis functions tψku are
orthonormal and complete in L2

ρ. Let φ˚ “
ř8

k“1 θ
˚
kψk be the true kernel. Then, for each 1 ď k, l ď n,

the limits sA8
n pk, lq “ limMÑ8 sAM

n pk, lq and sb8
n pkq “ limMÑ8

sbM
n pkq exist and satisfy

$

’

&

’

%

sA8
n pk, lq “

1

N
ErxRψk

rXs, Rψl
rXsyRNds “ xL̄ψk,ψlyL2

ρ
, 1 ď k, l ď n ; (3.4a)

sb8
n pkq “

1

N
ErxRψk

rXs, Y yRNds “ xL̄ψk,φ˚yL2
ρ
, 1 ď k ď n , (3.4b)

and the smallest eigenvalue of sA8
n satisfies λminp sA8

n q ě cL̄ ą 0. Importantly,

θ˚
n “ pθ˚

1 , θ
˚
2 , ¨ ¨ ¨ , θ˚

nqJ “ r sA8
n s´1

sb8
n ´ r sA8

n s´1
rb8
n , (3.5)

where rb8
n pkq :“ xL̄ψk,φ

K
˚,nyL2

ρ
for 1 ď k ď n with φK

˚,n :“
ř8

l“n`1 θ
˚
l ψl, and

}θ˚
n ´ r sA8

n s´1
sb8
n }2Rn ď c´2

L̄

8
ÿ

l“n`1

pθ˚
l q2. (3.6)

Proof. The existence of the limits follows from the law of large numbers under Assumption 2.1. The
equations in (3.4) follow directly from the definitions of the operator and Y “ Rφ˚rXs ` η.

To show the bound for the smallest eigenvalue of the expected normal matrix, note that for any
θ “ pθ1, . . . , θnq P Rn, Eq.(3.4a) and Lemma 2.9 implies that

θJ
sA8
n θ “

n
ÿ

k,l“1

θkθlxL̄ψk,ψlyL2
ρ

“ xL̄
ÿ

k

θkψk,
ÿ

l

θlψlyL2
ρ

ě cL̄}
ÿ

k

θkψk}2L2
ρ
.
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Also, Eq.(3.5) follows from the fact that for any k “ 1, ¨ ¨ ¨ , n

sb8
n pkq “ xL̄ψk, p

n
ÿ

l“1

`
8
ÿ

l“n`1

qθ˚
l ψlyL2

ρ
“ r sA8

n θ˚
nspkq ` xL̄ψk,φ

K
˚,nyL2

ρ

“ r sA8
n θ˚

nspkq ` rb8
n pkq.

We proceed to prove Eq.(3.6). Since L̄ is self-adjoint, by Parseval’s identity and definition of operator
norm, we have that

}rb8
n }2Rn “

n
ÿ

k“1

|xψk, L̄φK
˚,nyL2

ρ
|2 ď

8
ÿ

k“1

|xψk, L̄φK
˚,nyL2

ρ
|2 “ }L̄φK

˚,n}2L2
ρ

ď }L̄}2op}φK
˚,n}2L2

ρ
.

Hence, applying }r sA8
n s´1}2 “ λminp sA8

n q´2 ď c´2
L̄ , contraction inequality (2.7) and }φK

˚,n}2L2
ρ

“
ř8

l“n`1 |θ˚
l |2,

we obtain

}r sA8
n s´1

rb8
n }2Rn ď }r sA8

n s´1}2}rb8
n }2Rn ď c´2

L̄ }L̄}2op}φK
˚,n}2L2

ρ
ď c´2

L̄

8
ÿ

l“n`1

|θ˚
l |2 .

Then, the inequality (3.6) follows by combining the above inequality with Eq.(3.5).
The extra bias term r sA8

n s´1
rb8
n , controlled by (3.6), underscores a key distinction between the

classical local model and our nonlocal model in nonparametric regression. It is absent in the classical
nonparametric estimation, where the normal matrix is the identity matrix and the normal vector is
the projection θ˚, since the normal operator is the identity operator. Therefore, this extra term is
directly attributable to the nonlocal dependence and we call it nonlocal bias. It leads to an extra
term in the variance in the bias-variance tradeoff, as we will show in Lemma 3.9. Importantly, the
coercivity condition plays a pivotal role in controlling this term by the bias of the hypothesis space
Hn “ spantψkunk“1, i.e., infφPHn }φ˚ ´ φ}2L2

ρ
“

ř8
l“n`1 |θ˚

l |2. Thus, as long as the coercivity condition
holds, the nonlocal dependence does not affect the minimax rate resulted from the bias-variance tradeoff.

Remark 3.4 The tLSE also differs from commonly used regularized estimators in practice: the reg-
ularized LSE by truncated SVD or Tikhonov regularization (see e.g., [Han87, LLA22, CS02a]), or the
truncated LSE that uses a cutoff to make estimator bounded. These three estimators retrieve information
from data by tackling the challenge from an ill-conditioned or even singular normal matrix. In contrast,
the tLSE is zero when the normal matrix has an eigenvalue smaller than the threshold, abandoning the
estimation task without extracting information in data. Thus, the tLSE is not an option in practice since
the normal matrix often has a small eigenvalue with a non-negligible probability when the data size is
relatively small. However, the tLSE has a significant theoretical advantage over these practical estima-
tors: it achieves the optimal minimax rate based on the coercivity condition alone, while these practical
LSEs have to deal with the negative moments of the small eigenvalues of the normal matrix.

3.2 Upper bound minimax rate

Our main result is the forthcoming theorem, which shows that the tamed LSE estimator achieves the
minimax convergence rate when the dimension of the hypothesis space is properly selected.

Theorem 3.5 (Upper bound minimax rate) Suppose Assumption 2.1, and Assumption pB1q on the
model and Assumption 2.12 on the basis functions hold. If β ą 1

2 then

lim sup
MÑ8

inf
pφ

sup
φ˚PWρpβ,Lq

Eφ˚

”

M
2β

2β`1 }pφ ´ φ˚}2L2
ρ

ı

ď Cupper , (3.7)

where Cupper ą 0 is a constant. Moreover, if Assumption 2.17 is also satisfied with 1
4 ď β ď 1

2 , then the
upper bound (3.7) holds for β ě 1

4 .
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The upper bound minimax rate follows immediately from Proposition 3.6, which shows that the
tamed LSE pφnM ,M achieves the rate, since

lim sup
MÑ8

inf
pφ

sup
φ˚PWρpβ,Lq

Eφ˚rM
2β

2β`1 }pφ ´ φ˚}2L2
ρ
s ď lim sup

MÑ8
sup

φ˚PWρpβ,Lq
Eφ˚rM

2β
2β`1 }pφnM ,M ´ φ˚}2L2

ρ
s.

Thus, we focus on proving Proposition 3.6 in this section.

Proposition 3.6 (Convergence rate for tLSE) Suppose Assumptions 2.1 and Assumption pB1q on
the model and Assumption 2.12 on the basis functions hold. Then, the tLSE in (3.1) with nM “

tp2βpLc2L̄`2q

C0c4L̄
Mq

1
2β`1 u converges at the rate M

´ 2β
2β`1 for any β ą 1

2 , i.e.,

lim sup
MÑ8

sup
φ˚PWρpβ,Lq

Eφ˚

”

M
2β

2β`1 }pφnM ,M ´ φ˚}2L2
ρ

ı

ď Cupper “ 2Cβ,LpC0c
´2
L̄ q

2β
2β`1 . (3.8)

Furthermore, the rate holds for all β ě 1
4 provided that Assumption 2.17 is also satisfied with 1

4 ď β ď 1
2 .

The constants in the theorem are as follows: cL̄ ě N´1
N2 is the coercivity constant defined in (2.6),

Cβ,L “ 2β`1
2β r2βpL ` 2c´2

L̄ qs
1

2β`1 , C0 “ 210
?
3C4

maxLp 1
C4

maxL
2N2Cη ` 1q with Cmax “ supkě1 }ψk}8, and

Cupper “ 2Cβ,LpC0c
´2
L̄ q

2β
2β`1 .

Remark 3.7 (Optimality of the rate) The rate M
´ 2β

2β`1 in Theorem 3.6 is optimal because it aligns
with the rate in the lower bound that will be presented in Theorem 4.1. It improves the suboptimal rate
rM{ logpMqs´ 2β

2β`1 in [LZTM19, LMT21, LMT22].

Remark 3.8 (Necessity of β ď 1{2 and Sobolev embedding in Hölder space) The case β ď 1{2
holds practical significance, particularly because the weighted Sobolev class Wρpβ, Lq can contain discon-
tinuous interaction functions. This includes piecewise constants, which are commonly observed in ap-
plications like opinion dynamics in (see, e.g.,[MT14]). On the other hand, when β ą 1{2, the functions
in Wρpβ, Lq are typically continuous when the density of ρ is both lower-bounded away from zero and
upper-bounded. This follows from the fact that Wρpβ, Lq » W β

ρ » W β as discussed in Remark 2.18 and
the Sobelev embedding that W β embeds continuously in Cβ´ 1

2 , see e.g., [BCD11, Theorem 1.50, Theo-
rem 1.66] and [DNPV12, Theorem 8.2]. Therefore, to cover discontinuous functions, it is necessary to
consider the case β ď 1{2.

Proof of Proposition 3.6. The proof follows the standard technique of bias-variance tradeoff, except
an extra term bounding the probability of the set where the tLSE is zero. The bound follows from the
left tail probability P

󲷤

λminpĀM
n q ď 1

4cL̄
(

ď GL,cL̄pn,Mq, which we establish in Lemma 3.9. The term
GL,cL̄pn,Mq enjoys an exponential decay since it comes from the concentration inequality of the smallest
eigenvalue of the normal matrix.

Let φ˚ “
ř8

k“1 θ
˚
kψk and θ˚

n “ pθ˚
1 , . . . , θ

˚
nq. We start from the bias-variance decomposition:

Eφ˚r}pφn,M ´ φ˚}2L2
ρ
s “ Eφ˚r}pθn,M ´ θ˚

n}2s
loooooooooomoooooooooon

variance term

`
8
ÿ

k“n`1

|θ˚
k |2

looooomooooon

bias term

.

The variance term is controlled by, as we detailed in Lemma 3.9 (see below),

Eφ˚r}pθn,M ´ θ˚
n}2s ďC0c

´2
L̄

n

M
` GL,cL̄pn,Mq

loooooomoooooon

concentration term

`2c´2
L̄

8
ÿ

l“n`1

|θ˚
l |2 ,
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where the fast vanishing term of order n
M comes from the well-conditioned parts of the tLSE, a concen-

tration term GL,cL̄pn,Mq comes from the left tail probability for tLSE to be zero, and the bias term
2c´2

L̄
ř8

l“n`1 |θ˚
l |2 originates from the nonlocal dependence in 3.6. Here the universal positive constants

are C0 “ 210
?
3C4

maxLp Cη

C4
maxL

2N2 ` 1q, and Cmax “ supkě1 }ψk}8.
The bias term is bounded above by the smoothness of the true kernel in Wρpβ, Lq. That is, by

Lemma 2.16 we have
8
ÿ

k“n`1

|θ˚
k |2 ď Ln´2β .

Combining these three estimates, we have

Eφ˚r}pφn,M ´ φ˚}2L2
ρ
s ď pL ` 2c´2

L̄ qn´2β ` C0c
´2
L̄

n

M
` GL,cL̄pn,Mq

“: gpnq ` GL,cL̄pn,Mq . (3.9)

Minimizing the trade-off function gpnq “ L̃n´2β ` C0c
´2
L̄ nM´1 with L̃ “ L ` 2c´2

L̄ , we obtain the

optimal dimension of hypothesis space nM “ tp c
2
L̄L̃

C0
Mq

1
2β`1 u, and gpnM q ď 2L̃

1
2β`1 pC0c

´2
L̄ q

2β
2β`1M

´ 2β
2β`1 .

When β ą 1
2 , GL,cL̄pn,Mq is defined in (3.11), and with M " n2

M , we have

GL,cL̄pnM ,Mq ď 2L̃
1

2β`1 pC0c
´2
L̄ q

2β
2β`1M

´ 2β
2β`1 .

When β ă 1{2, GL,cL̄pn,Mq is defined in (3.12), the above inequality remain valid if M is large enough.

Hence, in either case, with Cβ,L,N,L̄ “ 4L̃
1

2β`1 pC0c
´2
L̄ q

2β
2β`1 , we have

Eφ˚r}pφn,M ´ φ˚}2L2
ρ
s ď Cβ,L,N,L̄M

´ 2β
2β`1 ,

which implies (3.8).
Recall sA8

n “ Er sAM
n s “ limMÑ8 sAM

n and sb8
n “ ErsbM

n s “ limMÑ8
sbM
n as defined in Lemma 3.3.

Then we can estimate the variance as follows.

Lemma 3.9 (Bound for variance) Under Assumption 2.12 on the basis functions with Cmax “ supkě1 }ψl}8,
the following bound for the tamed LSE in Definition 3.1 satisfies

Eφ˚

„

›

›

›

pθn,M ´ θ˚
n

›

›

›

2
ȷ

ď C0c
´2
L̄

n

M
` 2󰂃n ` GL,cL̄pn,Mq , (3.10)

where C0 “ 210
?
3C4

maxLp Cη

C4
maxL

2N2 ` 1q, 󰂃n “ c´2
L̄

ř8
l“n`1 |θ˚

l |2 and

GL,cL̄pn,Mq “ 2L2n exp

˜

´
9Mc2L̄{64

n2C4
max ` C2

maxcL̄{4

¸

. (3.11)

Moreover, if (2.11) is also satisfied, the bound in (3.10) holds with

GL,cL̄pn,Mq “ L exp

˜

n log

ˆ

5C2
max

cL̄

˙

´
Mc2L̄
64κN2

¸

. (3.12)

Proof. Recall pθn,M “ r sAM
n s´1

sbM
n 1tλminp sAM

n qą 1
4
cL̄u in (3.1) and

θ˚
n “ r sA8

n s´1
sb8
n ´ v
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in (3.5) with v “ r sA8
n s´1

rb8
n satisfying }v}2 ď 󰂃n by (3.6). For simplicity of notation, denote

A :“ tλminp sAM
n q ą

1

4
cL̄u.

Thus, with Ac denoting the complement of the set A, we have

}pθn,M ´ θ˚
n}2Rn “ }r sAM

n s´1
sbM
n ´ θ˚

n}2Rn1A ` }θ˚
n}2Rn1Ac

ď 2

ˆ

}r sAM
n s´1

sbM
n ´ r sA8

n s´1
sb8
n }2Rn ` 󰂃n

˙

1A ` }θ˚
n}2Rn1Ac

ď 2

ˆ

}r sAM
n s´1psbM

n ´ sb8
n q}2 ` }pr sAM

n s´1 ´ r sA8
n s´1qsb8

n }2
˙

1A ` 2󰂃n ` }θ˚
n}21Ac .

Taking expectation, we get

Eφ˚

”

}pθM
n ´ θ˚

n}2
ı

ď 2Eφ˚

“

}r sAM
n s´1psbM

n ´ sb8
n q}21A

‰

` 2Eφ˚

“

}pr sAM
n s´1 ´ r sA8

n s´1qsb8
n }21A

‰

` }θ˚
n}2PtAcu ` 2󰂃n .

The first three terms on the right hand side are bounded as follows. Applying Hölder inequality and
Lemma 3.10, we have

Eφ˚

“

}r sAM
n s´1psbM

n ´ sb8
n q}2Rn1A

‰

ďpE}r sAM
n s´11A}4q1{2pEφ˚r}sbM

n ´ sb8
n }4sq1{2 ď 16c´2

L̄ Cb
n

M
.

Similarly, using the facts
`

r sA8
n s´1 ´ r sAM

n s´1
˘

sb8
n “ r sAM

n s´1p sAM
n ´ sA8

n qr sA8
n s´1

sb8
n on the set A “

tλminp sAM
n q ą c0cL̄u and θ˚

n “ r sA8
n s´1

sb8
n , we bound the second term as

Eφ˚

“

}pr sAM
n s´1 ´ r sA8

n s´1qsb8
n 1A}2Rn

‰

ďpE}r sAM
n s´11A}4q1{2pEφ˚r}p sAM

n ´ sA8
n qθ˚

n}4Rnsq1{2

ď16c´2
L̄ CA

n

M
.

Following (3.16) in Lemma 3.11 and θ˚
n P Θpβ, Lq, we have

}θ˚
n}2PtAcu ď GL,cL̄pn,Mq . (3.13)

Combining the preceding three estimates, we have

Eφ˚

”

}pθn,M ´ θ˚
n}2

ı

ď 16c´2
L̄ pCA ` Cbq

n

M
` 2󰂃n ` GL,cL̄pn,Mq .

Recall that CA and Cb in (3.14a) and (3.14b) are CA “ 8
?
3C4

maxL and Cb “ 25
?
3C2

maxpC4
maxL

2 `
1
N2Cηq1{2. Hence, 2pCA `Cbq ď 26

?
3C4

maxLp 1
C4

maxL
2N2Cη `1q, and we conclude the proof of (3.10). The

bound with (3.12) follows directly by applying (3.19) in Lemma 3.12 to Eq. (3.13).
The succeeding lemma establishes the fourth-moment bounds for the normal vectors. Its proof is

included in Section A.2.

Lemma 3.10 (Fourth-moment bounds for the normal vectors) Let sA8
n “ Er sAM

n s and sb8
n “

ErsbM
n s, where sAM

n and sbM
n are defined in (3.2). Let θ˚

n “ pθ˚
1 , . . . , θ

˚
nq be the first n coefficients of the

true function φ˚. Then, under Assumption 2.12 on the eigenfunctions, we have
$

’

’

&

’

’

%

´

E
“

}p sAM
n ´ sA8

n qθ˚
n}4Rn

‰

¯
1
2

ď CA
n

M
; (3.14a)

´

E
“

}sbM
n ´ sb8

n }4Rn

‰

¯
1
2

ď Cb
n

M
, (3.14b)

where the constants CA “ 8
?
3C4

maxL and Cb “ 25
?
3C2

maxpC4
maxL

2` 1
N2Cηq1{2 with Cmax “ suplě1 }ψl}8

are independent of n and M .
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3.3 Left tail probability of the smallest eigenvalue

Recall that the smallest eigenvalue of ĀM
n is defined as

λminpĀM
n q “ inf

}θ}Rn“1
θJĀM

n θ “ inf
}θ}Rn“1

1

MN

M
ÿ

m“1

}Rφθ
rXms}2RNd ,

where φθ “
řn

k“1 θkψk. We characterize the left tail probability of λminpĀM
n q in terms of its exponential

decay in M and increment in n in Lemma 3.11 and Lemma 3.12.

Lemma 3.11 (First left tail probability of the smallest eigenvalue) Consider ĀM
n as defined in

(3.2a) associated with the basis functions tψku satisfying Assumption 2.12. Then, we have

P
󲷤

λminpĀM
n q ď p1 ´ εqcL̄

(

ď 2n exp

˜

´
Mε2c2L̄{4

pnC2
maxq2 ` nC2

maxεcL̄{3

¸

, (3.15)

for any ε P p0, 1q. In particular,

P
!

λminpĀM
n q ď

cL̄
4

)

ď 2n exp

˜

´
9Mc2L̄{64

n2C4
max ` C2

maxcL̄{4

¸

. (3.16)

Proof. The proof follows from the matrix Bernstein inequality [Ver18, T`15], which we recall in Theorem
A.2. Note that Lemma 3.3 implies

λminpĀ8
n q “ inf

θPSn´1
θJĀ8

n θ “
1

N
Er}Rφθ

rXs}2RNds ě cL̄ ą 0 . (3.17)

We denote Φm “ pRψ1rXms, . . . , RψnrXmsq for each sample Xm and thus ĀM
n “ 1

MN

řM
m“1rΦmsJΦm.

Also, we define

sQM,N “ ĀM
n ´ Ā8

n “
1

MN

M
ÿ

m“1

”

rΦmsJΦm ´ ErrΦmsJΦms
ı

,

where tQm “ 1
N rΦmsJΦm ´ 1

NErrΦmsJΦmsuMm“1 form a sequence of mean zero independent matrices.
Note that }Qm} ď 2nC2

max and }
řM

m“1 ErpQmq2s} ď 2pnC2
maxq2. Then the matrix Bernstein inequality

gives that

Pt
›

› sQM,N

›

› ě tu ď 2n exp

ˆ

´
Mt2{4

pnC2
maxq2 ` nC2

maxt{3

˙

,

for any t ď cL̄. So, by (3.17) and then Weyl’s inequality in Theorem A.3 we have

P
󲷤

λminpĀM
n q ď cL̄ ´ εcL̄

(

ď P
󲷤

|λminpĀM
n q ´ λminpĀ8

n q| ě εcL̄
(

ď P
󲷤›

› sQM,N

›

› ě εcL̄
(

.

Thus, we finish the proof of (3.15). The inequality (3.16) follows by taking ε “ 3
4 .

A notable limitation of the bound in (3.16) lies in its dependency on β ą 1{2 to ensure exponential
decay as M approaches infinity within the minimax framework with n “ M

1
2β`1 . While scenarios with

β ą 1{2 are common, exploring the range β P p0, 1{2s is equally significant, especially since piecewise
constant functions fall in Wρpβ, Lq for β ă 1{2. In response to this, we introduce another left tail
probability bound that encompasses cases where β ă 1{2. Additionally, the method and results derived
from this approach are not only remedies to the aforementioned limitation but are also of intrinsic
interest in their own right.
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Lemma 3.12 (Second left tail probability of the smallest eigenvalue) Consider ĀM
n as defined

in (3.2a) associated with the basis functions tψku satisfying Assumption 2.12 and Assumption 2.17. Then,
we have for any ε P p0, 1q

P
"

λminpĀM
n q ď

1 ´ ε

2
cL̄

*

ď exp

˜

n log

ˆ

5C2
max

cL̄

˙

´
ε2Mc2L̄
16κN2

¸

, (3.18)

where M ě 16κN2

c2L̄
log

´

5C2
max
cL̄

¯

¨ n
ε2

and n ě 2. In particular, letting ε “ 1
2 , we have

P
!

λminpĀM
n q ď

cL̄
4

)

ď exp

˜

n log

ˆ

5C2
max

cL̄

˙

´
Mc2L̄
64κN2

¸

. (3.19)

Remark 3.13 The bound in (3.18) does not imply a small ball probability for the smallest eigenvalue of
the normal matrix [LS01, Hu17, Mou22]. In our context, we say a small probability holds for λminpĀM

n q
if P

󲷤

λminpĀM
n q ď t

(

ď Ctα for all t P r0, 1s for some α ą 0. The small ball probability does not hold
because the probability of λminpĀM

n q “ 0 can be positive (see Remark 3.2).

Our proof of Lemma 3.12 adapts the approach outlined in [Mou22], with simplifications tailored to
the distinct assumptions inherent in a nonparametric setting. We split the proof into three steps:

Step 1: Construct from θJĀM
n θ “ 1

MN

řM
m“1 }Rφθ

rXms}2RNd an empirical process with uniformly
bounded moment generating function, and apply the PAC-Bayesian inequality that we recall
in Lemma A.5.

Step 2: Obtain a parametric lower bound for λminpĀM
n q via controls of the approximation and entropy

terms in the PAC-Bayesian inequality.

Step 3: Select the parameter properly to achieve the desired bound for the probability of the minimal
eigenvalue being below the threshold.

The primary tool employed in the proof is the PAC-Bayesian variational inequality in Lemma A.5,
introduced to address the left tail probability of the smallest eigenvalue in [Oli16] and further customized
in [Mou22]. The detailed proof for Lemma 3.12 is provided in Section A.3.

3.4 Minimax rate, random matrices, and Sobolev embedding

The tamed least squares estimator (tLSE) not only serves as an efficient tool for proving the minimax
rate but also elucidates the inherent links between the minimax rate, random matrices theory, and
Sobolev embedding. Here we further discuss these fundamental connections and an open question.

A crucial insight from our approach is the dependency of the optimal minimax rate on the bias-
variance tradeoff remaining unaffected by the small left tail probability of the smallest eigenvalue of the
normal matrix. This insight establishes a link between the minimax rate, random matrices theory on
the left tail probability of the smallest eigenvalue, and fractional Sobolev embedding.

Specifically, to achieve the minimax rate M´ 2β
2β`1 , the left tail probability exp pan ´ bnMq must decay

faster than M
´ 2β

2β`1 when n “ M
1

2β`1 Ñ 8 to avoid affecting the bias-variance tradeoff. When β ą 1{2,
the left tail probability from a direct application of Bernstein’s inequality has an “ log n and bn “ n´2,
so it decays faster than the rate. Then, the tLSE achieves the optimal minimax rate with the coercivity
alone. When β ď 1{2, a refined estimation is necessary to yield a slower vanishing bn. The PAC-Bayes
inequality yields bn ” 1 along with an “ n under a fourth-moment condition (2.11). Roughly speaking,
the fourth-moment condition requires

sup
φPWρpβ,Lq,}φ}

L2
ρ

“1
}φ}4L4

ρ
ă 8,
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which is a continuous embedding of the Sobobev class Wρpβ, Lq in L4
ρ. This naturally connects to the

fractional Sobolev embedding of the weighted fractional Sobolev space W β
ρ into L4

ρ, as discussed in
Remark 2.18, applicable when β ě 1{4. Extending this to cover β P p0, 14q remains an open challenge,
potentially requiring replacing the fourth-moment condition to a 2 ` 󰂃-moment condition, as indicated
in various random matrix references (see e.g., [KM15, Tik18, Yas15]).

We summarize the key gradients of the tLSE method in Figure 2.

tLSE

Nonparametric regression
Minimax rate

Sobolev Class

Sobolev embedding

Random Matrix

Left tail probability of λmin

Coercivity condition

Fourth moment condition (β ≥ 1/4 )

Bias-Variance tradeoff

Figure 2: The tLSE connects the minimax rate with random matrices and Sobolev embedding.

4 Lower bound minimax rate
This section is dedicated to the lower bound minimax rate by the Fano-Tsybakov method [Tsy08, Chapter
2]. The lower rate matches the upper rate in Theorem 3.6, confirming the optimality of the rate.

Recall that Cpβ, Lq is the Hölder continuous class defined in (2.9), ρ is the exploration measure in
Definition 2.3, and Eφ˚ is the expectation with respect to the dataset tpXm, Y mquMm“1 generated from
model (1.1) with φ˚. We have our main result on the minimax lower bound. Because Cpβ, Lq Ď W pβ, Lq
in general, we only need to consider the hypothesis space to be Cpβ, Lq for the lower bound.

Theorem 4.1 (Lower bound minimax rate) Under Assumption 2.1 and Assumption pB2q, if β ą 0,
then there exists a constant cLower ą 0 independent of M such that

lim inf
MÑ8

inf
pφM

sup
φ˚PCpβ,Lq

Eφ˚rM
2β

2β`1 }pφM ´ φ˚}2L2
ρ
s ě cLower (4.1)

where inf
pφM

is the infimum over all estimators. Here, cLower “ c0cβ,N with c0 independent of M,N and

cβ,N “ N
´ 2β

2β`1 .

Remark 4.2 (Rate in N) The lower bound in (4.1) suggests that N´ 2β
2β`1 is a lower bound rate in N .

In other words, the number of particles plays a similar role as the sample size in the lower bound rate.
The rate N

´ 2β
2β`1 is the slowest among decay rates tN´γu with γ ě 2β

2β`1 that can ensure Eq.(4.1).

We follow the general scheme in [Tsy08, Chapter 2 and Theorem 2.11]. This scheme reduces the
infimum over all estimators and the supremum over all functions to the bound of the probability of
testing error of a finite hypotheses test. We summarize it in three steps, as follows.
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Step 1: Reduce (4.1) to bounds in probability by Markov inequality and to a finite number of hypotheses
Θ “ tφ0,M , ¨ ¨ ¨ ,φK,Mu Ď Cpβ, Lq. We set φ0,M ” 0 so that Pk ! P0, where Pk denotes the
measure of the model with φk,M .

Step 2: Transform to bounds in the average probability of the test error of 2s-separated hypotheses. The
key idea in the transformation is a minimum distance test κtest “ argmin1ďkďK dppφM ,φk,M q
[Tsy08, (2.8)].

Step 3: Bound the average probability of the test error from below by the Kullback-Leibler divergence
of the hypotheses.

Our main innovation, which is also the major difficulty, is the construction of the hypotheses
tφ0,M ,φ1,M , ¨ ¨ ¨ ,φK,Mu Ď Cpβ, Lq satisfying two conditions: (i) they are 2s-separated in L2

ρ, and (i)
their average Kullback-Leibler divergence KLpPk,P0q has a logarithmic growth in K. These two condi-
tions are used in the next lemma to prove Step 3. This lemma follows from a combination of a lower
bound based on multiple hypotheses, Fano’s lemma, and its corollary, which are in [Tsy08, Theorem 2.6,
Lemma 2.10, and Corollary 2.6] respectively, and we omit its proof.

Lemma 4.3 (Lower bound for hypothesis test error ) Let Θ “ tθkuKk“0 with K ě 2 be a set of
2s-seperated hypotheses, i.e., dpθk, θk1q ě 2s ą 0 for all 0 ď k ă k1 ď K, for a given metric d on Θ.
Denote Pk “ Pθk and suppose they satisfy Pk ! P0 for each k ě 1 and

1

K ` 1

K
ÿ

k“1

KLpPk,P0q ď α logpKq , with 0 ă α ă 1{8 . (4.2)

Then, the average probability of the hypothesis testing error has a lower bound:

p̄e,M :“ inf
κtest

1

K ` 1

K
ÿ

k“0

Pk

`

κtest ‰ k
˘

ě
logpK ` 1q ´ logp2q

logpKq
´ α , (4.3)

where infκtest denotes the infimum over all tests.

The next lemma constructs the hypothesis functions tφ0,M ,φ1,M , ¨ ¨ ¨ ,φK,Mu. Its proof is deferred
to Section A.4.

Lemma 4.4 For each data set tpXm, Y mquMm“1, there exists a set of hypothesis functions tφ0,M ”
0,φ1,M , ¨ ¨ ¨ ,φK,Mu and positive constants tC0, C1u independent of Mand N , where

K ě 2K̄{8, with K̄ “ rc0,NM
1

2β`1 s, c0,N “ C0N
1

2β`1 , (4.4)

such that the following conditions hold:

pC1q Hölder continuity: φk,M P Cpβ, Lq (defined in (2.9)) for each k “ 1, ¨ ¨ ¨ ,K;

pC2q 2sN,M -separated: }φk,M ´ φk1,M}L2
ρ

ě 2sN,M with sN,M “ C1c
´β
0,NM

´ β
2β`1 ;

pC3q Kullback-Leibler divergence estimate: 1
K

řK
k“1 KLpP̄k, P̄0q ď α logpKq with α ă 1{8, where P̄kp¨q “

Pφk,M
p¨ | X1, . . . , XM q.

Remark 4.5 (The exponent in N) The exponent for N in c0,N “ C0N
1

2β`1 in (4.4) is the smallest
possible. That is, when one replaces the the constant c0,N “ C0N

1
2β`1 in by c0,N “ C0N

γ, the exponent
γ must satisfy γ ě 1

2β`1 . Such a constraint arises when we aim for α ă 1
8 in (A.25) for all N .
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Proof of Theorem 4.1. The proof consists of three steps. We will denote

CN “ C1c
´β
0,N

so that sN,M in Condition pC2q can be writen as sN,M “ CNM
´ β

2β`1 .
Step 1: Reduction to bounds in probability for a finite number of hypothesis functions. Recall that

the Markov inequality Er|Z|2s ě c2Pr|Z| ą cs holds for any c P R and square-integrable random variable
Z, and the equalities PpAq “ Er1As “ ErEr1A | Zss “ ErPpA|Zqs hold for any measurable set A. Then,
we can reduce (4.1) to bounds in probability by

sup
φ˚PCpβ,Lq

Eφ˚rM
2β

2β`1 }pφM ´ φ˚}2L2
ρ
s ě max

φPtφ0,M ,¨¨¨ ,φK,M u
Eφ˚rM

2β
2β`1 }pφM ´ φ˚}2L2

ρ
s

ě C2
N max

φPtφ0,M ,¨¨¨ ,φK,M u
Pφ

ˆ

}pφM ´ φ˚}L2
ρ

ě sN,M

˙

ě C2
N

1

K ` 1

K
ÿ

k“0

EX1,¨¨¨ ,XM

”

Pk

`

}pφM ´ φk,M}L2
ρ

ě sN,M |X1, ¨ ¨ ¨ , XM
˘

ı

“ C2
NEX1,¨¨¨ ,XM

„

1

K ` 1

K
ÿ

k“0

Pk

`

}pφM ´ φk,M}L2
ρ

ě sN,M |X1, ¨ ¨ ¨ , XM
˘

ȷ

. (4.5)

We remark that tX1, ¨ ¨ ¨ , XMu inside the expectation are fixed and can be treated as deterministic
values in the conditional probability.

Step 2. Transform to bounds in the average probability of testing error of the 2sN,M -separated
hypotheses. Define κtest : Ω Ñ t0, 1, . . . ,Mu the minimum distance test

κtest “ argmin
0ďkďK

}pφM ´ φk,M}L2
ρ
.

Then, if κtest ‰ k, we have }pφM ´φκtest,M}L2
ρ

ď }pφM ´φk,M}L2
ρ
. Together with Property pC2q in Lemma

4.4 (i.e., the functions in Θ are 2sN,M -separated) and the triangle inequality, we obtain

2sN,M ď }φk,M ´ φκtest,M} ď }pφM ´ φκtest,M}L2
ρ

` }pφM ´ φk,M}L2
ρ

ď 2}pφM ´ φk,M}L2
ρ
. (4.6)

That is, κtest ‰ k implies }pφM´φk,M}L2
ρ

ě sN,M , and hence, Pkp}pφM´φk,M}L2
ρ

ě sN,M | X1, ¨ ¨ ¨ , XM q ě

Ppκtest ‰ k | X1, ¨ ¨ ¨ , XM q. Consequently, we have

1

K ` 1

K
ÿ

k“0

Pk

`

}pφM ´ φk,M}L2
ρ

ě sN,M |X1, ¨ ¨ ¨ , XM
˘

ě inf
κtest

1

K ` 1

K
ÿ

k“0

Pk

`

κtest ‰ k|X1, ¨ ¨ ¨ , XM
˘

“ inf
κtest

1

K ` 1

K
ÿ

k“0

P̄k

`

κtest ‰ k
˘

“: p̄e,M , (4.7)

where P̄kp¨q “ Pφk,M
p¨ | X1, . . . , XM q. We call p̄e,M the average probability of testing error.

Step 3: Bound p̄e,M from below. Conditional on each data tXmuMm“1, the Kullback divergence

estimate pC3q holds with 0 ă α ă 1{8, and hence by Lemma 4.3 and the fact that K “ 2rc0,NM
1

2β`1 s in
(4.4) increases exponentially in M , we have

p̄e,M ě
logpK ` 1q ´ logp2q

logpKq
´ α ě

1

2
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if M is large. Note that the above lower bound of p̄e,M is independent of the dataset tXmuMm“1. Together
with (4.5) in Step 1 and (4.7) in Step 2, we obtain with c0 “ 1

2 rC1C
´β
0 s2

sup
φ˚PCpβ,Lq

Eφ˚r}pφM ´ φ˚}2L2
ρ
s ě

C2
N

2
M

´ 2β
2β`1 “ c0pNMq´ 2β

2β`1

for any estimator. Hence, the lower bound (4.1) follows.

A Technical results and proofs

A.1 Example: X with uniform distribution

This section explicitly computes the exploration measure ρ in Definition 2.3 and the normal operator
L̄ “ pN´1qpN´2q

N2 LG ` N´1
N2 I in Definition 2.5. We consider the example with X having i.i.d. components

uniformly distributed on r0, 1s. We will show that the operator LG is compact and the coercivity constant
of L̄ is exactly cL̄ “ N´1

N2 .
Recall the exploration measure ρ defined in Definition 2.3:

ρpAq “
1

NpN ´ 1q

ÿ

j‰i

Pp|Xi ´ Xj | P Aq “ Pp|X1 ´ X2| P Aq

by exchangeability of X1, X2 and X3. Then, it is easy to see that ρ has a density

ρ1prq “ p2 ´ 2rq1t0ďrď1u . (A.1)

Proposition A.1 Let X “ pX1, X2, X3q with Xi
iid„ Upr0, 1sq. Then, the operator LG defined in (2.4)

is a compact integral operator with integral kernel

Gpr, sq “
rGpr, sq

ρ1prqρ1psq
, with rGpr, sq “ r2 ´ p|r ´ s| ` |r ` s|qs ´ r2 ´ 2|r ` s|s1tr`sď1u . (A.2)

Consequently, the smallest eigenvalue of the normal operator L̄ “ pN´1qpN´2q
N2 LG ` N´1

N2 I is cL̄ “ N´1
N2 .

Proof. Let us recall the notations rij “ |Xi ´ Xj | and rij “ Xi´Xj

rij
in (2.3). We write ΦpXi ´ Xjq “

φprijqrij and ΨpXi ´ Xjq “ ψprijqrij and then have

xLGφ,ψyL2
ρ

“ Erφpr12qr12ψpr13qr13s

“ ErΦpX1 ´ X2qΨpX1 ´ X3qs

“
ż

r0,1s3
Φpx1 ´ x2qΨpx1 ´ x3q

3
ź

i“1

dxi . (A.3)

We introduce a change of variables:

$

’

&

’

%

x “ x1 ´ x2 ;

y “ x1 ´ x3 ;

z “ x2 ` x3 ;
which is equivalent to

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x1 “
1

2
px ` y ` zq ;

x2 “
1

2
p´x ` y ` zq ;

x3 “
1

2
px ´ y ` zq .

Thus, (A.3) becomes

ż

r0,1s3
Φpx1 ´ x2qΨpx1 ´ x3q

3
ź

i“1

dxi “
1

2

ż

D
ΦpxqΨpyqdxdydz,
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where the cube r0, 1s3 is transformed to a region D under the change of variables:

D “
4

ď

j“1

Dj “
4

ď

j“1

tpx, y, zq : px, yq P Bju

and the projected disjoint regions tBju4j“1 on px, yq-plane are defined as follows

B1 “ tpx, yq : x P r0, 1s, y P r0, 1su , B2 “ tpx, yq : x P r0, 1s,´1 ` x ď y ď 0u ,

B3 “ tpx, yq : x P r´1, 0s, y P r´1, 0su , B4 “ tpx, yq : x P r´1, 0s, 0 ď y ď 1 ` xu .

Let us consider the decomposition

B1 “ B11 Y B12 :“ tpx, yq P r0, 1s2 : x ą yu
ď

tpx, yq P r0, 1s2 : x ď yu .

Thus, let D1 “ D11 Y D12, where the projection of D11 to px, yq-plane corresponds to B11 and the
projection of D12 to px, yq-plane corresponds to B12. Thus, we have

ż

D1

ΦpxqΨpyqdxdydz “
ż

B11

ż 2´px`yq

x´y
dz ¨ ΦpxqΨpyqdxdy

`
ż

B12

ż 2´px`yq

y´x
dz ¨ ΦpxqΨpyqdxdy

“
ż

r0,1s2
ΦpxqΨpyq ¨ 2rp1 ´ xq1txąyu ` p1 ´ yq1txďyusdxdy .

Note that Φpxq “ φpxq x
|x| “ φpxq and Ψpyq “ ψpyq y

|y| “ ψpyq on tpx, yq P r0, 1s ˆ r0, 1su. So, with the
change of variables r “ x and s “ y we have

ż

D1

ΦpxqΨpyqdxdydz “
ż

r0,1s2
φprqψpsq ¨ 2r1 ´ r1trąsu ´ s1trďsusdrds

“
ż

r0,1s2
φprqψpsq

r2 ´ p|r ´ s| ` |r ` s|qs
ρ1prqρ1psq

ρpdrqρpdsq,

where ρ1prq “ p2 ´ 2rq1t0ďrď1u. On D3, we get the same formula similarly. On the other hand, D2 is a
region with the projected domain on px, yq-plane corresponds to B2. Then, we get

ż

D2

ΦpxqΨpyqdxdydz “
ż

B2

ż 2`py´xq

x´y
dz ¨ ΦpxqΨpyqdxdy

“
ż 1

0

ż 0

´1
ΦpxqΨpyq ¨ 2p1 ` y ´ xq1t´1ďy´xudydx

“ ´
ż

r0,1s2
φprqψpsq

r2 ´ 2|r ` s|s
ρ1prqρ1psq

1tr`sď1uρpdrqρpdsq .

On D4, we get the same formula similarly.
In conclusion, we get

ErΦpX1 ´ X2qΨpX1 ´ X3qs “
ż

r0,1s3
Φpx1 ´ x2qΨpx1 ´ x3q

3
ź

i“1

dxi “
1

2

ż

D
ΦpxqΨpyqdxdydz

“
ż

r0,1s2
φprqψpsq

r2 ´ p|r ´ s| ` |r ` s|qs
ρ1prqρ1psq

ρpdrqρpdsq

´
ż

r0,1s2
φprqψpsq

r2 ´ 2|r ` s|s
ρ1prqρ1psq

1tr`sď1uρpdrqρpdsq

“
ż

r0,1s2
φprqψpsqGpr, sqρpdrqρpdsq
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with G defined in (A.2).
Now, we show Gpr, sq P L2pρq. This is

ż

r0,1sˆr0,1s
|Gpr, sq|2ρpdrqρpdsq “

ż

r0,1sˆr0,1s

| rGpr, sq|2

4p1 ´ rqp1 ´ sq
drds

“2

ż

0ďrăsď1

|r1 ´ ss ´ r1 ´ |r ` s|s1tr`sď1u|2

p1 ´ rqp1 ´ sq
drds

ď2

ż

0ďrăsď1

p1 ´ sq
p1 ´ rq

drds “ 2

ż

0ďsărď1

s

r
drds

“
ż

0ďrď1
rdr “

1

2
.

So, we conclude that LG is a Hilbert-Schmidt integral operator and therefore compact. Consequently,
the smallest eigenvalue of the normal operator L̄ is cL̄ “ N´1

N2 .

A.2 Proofs for the upper bound minimax rate

This section presents technical proofs in Section 3.2. First, we recall a concentration inequality for
random matrix and the Weyls’ inequality, which can be found in [Ver18, T`15]. They are used in the
proof of the first left tail probability in Lemma 3.11.

Theorem A.2 (Matrix Bernstein’s inequality) Let tXiuMi“1 Ă Rnˆn be independent mean zero
symmetric random matrices such that }Xi}op ď K almost surely for all i. Then, for every t ě 0,
we have

P

˜

›

›

›

M
ÿ

i“1

Xi

›

›

›

op
ě t

¸

ď 2n exp

ˆ

´
t2{2

σ2 ` Kt{3

˙

,

where σ2 “ }
řM

i“1 ErX2
i s}op.

Theorem A.3 (Weyl’s inequality) For any symmetric matrices S and T with the same dimensions,
we have

max
i

|λipSq ´ λipT q| ď }S ´ T }op,

where λipSq is the i-th eigenvalue of S in descending order.

Proof of Lemma 3.10. We prove these bounds by applying the fourth-moment bounds for empirical
mean in Lemma A.4. To do so, we only need to show that both sAM

n θ˚
n´ sA8

n θ˚
n and sbM

n ´sb8
n are centered

empirical means of two random vectors, each of which random vector has bounded fourth-moment.
We start from sAM

n θ˚
n ´ sA8

n θ˚
n. Let φ˚

n “
řn

k“1 θ
˚
kψk. Since RφrXs is linear in φ, we have Rφ˚

n
rXs “

řn
k“1 θ

˚
kRψk

rXs for any X. Define an Rn-valued random vector ZA to be

ZAplq “
1

N
xRψl

rXs, Rφ˚
n

rXsyRNd , 1 ď l ď n. (A.4)

Then, we can write the Rn-valued random variable sAM
n θ˚

n as

r sAM
n sθ˚

nplq “
n

ÿ

k“1

1

MN

M
ÿ

m“1

xRψl
rXms, Rψk

rXmsyRNdθ˚
k

“
1

M

M
ÿ

m“1

1

N
xRψl

rXms, Rφ˚
n

rXmsyRNd “
1

M

M
ÿ

m“1

Zm
A plq,
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where Zm
A plq “ 1

N xRψl
rXms, Rφ˚

n
rXmsyRNd is a sample of ZAplq for each m. Also, sA8

n θ˚
nplq “ ErZAplqs

for each l by the definition of sA8
n . Meanwhile, note that by definition of ZA, the boundedness of the

basis functions in Assumption 2.12, and the definition of the operator RφrXs, we have

|ZAplq| “
ˇ

ˇ

ˇ

1

N

N
ÿ

i“1

1

N2

ÿ

j‰i

ÿ

j1‰i

ψlprijqφ
˚
nprij1qxrij , rij1yRd

ˇ

ˇ

ˇ

ď sup
kě1

}ψk}28 sup
kě1

|θ˚
k | ď C2

max sup
kě1

|θ˚
k |.

Thus, we have shown that sAM
n θ˚

n ´ sA8
n θ˚

n is the centered empirical mean of i.i.d. samples of a bounded
random vector ZA (hence its fourth-moment). As a result, applying Lemma A.4, we obtain

E}p sAM
n ´ sA8

n qθ˚
n}4Rn ď

6M ´ 5

M3
n25E|ZA|4 ď

n2

M2
192C8

maxpsupkě1 |θ˚
k |q4.

Taking square root and using the fact that supkě1 |θ˚
k |2 ď L in Lemma 2.16, we obtain (3.14a).

The proof for the bound in (3.14b) is similar. By definition, the normal vector sbM
n “ 1

M

řM
m“1 b

m
n is

the average of M samples tbm
n uMm“1 of the Rn-value random vector bn with entries

bnplq “
1

N
xRψl

rXs, Rφ˚rXs ` ηyRNd , 1 ď l ď n.

To show that bn has a bounded fourth-moment, we decompose it into a bounded part and an unbounded
part, bn “ ξ ` η̃, where

ξplq “
1

N
xRψl

rXs, Rφ˚rXsyRNd , rηplq “
1

N
xRψl

rXs,ηyRNd .

The random vector ξ is bounded because by the boundedness of the eigen-functions in Assumption 2.12,
we have

|ξplq| ď sup
kě1

}ψk}28 sup
kě1

|θ˚
k | ď C2

max sup
kě1

|θ˚
k |.

To bound the noise term, we use the Cauchy-Schwarz inequality,

E|rηplq|4 “
1

N4
Er|xRψl

rXs,ηyRNd |4s ď
1

N4
Er|}Rψl

rXs}}η}|4s ď
1

N2
C4
maxCη,

where the first inequality follows from the assumption that the fourth moment of η is bounded by some
constant Cη ą 0, and the last inequality follows from that }Rψl

rXs}2 ď NC2
max for all X.

Combining these bounds, we have, for 1 ď l ď n,

E|bnplq|4 ď E|ξplq ` rηplq|4 ď 24E
”

|ξplq|4 ` |rηplq|4
ı

ď 24rC8
max sup

lě1
|θ˚

l |4 `
1

N2
C4
maxCηs ď 24C4

maxrC4
max sup

lě1
|θ˚

l |4 `
1

N2
Cηs.

Consequently, applying Lemma A.4 with Zmpkq “ 1
N xRψk

rXms, Y myRNd , we obtain

Er}sbM
n ´ sb8

n }4Rns ď
n2p6M ´ 5q

M3
29C4

maxrC4
max sup

lě1
|θ˚

l |4 `
1

N2
Cηs ď C2

b

n2

M2

with Cb “ 25
?
3C2

maxpC4
maxL

2 ` 1
N2Cηq1{2, using again the fact that supkě1 |θ˚

k |2 ď L in Lemma 2.16.

The next lemma provides bounds for the fourth moment of the empirical mean of i.i.d. samples. It
is of general interest beyond this study. The proof follows from applying the independence between the
samples and the direct expansion of the fourth power of the sum.
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Lemma A.4 (fourth-moment bounds of empirical mean) Let tZmuMm“1 be i.i.d. samples of the
Rn-valued random variable Z “ pZp1q, . . . , Zpnqq. Assume that

řn
k“1 E|Zpkq|4 ă 8. Then,

E
ˇ

ˇ

ˇ

1

M

M
ÿ

m“1

pZm ´ ErZsq
ˇ

ˇ

ˇ

4
ď

6n

M2

n
ÿ

k“1

E|Zpkq ´ ErZpkqs|4 ď
28n

M2

n
ÿ

k“1

E|Zpkq|4.

Proof. The second inequality follows directly from

E|Zpkq ´ ErZpkqs|4 ď 24
`

E|Zpkq|4 ` E|ErZpkqs|4
˘

ď 25E|Zpkq|4

for each 1 ď k ď n since E|ErZpkqs|4 ď E|Zpkq|4 by Jensen’s inequality.
To prove the first inequality, it suffices to consider ErZs “ 0 and prove

E
ˇ

ˇ

ˇ

ˇ

1

M

M
ÿ

m“1

Zm

ˇ

ˇ

ˇ

ˇ

4

ď
6n

M2

n
ÿ

k“1

E|Zpkq|4. (A.5)

We first prove the case with n “ 1, then extend it to the case with n ą 1.
Case n “ 1: Z is a 1-dimensional random variable. Note that

ˇ

ˇ

ˇ

M
ÿ

m“1

Zm

ˇ

ˇ

ˇ

4
“

M
ÿ

m1,¨¨¨ ,m4“1

4
ź

i“1

Zmi

“
M
ÿ

m“1

Z4
m ` 4

M
ÿ

m1,m2“1
m1‰m2

Zm1Z
3
m2

` 6
M
ÿ

m1,m2“1
m1‰m2

Z2
m1

Z2
m2

` 6
M
ÿ

m1,m2,m3“1
m1‰m2‰m3

Z2
m1

Zm2Zm3 `
M
ÿ

m1,m2,m3,m4“1
m1‰m2‰m3‰m4

Zm1Zm2Zm3Zm4 .

Meanwhile, the independence between these mean zero samples implies that ErZm1Z
3
m2

s “ 0, ErZ2
m1

Zm2Zm3s “
0, and ErZm1Zm2Zm3Zm4s “ 0, for any mutually different indices 1 ď m1,m2,m3,m4 ď M . Then, the
desired inequality in (A.5) with n “ 1 follows from

E
ˇ

ˇ

ˇ

M
ÿ

m“1

Zm

ˇ

ˇ

ˇ

4
“ Er

M
ÿ

m“1

Z4
m ` 6

M
ÿ

m1,m2“1
m1‰m2

Z2
m1

Z2
m2

s

“ MEr|Z|4s ` 6MpM ´ 1qpEr|Z2|sq2 ď 6M2E|Z|4,

where the second equality follows from that tZmu are samples of Z, and the last inequality follows from
pEr|Z2|sq2 ď E|Z|4 by Jensen’s inequality.

Case n ą 1: Z is a random vector. We prove it by applying the above bound to each component
of the vector. Note that

ˇ

ˇ

ˇ

1

M

M
ÿ

m“1

Zm

ˇ

ˇ

ˇ

4
“

˜

n
ÿ

k“1

ˇ

ˇ

ˇ

1

M

M
ÿ

m“1

Zmpkq
ˇ

ˇ

ˇ

2
¸2

ď n
n

ÿ

k“1

ˇ

ˇ

ˇ

1

M

M
ÿ

m“1

Zmpkq
ˇ

ˇ

ˇ

4
.

Meanwhile, applying the result in Case n “ 1 to each component tZmpkqu, we have

E
ˇ

ˇ

ˇ

ˇ

1

M

M
ÿ

m“1

Zmpkq

ˇ

ˇ

ˇ

ˇ

4

ď
6

M2
E|Zpkq|4, @1 ď k ď n.

Combining the two inequalities, we obtain the inequality (A.5).
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A.3 Proof for the 2nd left tail probability

Here, we include some technical proofs in Section 3.3.

Lemma A.5 (PAC-Bayesian inequality) Let Θ be a measurable space, and tZpθq : θ P Θu be a
real-valued measurable process. Assume that

ErexppZpθqqs ď 1 , for every θ P Θ . (A.6)

Let π be a probability distribution on θ. Then,

P
"

@µ,
ż

Θ
Zpθqµpθq ď KLpµ,πq ` t

*

ě 1 ´ e´t , (A.7)

where µ spans all probability measures on Θ, and KLpµ,πq is the Kullback-Leibler divergence between µ
and π:

KLpµ,πq :“

#

ş

Θ log
”

dµ
dπ

ı

dµ if µ ! π ;

8 otherwise .

The next lemma, from [Mou22, Section 2.3], controls the approximate term in the application of the
PAC-inequality. Here we present an alternative constructive proof.

Lemma A.6 For every γ P p0, 1{2s, v P Sn´1, define

Θv,γ :“ tθ P Sn´1 : }θ ´ v} ď γu, and πv,γpdθq “
1Θv,γ pθq

πpΘv,γq
πpdθq, (A.8)

where π is a uniform measure on the sphere. That is, Θv,γ is a “spherical cap” or “contact lens” in n-th
dimension space, and πv,γ is a uniform surface measure on the spherical cap. Then,

Fv,γpΣq :“
ż

Θ
xΣθ, θyπv,γpdθq “ r1 ´ gpγqsxΣv, vy ` gpγq

TrpΣq
n

, (A.9)

for any symmetric matrix Σ, where

gpγq “
n

n ´ 1

ż

Θ
r1 ´ xθ, vy2sπv,γpdθq P

„

0,
nγ2

pn ´ 1q

ȷ

. (A.10)

Proof of Lemma A.6. Note that

Fv,γpΣq :“
ż

Θ
xΣθ, θyπv,γpdθq “

ż

Θ
TrrθJΣθsπv,γpdθq

“ TrrΣAv,γs :“ Tr
„

Σ

ż

Θ
θθJπv,γpdθq

ȷ

.

To conclude (A.9), we proceed to show that

Av,γ “ r1 ´ gpγqsvvJ ` gpγq
In
n

. (A.11)

By isometric invariance, we set without loss of generality

v “ e1 “ p1, 0, ¨ ¨ ¨ , 0q P Rn .
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So we get a Rn-“spherical cap” Θγ “ Θpe1, γq centered at v “ e1. The notations Ae1,γ and πe1,γpdθq are
abbreviated as Aγ and πγpdθq. Thus, for θ “ pθ1, θ2, ¨ ¨ ¨ , θnq P Θγ Ď Sn´1 we have

Aγ “
ż

Θγ

θθJπγpdθq “
ż

Θγ

»

—

—

—

–

θ21 θ1θ2 ¨ ¨ ¨ θ1θn
θ2θ1 θ22 ¨ ¨ ¨ θ2θn

...
...

...
...

θnθ1 θnθ2 ¨ ¨ ¨ θ2n

fi

ffi

ffi

ffi

fl

πγpdθq

“ diag

«

ż

Θγ

θ21πγpdθq,
ż

Θγ

θ22πγpdθq, ¨ ¨ ¨ ,
ż

Θγ

θ22πγpdθq

ff

since
ş

Θγ
θ22πγpdθq “ ¨ ¨ ¨ “

ş

Θγ
θ2nπγpdθq and

ş

Θγ
θiθjπγpdθq “ 0 if i ‰ j. Moreover, it is readily seen

that

1 “
ż

Θγ

}θ}2πγpdθq “
ż

Θγ

rθ21 ` θ22 ` ¨ ¨ ¨ ` θ2nsπγpdθq “
ż

Θγ

θ21πγpdθq ` pn ´ 1q
ż

Θγ

θ22πγpdθq ,

and consequently
ż

Θγ

θ22πγpdθq “ ¨ ¨ ¨ “
ż

Θγ

θ2nπγpdθq “
1

n ´ 1

«

1 ´
ż

Θγ

θ21πγpdθq

ff

“
gpγq
n

.

Hence, we have

Aγ “ diag

«

ż

Θγ

θ21πγpdθq,
gpγq
n

, ¨ ¨ ¨ ,
gpγq
n

ff

. (A.12)

Noticing that gpγq “ n
n´1

”

1 ´
ş

Θγ
θ21πγpdθq

ı

and p1 ´ gpγqq ` gpγq
n “

ş

Θγ
θ21πγpdθq, the right-hand side

of (A.11) can be written as

p1 ´ gpγqqvvJ ` gpγq
In
n

“ diag

«

ż

Θγ

θ21πγpdθq,
gpγq
n

, ¨ ¨ ¨ ,
gpγq
n

ff

,

which matches (A.12).
The bound of gpγq in (A.10) can follow the same argument in [Mou22]. This completes the proof.

We introduce an inequality in [Oli16, Lemma A.1] to control the generating moment function before
the proof of 3.12.

Lemma A.7 Let X be a nonnegative random variable with a finite second moment. Then for all λ ě 0

Ere´λX s ď e´λErXs`λ2

2
ErX2s .

Proof. We include the proof for completeness. It is clear that

Ere´λX s ď 1 ´ λErXs `
λ2

2
ErX2s ď e´λErXs`λ2

2
ErX2s

by using 1 ` y ď ey in the second inequality.
Proof of Lemma 3.12. Step 1: For every θ P Sn´1 and λ ą 0, the bound for the moment generating
function can be derived by Lemma A.7:

E
„

exp

ˆ

´λ
1

N
}Rφθ

rXms}2
˙ȷ

ď exp

ˆ

´λ
1

N
Er}Rφθ

rXms}2s `
λ2

2N2
Er}Rφθ

rXms}4s

˙

ď exp

ˆ

´λcL̄ `
λ2

2N2
Er}Rφθ

rXms}4s

˙

.
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By (2.11) and Jensen’s inequality

Er}Rφθ
rXms}4s ď κ ¨

`

Er}Rφθ
rXms}2s

˘2
ď κ ¨

˜

E

«

N
ÿ

i“1

|Rφθ
rXmsi|

2

ff¸2

“ κ ¨

¨

˝E

»

–

N
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

1

N ´ 1

ÿ

j‰i

φθprmij qrmij

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl

˛

‚

2

ď κ ¨

˜

N
ÿ

i“1

1

N ´ 1

ÿ

j‰i

E
”

ˇ

ˇφθprmij q
ˇ

ˇ

2
ı

¸2

.

Remember that φθprmij q “
řn

k“1 θkψkprmij q, the distribution of random variable rmij is ρ and tψku are
ONB in L2

ρ, then we can proceed to get

1

N ´ 1

ÿ

j‰i

E
”

ˇ

ˇφθprmij q
ˇ

ˇ

2
ı

“
1

N ´ 1

ÿ

j‰i

E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

k“1

θkψkprmij q

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl “
n

ÿ

k“1

θ2k “ 1 .

Therefore, we have
Er}Rφθ

rXms}4s ď κN2 . (A.13)

Combing (A.13) and the fact that 1
NEr}Rφθ

rXms}2s ě cL̄, we obtain

E
„

exp

ˆ

´
λ

N
}Rφθ

rXms}2 ` λcL̄ ´
λ2

2
κN2

˙ȷ

ď 1, @θ P Sn´1,λ ą 0. (A.14)

Thus, by the independence of samples, we obtain

sup
θPSn´1

E

«

exp

˜

´
λ

N

M
ÿ

m“1

}Rφθ
rXms}2 ` λMcL̄ ´

λ2

2
κMN2

¸ff

ď 1, @λ ą 0.

In other words, the process

Zλpθq :“ ´
λ

N

M
ÿ

m“1

}Rφθ
rXms}2 ` λMcL̄ ´

λ2

2
κMN2

with θ P Sn´1 has a uniformly bounded moment generating function. Then, applying the PAC-Bayes
inequality in Lemma A.5 with Θ “ Sn´1, we obtain

P

#

sup
µPP

ż

Θ
Zλpθqµpθq ď KLpµ,πq ` t

+

ě 1 ´ e´t, @t ą 0, (A.15)

where π, µ P P with P denoting the set of all probability measures on Θ. In the next step, we will select
a specific π and a subset of P in (A.15) to obtain a λ-dependent bound P

󲷤

λminpAM
n q ă 1

8cL̄
(

, and we
remove the dependence on λ in Step 3.
Step 2: Obtain a lower bound for λminpAM

n q through constructing probability measures π and µ in
(A.15) to control

ş

Θ Zλpθqµpdθq. This lower bound depends on λ, which will be selected in Step 3 to
achieve the desired bound in (3.18).
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Let π be a uniform probability measure on Sn´1. For each v P Sn´1 and γ P p0, 1{2s, define Θv,γ and
probability measures πv,γ as in (A.8). Then, the PAC-Bayesian inequality (A.15) with µpdθq “ πv,γpdθq
implies that

P

#

sup
vPSn´1,γPp0,1{2s

ż

Θ
Zλpθqπv,γpθq ´ KLpπv,γ ,πq ď t

+

ě 1 ´ e´t .

Meanwhile, note that

1

M

ż

Θ
Zλpθqπv,γpdθq “

„

´ λ

ż

Θ
xĀM

n θ, θyπv,γpdθq ` λcL̄ ´
λ2

2
κN2

ȷ

“: r´λFv,γpĀM
n q ` λcL̄ ´

λ2

2
κN2s .

Hence, the above inequality implies that, with at least probability 1 ´ e´Mu,

sup
vPSn´1,γPp0,1{2s

„

´ λFv,γpĀM
n q ` λcL̄ ´

λ2

2
κN2 ´

1

M
KLpπv,γ ,πq

ȷ

ď
t

M
“ u.

ô inf
vPSn´1,γPp0,1{2s

λFv,γpĀM
n q `

1

M
KLpπv,γ ,πq ě λcL̄ ´

λ2

2
κN2 ´ u . (A.16)

Follow the conventions in [Mou22], we refer Fv,γpĀM
n q to be the approximation term and KLpπv,γ ,πq

the entropy term. The controls of these terms follow from the above selection of measure πv,γ and π.
The control of approximate term follows from applying Lemma A.6 with Σ “ ĀM

n :

Fv,γpĀM
n q “ r1 ´ gpγqsxĀM

n v, vy ` gpγq
TrpΣq
n

with gpγq in (A.10). The control of the entropy term is from Section 2.4 in the supplement of [Mou22]).
Specifically, we have for every v P Sn´1 and γ ą 0,

KLpπv,γ ,πq “
ż

Θ
log

ˆ

dπv,γ
dπ

pθq

˙

πv,γpdθq “
ż

Θ
log

„

1

πpΘv,γq

ȷ

πv,γpdθq

“ log

„

1

πpΘv,γq

ȷ

ď n logp1 ` 2{γq ,

where the bound for surface area πpΘv,γq is from [Ver18, Lemma 4.2.13].
Plugging these two estimates into (A.16) we obtain with at least probability 1 ´ e´Mu, for all

v P Sn´1, γ P p0, 1{2s,

λp1 ´ gpγqqxĀM
n v, vy ´ λgpγq

TrpĀM
n q

n
` n logp1 ` 2{γq ě λcL̄ ´

λ2

2
κN2 ´ u,

which amounts to

xĀM
n v, vy ě

1

λp1 ´ gpγqq

„

λcL̄ ´
λ2

2
κN2 ´

n

M
logp1 ` 2{γq ´ u

ȷ

´
gpγq

1 ´ gpγq
TrpĀM

n q
n

. (A.17)

Also, the uniform boundedness of tψku in Assumption 2.12 implies:

TrpĀM
n q

n
“

1

nMN

M
ÿ

m“1

n
ÿ

k“1

}Rψk
pXmq}2RNd ď C2

max ă 8.
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Moreover, when γ P p0, 1{2s we have by (A.10)

gpγq
1 ´ gpγq

ď
2γ2

1 ´ gpγq
and logp1 ` 2{γq ď log

ˆ

5

4γ2

˙

.

Letting cγ :“ 1
1´gpγq , one can note that 1 ď cγ ď 2 and cγ Ñ 1 as γ Ñ 0. Therefore, we have for every

γ P p0, 1{2s and u ą 0

inf
vPSn´1

xĀM
n v, vy ě

cγ
λ

„

λcL̄ ´
λ2

2
κN2 ´

n

M
log

ˆ

5

4γ2

˙

´ u

ȷ

´ 2cγC
2
maxγ

2

“ cγ

„

cL̄ ´
λκN2

2
´

n

λM
log

ˆ

5

4γ2

˙

´
u

λ
´ 2C2

maxγ
2

ȷ

“: GM
u pγ,λq (A.18)

holds with probability at least 1 ´ e´Mu.
Step 3: Select λ, γ properly to obtain the probability bound for λminpĀM

n q “ infvPSn´1xĀM
n v, vy. Based

on (A.18), we have

P

#

λminpĀM
n q ď sup

γ,λ
GM

u pγ,λq

+

ď e´Mu . (A.19)

Choosing γ2 “ cL̄
4C2

max
ď 1

4 and λ “ cL̄
2cγκN2 in (A.18), then writing Cκ,N “ κN2

2 and C0,n{M “

n
M log

´

5C2
max
cL̄

¯

in short, we have

GM
u pγ,λq “ cγ ¨

„

cL̄
2

´ Cκ,Nλ ´
C0,n{M

λ
´

u

λ

ȷ

“ cγ ¨
”cL̄
2

´ 2
b

Cκ,N pC0,n{M ` uq
ı

,

with the choice of λ “
b

C0,n{M`u

Cκ,N
.

Letting GM
u pγ,λq “ 1

2p1 ´ εqcL̄ for any ε ą 0, namely

u “
c2L̄

16c2γCκ,N
rcγ ´ 1 ` εs2 ´ C0,n{M ,

we have by PAC Bayesian inequality (A.19) that

P
"

λminpĀM
n q ď

1

2
p1 ´ εqcL̄

*

ď e´Mu “ exp

˜

MC0,n{M ´
Mc2L̄

8c2γκN
2

rcγ ´ 1 ` εs2
¸

“ exp

˜

n log

ˆ

5C2
max

cL̄

˙

´
C2
0Mc2L̄
4κN2

¸

,

(A.20)

where we denote C0 “ 1
cγ

pcγ ´ 1 ` εq. Then notice that

C0 “
cγ ´ 1 ` ε

cγ
ě

ε

2
,

by 1 ď cγ ď 2. The inequality (A.20) and the range of C0 imply that

P
"

λminpĀM
n q ď

1

2
p1 ´ εqcL̄

*

ď exp

˜

n log

ˆ

5C2
max

cL̄

˙

´
ε2Mc2L̄
16κN2

¸

which is an exponential decay tail in M . We conclude the proof of (3.18).
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A.4 Constructions of the hypotheses for the lower bound

We prove Lemma 4.4 by directly constructing the hypothesis functions tφ0,M , ¨ ¨ ¨ ,φK,Mu satisfying Con-
ditions pC1q–pC3q, that is, they are Hölder-continuous, 2s-separated in L2

ρ, and they induce hypotheses
satisfying a Kullback-Leibler divergence upper bound.

The construction consists of two steps:

Step 1: construct K̄ disjoint equidistance intervals with a proper length in support of the exploration
measure ρ, and

Step 2: define the hypothesis functions as a linear combination of K̄ functions supported in these disjoint
intervals with binary coefficients, and prove that these hypothesis functions satisfy Conditions
pC1q–pC3q.

The second step largely follows the proof in [Tsy08, page 303], particularly, the Varshamov-Gilbert bound
leads to the upper bound for the Kullback-Leibler divergence of the hypothesis. Our main innovation is
the first step, constructing disjoint equidistance intervals in support of the measure ρ. Importantly, we
only need the exploration measure to have a density function that is either uniformly bounded below by
a positive number or continuous on the interval.

We let ψ P Cpβ, 1{2q X C8pRq a bounded nonnegative smooth function:

ψpuq “ eφ0p2uq, φ0puq “ e
´ 1

1´u2 1|u|ď1. (A.21)

Note that ψpuq ą 0 if and only iff u P p´1{2, 1{2q, and }ψ}8 “ maxx ψpxq “ eφ0p0q “ 1.
We recall the Varshamov-Gilbert bound in [Tsy08, Lemma 2.9].

Lemma A.8 (Varshamov-Gilbert bound) Let K̄ ě 8. Then there exists a subset tωp0q, ¨ ¨ ¨ ,ωpKqu
of Ω such that ωp0q “ p0, ¨ ¨ ¨ , 0q and

K ě 2K̄{8 , and ρHpωpjq,ωpkqq ě
K̄

8
,@ 0 ď j ă k ď K , (A.22)

where ρHpω,ω1q “
řK̄

l“1 1pωl ‰ ω1
lq is called the Hamming distance between two binary sequences ω “

pω1, ¨ ¨ ¨ ,ωK̄q and ω1 “ pω1
1, ¨ ¨ ¨ ,ω1

K̄
q.

Proof of Lemma 4.4. The proof consists of two steps.
Step 1: we construct K̄ “ rc0,NM

1
2β`1 s disjoint equidistance intervals

t△ℓ “ prℓ ´ hM , rℓ ` hM quK̄ℓ“1, with hM “
L0

8n0K̄
, (A.23)

where the numbers trℓu, n0, and L0 are to be specified next according to ρ so that trℓu Ă supppρq and
n0 ě 1. Here the constant c0,N is defined in (4.4).

Note that if ρ has a density function that is bounded from below by a0 ą 0, we can simply use
the uniform partition of supppρq to obtain the desired t△lu. That is, we set n0 “ 1, L0 “ 4, and
rℓ “ p2ℓ ´ 1qhM . Since ρ’s density may not be bounded below by a positive constant in general, we use
the continuity of the density function as follows.

By Lemma 2.4, the exploration measure ρ has a density function ρ1 continuous on the interval r0, 1s.
Then, the number a0 “ suprPr0,1s ρ

1prq is finite. Take a0 ă a0 ^ 1.
We construct intervals in (A.23) satisfying

Ť

ℓ△ℓ Ă A0 :“ tr P r0, 1s : ρ1prq ą a0u. Let L0 :“
1´a0
a0´a0

.
Note that LebpA0q ě L0 since

1 “
ż 1

0
ρ1prqdr “

ż

A0

ρ1prqdr `
ż

Ac
0

ρ1prqdr

ď a0LebpA0q ` a0r1 ´ LebpA0qs .
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Also, note that the set A0 is open by continuity of ρ1. Thus, there exist disjoint intervals paj , bjq
such that A0 “

Ť8
j“1paj , bjq. Without loss of generality, we assume that these intervals are descendingly

ordered according to their length bj ´ aj . Let

n0 “ mintn :
n

ÿ

j“1

pbj ´ ajq ą
L0

2
u.

It is clear that n0 ě 1. Now, we construct disjoint intervals t△ℓ “ prℓ ´ hM , rℓ ` hM qun1
ℓ“1 Ă pa1, b1q

such that rℓ “ a1 ` ℓhM and n1 “ tpb1 ´ a1q{p2hM qu. If n1 ě K̄, we stop. Otherwise, we construct
additional disjoint intervals t△ℓ “ prℓ ´ hM , rℓ ` hM qun1`n2

ℓ“n1`1 Ă pa2, b2q similarly, and continue to
paj , bjq until obtaining K̄ intervals t△ℓu. To show that we will at least obtain K̄ such intervals, we show
that K˚ ě K̄, where K˚ is the total number of intervals t△ℓu

K˚
ℓ“1 to exhuast all tpaj , bjq

n0
j“1. Since the

Lebesgue measure of paj , bjqz
ŤK˚

ℓ“1△ℓ is less than 2hM for each j, the Lebesgue measure of the uncovered
parts

Ťn0
j“1paj , bjqz

`
ŤK˚

ℓ“1△ℓ

˘

is at most 2n0hM . Thus, the intervals t△ℓu
K˚
ℓ“1 must have a total length

no less than L0
2 ´ 2n0hM . Consequently, the total number must statisfy K˚ ě pL0

2 ´ 2n0hM q{p2hM q “
2K̄n0 ´ n0 ě K̄.

Step 2: construct hypothesis functions satisfying Conditions pC1q–pC3q. We first define 2K̄ func-
tions, from which we will select a subset of 2s-separated hypothesis functions,

φωprq “
K̄
ÿ

l“1

ωℓψl,M prq, ω “ pω1, ¨ ¨ ¨ ,ωK̄q P t0, 1uK̄ ,

where the basis functions are

ψl,M prq :“ LhβMψ

ˆ

r ´ rℓ
hM

˙

, l “ 1, ¨ ¨ ¨ , K̄, r P r0, 1s (A.24)

with ψpuq “ e
´ 1

1´p2uq2 1|u|ď1{2 as in Eq. (A.21). Note that the support of ψl,M prq is △ℓ, and
ş

△ℓ
|ψl,M prq|2dr “

Lh
β` 1

2
M }ψ}2. By definition, these hypothesis functions satisfy Condition pC1q, i.e., they are Hölder con-

tinuous.
Next, we select a subset of 2sN,M -separated functions tφk,M :“ φωpkquKk“1 satisfying Condition pC2q,

i.e., }φωpkq ´ φωpk1q}L2
ρ

ě 2sN,M for any k ‰ k1 P t1, . . . ,Ku. Here sN,M “ C1c
´β
0,NM

´ β
2β`1 with C1 being

a positive constant to be determined below. Since t△ℓ “ supppψl,M qu are disjoint, we have

}φω ´ φω1}L2
ρ

“

ˆ
ż 1

0

ˇ

ˇ

ˇ

ˇ

K̄
ÿ

l“1

pωℓ ´ ω1
ℓqψl,M prq

ˇ

ˇ

ˇ

ˇ

2

ρ1prqdr

˙
1
2

“

ˆ K̄
ÿ

l“1

pωℓ ´ ω1
ℓq

2

ż

△ℓ

|ψl,M prq|2ρ1prqdr

˙
1
2

.

Since ρ1prq ě a0 over each △ℓ, we have
ż

△ℓ

|ψl,M prq|2ρ1prqdx ě a0

ż

△ℓ

|ψl,M prq|2dr “ a0L
2h2β`1

M }ψ}22.

Meanwhile, applying the Vashamov-Gilbert bound ([Tsy08, Lemma 2.9], see Lemma A.8), one can obtain
a subset tωpkquKk“1 with K ě 2K̄{8 such that

řK̄
ℓ pωpkq

ℓ ´ ω
pk1q
ℓ q2 ě K̄

8 for any k ‰ k1 P t1, . . . ,Ku. Thus,

}φω ´ φω1}L2
ρ

ě
?
a0Lh

β` 1
2

M }ψ}2

ˆ K̄
ÿ

l“1

pωℓ ´ ω1
ℓq

2

˙
1
2

ě
?
a0Lh

β` 1
2

M

b

K̄{8 “ 2
?
a0L

ˆ

L0

8n0

˙β ?
2

4
c´β
0,NM

´ β
2β`1 “ 2sN,M
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with C1 “ ?
a0Lp L0

8n0
qβ

?
2
4 , CN “ C1c

´β
0,N “ 1

8
?
a0LpL0{4c0,N qβ by recalling that K̄ “ rc0,NM

1
2β`1 s and

hM “ L0

8n0K̄
in (A.23).

To verify Condition pC3q for each fixed dataset X1, ¨ ¨ ¨ , XM , we first compute the Kullback diver-
gence. Recall rmij “ |Xm

j ´Xm
i | and rmij “

Xm
j ´Xm

i

rmij
, then RφrXmsi “ 1

N

ř

j‰i φprmij qrmij . By the Assump-

tion 2.1 on the noise η (i.e., being i.i.d. with a distribution pη satisfying
ş

pηpuq log pηpuq
pηpu`vqdu ď cη}v}2

for all }v} ď v0), we obtain

KLpP̄k, P̄0q “
ż

¨ ¨ ¨
ż

log
M
ź

m“1

pηpumq
pηpum ´ Rφk,M

rXmsq

M
ź

m“1

rpηpumqdums

“
M
ÿ

m“1

ż

log
pηpuq

pηpu ´ Rφk,M
rXmsq

pηpuqdu

ď cη

M
ÿ

m“1

}Rφk,M
rXms}2RNd .

Employing Jensen’s inequality, we have

}Rφk,M
rXms}2RNd “

N
ÿ

i“1

ˇ

ˇ

ˇ

1

N

ÿ

j‰i

Kφk,M
prmij q

ˇ

ˇ

ˇ

2
ď

N
ÿ

i“1

1

N

ÿ

j‰i

|φk,M prmij q|2 .

Recalling that φk,M prmij q “
řK̄

l“1 ω
pkq
ℓ ψl,M prmij q, where supppψl,M q Ď △ℓ are disjoint and |ψl,M prmij q| “

LhβMψ

ˆ

rmij ´rℓ
hM

˙

ď LhβM}ψ}81trmij P△ℓu, we have

|φk,M prmij q|2 “
ˇ

ˇ

ˇ

K̄
ÿ

l“1

ω
pkq
ℓ ψl,M prmij q

ˇ

ˇ

ˇ

2
“

K̄
ÿ

l“1

ω
pkq
ℓ

ˇ

ˇψl,M prmij q
ˇ

ˇ

2
ď LhβM}ψ}28

K̄
ÿ

l“1

1trmij P△ℓu,

where we have used the fact that 0 ď ω
pkq
ℓ ď 1.

Combining the above three inequalities, we obtain

KLpP̄k, P̄0q ď
cηL

2h2βM
N

ψ2
max

N
ÿ

i,j“1;i‰j

M
ÿ

m“1

K̄
ÿ

l“1

1trmij P△ℓu

ď cηψ
2
maxL

2NMh2βM ,

where the second ineqaulty follows from that
řM

m“1

řK̄
l“1 1trmij P△ℓu ď M since the intervals t△ℓu are

disjoint. Hence, recalling that hM “ L0{p8n0K̄q in (A.23), K ě 2K̄{8, and K̄ “ rc0,NM
1

2β`1 s, we obtain

1

K

K
ÿ

k“1

KLpP̄k, P̄0q ď cηψ
2
maxL

2NMh2βM “ cηψ
2
maxL

2NM

ˆ

L0

8n0K̄

˙2β

ď cηψ
2
maxL

2NpL0{8n0q2βc´2β´1
0,N K̄ ď α logpKq

with
α “ 8cηψ

2
maxL

2NpL0{8n0q2βc´2β´1
0,N . (A.25)

To ensure α ă 1
8 for all N , we need

c0,N ą p64cηψ
2
maxL

2pL0{8n0q2βq
1

2β`1N
1

2β`1 .

Setting c0,N “ C0N
1

2β`1 with C0 “ 2p64cηψ2
maxL

2pL0{8n0q2βq
1

2β`1 , we obtain the desired bound in
Condition pC3q.
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[BPP23] Denis Belomestny, Vytautė Pilipauskaitė, and Mark Podolskij. Semiparametric estimation
of McKean–Vlasov SDEs. Ann. Inst. Henri Poincaré Probab. Stat., 59(1):79–96, 2023.

[BVZ21] Jennifer Bryson, Roman Vershynin, and Hongkai Zhao. Marchenko-Pastur law with relaxed
independence conditions. Random Matrices Theory Appl., 10(4):Paper No. 2150040, 28,
2021.

[CDP18] Patrick Cattiaux, Fanny Delebecque, and Laure Pédèches. Stochastic Cucker–Smale models:
Old and new. Ann. Appl. Probab., 28(5):3239–3286, 2018.

[CGM07] P. Cattiaux, A. Guillin, and F. Malrieu. Probabilistic approach for granular media equations
in the non-uniformly convex case. Probab. Theory Relat. Fields, 140(1-2):19–40, 2007.

[Che21] Xiaohui Chen. Maximum likelihood estimation of potential energy in interacting particle
systems from single-trajectory data. Electron. Commun. Probab., pages 1–13, 2021.

[CMV03] José Carrillo, Robert McCann, and Cédric Villani. Kinetic equilibration rates for granular
media and related equations: Entropy dissipation and mass transportation estimates. Rev.
Mat. Iberoamericana, pages 971–1018, 2003.

[CS02a] Felipe Cucker and Steve Smale. Best Choices for Regularization Parameters in Learning
Theory: On the Bias—Variance Problem. Found. Comput. Math., 2(4):413–428, 2002.

[CS02b] Felipe Cucker and Steve Smale. On the mathematical foundations of learning. Bulletin of
the American mathematical society, 39(1):1–49, 2002.

[CS07] Felipe Cucker and Steve Smale. Emergent behavior in flocks. IEEE Transactions on auto-
matic control, 52(5):852–862, 2007.

[DF29] Bruno De Finetti. Funzione caratteristica di un fenomeno aleatorio. In Atti del Congresso
Internazionale dei Matematici: Bologna del 3 al 10 de settembre di 1928, pages 179–190,
1929.

[DF80] P. Diaconis and D. Freedman. Finite exchangeable sequences. Ann. Probab., 8(4):745–764,
1980.

[DMH22] Laetitia Della Maestra and Marc Hoffmann. Nonparametric estimation for interacting par-
ticle systems: McKean-Vlasov models. Probability Theory and Related Fields, pages 1–63,
2022.

[DMH23] Laetitia Della Maestra and Marc Hoffmann. The lan property for mckean–vlasov models in
a mean-field regime. Stochastic Processes and their Applications, 155:109–146, 2023.

[DNPV12] Eleonora Di Nezza, Giampiero Palatucci, and Enrico Valdinoci. Hitchhiker’s guide to the
fractional Sobolev spaces. Bull. Sci. Math., 136(5):521–573, 2012.

[Fan91] Jianqing Fan. On the optimal rates of convergence for nonparametric deconvolution prob-
lems. The Annals of Statistics, 19(3):1257–1272, 1991.

38



[Gee00] Sara A Geer. Empirical Processes in M-estimation, volume 6. Cambridge university press,
2000.

[GKKW06] László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk. A distribution-free theory
of nonparametric regression. Springer Science & Business Media, 2006.

[GL95] Richard D Gill and Boris Y Levit. Applications of the van trees inequality: a bayesian
cramér-rao bound. Bernoulli, pages 59–79, 1995.

[Han87] Per Christian Hansen. The truncated SVD as a method for regularization. BIT Numerical
Mathematics, 27(4):534–553, Dec 1987.

[HLL19] Hui Huang, Jian-Guo Liu, and Jianfeng Lu. Learning interacting particle systems: Diffu-
sion parameter estimation for aggregation equations. Mathematical Models and Methods in
Applied Sciences, 29(01):1–29, 2019.

[Hof09] Peter D. Hoff. A first course in Bayesian statistical methods. Springer Texts in Statistics.
Springer, New York, 2009.

[Hu17] Yaozhong Hu. Analysis on Gaussian spaces. World Scientific Publishing Co. Pte. Ltd.,
Hackensack, NJ, 2017.

[Kal05] Olav Kallenberg. Probabilistic symmetries and invariance principles. Probability and its
Applications (New York). Springer, New York, 2005.

[Kas90] Raphael A. Kasonga. Maximum likelihood theory for large interacting systems. SIAM J.
Appl. Math., 50(3):865–875, 1990.

[KM15] Vladimir Koltchinskii and Shahar Mendelson. Bounding the smallest singular value of a
random matrix without concentration. Int. Math. Res. Not. IMRN, (23):12991–13008, 2015.

[LL22] Quanjun Lang and Fei Lu. Learning interaction kernels in mean-field equations of first-order
systems of interacting particles. SIAM Journal on Scientific Computing, 44(1):A260–A285,
2022.

[LL23] Zhongyang Li and Fei Lu. On the coercivity condition in the learning of interacting particle
systems. to apppear on Stochastics and Dynamics, 2023.

[LLA22] Fei Lu, Quanjun Lang, and Qingci An. Data adaptive RKHS Tikhonov regularization for
learning kernels in operators. Proceedings of Mathematical and Scientific Machine Learning,
PMLR 190:158-172, 2022.

[LLM`21] Zhongyang Li, Fei Lu, Mauro Maggioni, Sui Tang, and Cheng Zhang. On the identifiability
of interaction functions in systems of interacting particles. Stochastic Processes and their
Applications, 132:135–163, 2021.

[LMT21] Fei Lu, Mauro Maggioni, and Sui Tang. Learning interaction kernels in heterogeneous sys-
tems of agents from multiple trajectories. Journal of Machine Learning Research, 22(32):1–
67, 2021.

[LMT22] Fei Lu, Mauro Maggioni, and Sui Tang. Learning interaction kernels in stochastic systems of
interacting particles from multiple trajectories. Foundations of Computational Mathematics,
22:1013–1067, 2022.

[LN81] D. V. Lindley and Melvin R. Novick. The role of exchangeability in inference. Ann. Statist.,
9(1):45–58, 1981.

[LQ22] Meiqi Liu and Huijie Qiao. Parameter estimation of path-dependent McKean-Vlasov
stochastic differential equations. Acta Mathematica Scientia, 42(3):876–886, 2022.

[LS01] Wenbo V Li and Q-M Shao. Gaussian processes: inequalities, small ball probabilities and
applications. Handbook of Statistics, 19:533–597, 2001.

[LTV21] Galyna V. Livshyts, Konstantin Tikhomirov, and Roman Vershynin. The smallest singular
value of inhomogeneous square random matrices. Ann. Probab., 49(3):1286–1309, 2021.

[LZTM19] Fei Lu, Ming Zhong, Sui Tang, and Mauro Maggioni. Nonparametric inference of interaction
laws in systems of agents from trajectory data. Proc. Natl. Acad. Sci. USA, 116(29):14424–
14433, 2019.

39



[MB22] Daniel A Messenger and David M Bortz. Learning mean-field equations from particle data
using wsindy. Physica D: Nonlinear Phenomena, 439:133406, 2022.

[Mei09] Alexander Meister. Deconvolution problems in nonparametric statistics. Lecture Notes in
Statistics, Springer, Berlin, Heidelberg, 2009.

[MM22] Paulo Manrique-Mirón. Random Toeplitz matrices: the condition number under high
stochastic dependence. Random Matrices Theory Appl., 11(3):Paper No. 2250027, 31, 2022.

[Mou22] Jaouad Mourtada. Exact minimax risk for linear least squares, and the lower tail of sample
covariance matrices. Ann. Statist., 50(4):2157–2178, 2022.

[MP14] Shahar Mendelson and Grigoris Paouris. On the singular values of random matrices. J.
Eur. Math. Soc. (JEMS), 16(4):823–834, 2014.

[MT14] Sebastien Motsch and Eitan Tadmor. Heterophilious Dynamics Enhances Consensus. SIAM
Rev, 56(4):577 – 621, 2014.

[MTB22] Christos N Mavridis, Amoolya Tirumalai, and John S Baras. Learning swarm interac-
tion dynamics from density evolution. IEEE Transactions on Control of Network Systems,
10(1):214–225, 2022.

[MWY23] Tianxing Mei, Chen Wang, and Jianfeng Yao. On singular values of data matrices with
general independent columns. Ann. Statist., 51(2):624–645, 2023.

[NR19] Richard Nickl and Kolyan Ray. Nonparametric statistical inference for drift vector fields of
multi-dimensional diffusions. ArXiv181001702 Math Stat, 2019.

[Oli16] Roberto Imbuzeiro Oliveira. The lower tail of random quadratic forms with applications to
ordinary least squares. Probab. Theory Related Fields, 166(3-4):1175–1194, 2016.

[SKPP21] Louis Sharrock, Nikolas Kantas, Panos Parpas, and Grigorios A. Pavliotis. Parameter
stimation for the McKean-Vlasov stochastic differential equation. ArXiv210613751 Math
Stat, 2021.

[SN19] Hai Shu and Bin Nan. Estimation of large covariance and precision matrices from temporally
dependent observations. Ann. Statist., 47(3):1321–1350, 2019.

[T`15] Joel A Tropp et al. An introduction to matrix concentration inequalities. Foundations and
Trends R© in Machine Learning, 8(1-2):1–230, 2015.

[Tik18] Konstantin Tikhomirov. Sample covariance matrices of heavy-tailed distributions. Int.
Math. Res. Not. IMRN, (20):6254–6289, 2018.

[Tsy08] Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. Springer New York,
NY, 1st edition, 2008.

[VdV00] Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge university press, 2000.
[Ver18] Roman Vershynin. High-dimensional probability, volume 47 of Cambridge Series in Sta-

tistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2018. An
introduction with applications in data science, With a foreword by Sara van de Geer.

[Ver20] Roman Vershynin. Concentration inequalities for random tensors. Bernoulli, 26(4):3139–
3162, 2020.

[Wai19] Martin J. Wainwright. High-dimensional statistics, volume 48 of Cambridge Series in Sta-
tistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2019.

[Yas15] Pavel Yaskov. Sharp lower bounds on the least singular value of a random matrix without
the fourth moment condition. Electron. Commun. Probab., 20:no. 44, 9, 2015.

[YCY22] Rentian Yao, Xiaohui Chen, and Yun Yang. Mean-field nonparametric estimation of in-
teracting particle systems. In Conference on Learning Theory, pages 2242–2275. PMLR,
2022.

40


