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Abstract

Nonparametric estimation of nonlocal interaction kernels is crucial in various applications in-
volving interacting particle systems. The inference challenge, situated at the nexus of statistical
learning and inverse problems, comes from the nonlocal dependency. A central question is whether

the optimal minimax rate of convergence for this problem aligns with the rate of M —zh in classical
nonparametric regression, where M is the sample size and ( represents the smoothness exponent of
the radial kernel. Our study confirms this alignment for systems with a finite number of particles.

We introduce a tamed least squares estimator (tLSE) that attains the optimal convergence rate
for a broad class of exchangeable distributions. The tLSE bridges the smallest eigenvalue of random
matrices and Sobolev embedding. This estimator relies on nonasymptotic estimates for the left tail
probability of the smallest eigenvalue of the normal matrix. The lower minimax rate is derived using
the Fano-Tsybakov hypothesis testing method. Our findings reveal that provided the inverse problem
in the large sample limit satisfies a coercivity condition, the left tail probability does not alter the
bias-variance tradeoff, and the optimal minimax rate remains intact. Our tLSE method offers a
straightforward approach for establishing the optimal minimax rate for models with either local or
nonlocal dependency.

Keywords: Nonparametric regression; interacting particle systems; optimal minimax rate; tamed least
squares estimator; random matrices
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1 Introduction

Consider the nonparametric regression of the radial interaction kernel ¢ : R™ — R in the model

Y = Ry[X] + 1, (1.1)

from data consisting of samples {(X™,Y™)}M_, of the joint distribution of (X,Y’). Here Y and X are
RN*4_yalued random variables with N > 3, denoted by Y = (Y7,...,Yy)" and X = (X1,...,Xn)".
The operator Ry[X] = (Ry[X]1, -+, Ry[X]n)" represents the interaction between particles through
the kernel ¢, its entries are defined by

X; - X,

Ry[X]; o(1X; — Xj|)io—L, i=1,...N,. (1.2)
‘TN ; 1 Xi — X
where we write >}, ; = Z;V: 1j=i in short. The noise 7 in the model is independent of X and not

necessarily Gaussian.
Nonparametric regression is particularly suitable for estimating the kernel ¢, thanks to the linear
dependence of R4 on ¢. A regression estimator is the minimizer of an empirical mean-square loss function

over a hypothesis space that is adaptively chosen to avoid underfitting and overfitting.

The above nonparametric regression problem arises in the inference for systems of interacting par-
ticles or agents. Such systems are prevalent in collective dynamics in various fields, including flock-
ing [CS07, AH10, CDP18|, opinion dynamics [MT14], kinetic granular media [CMV03, CGMO07], to
name just a few. Driven by the applications, the past decade sees a burst of efforts on inferring
the system from data, including parametric [DMH23, MB22, LQ22|, semi-parametric [BPP23|, and
nonparametric [DMH22, YCY22, LZTM19, LMT21]| approaches. Given often limited prior knowledge
about the kernel in applications, a nonparametric approach is desirable. In particular, the studies
[LZTM19, LMT21, LMT22] consider nonparametric inference of radial interaction kernels for first-order
stochastic differential equations in the form

Y™ = Ry[X™] g (1.3)

2|H

dX(t) = Rg[X ()]dt + odB(t) , (1.4)

where X (t) = (X1(t),---,Xn(t)) represents the position of particles, Ry is same as in (1.2) and B(t) is
a standard Brownian motion in RV¢ with o > 0 representing the scale of the random noise. The least

squares estimator is demonstrated to exhibit a convergence rate of (102/[M) 2541 , where M is the number
of independent trajectories and 5 > 1 represents the Holder exponent of the true kernel. However, the
optimal minimax rate, namely the best convergence rate in the worst case, remains open.

This study aims to answer the optimal minimax rate question. We consider the simplified but generic
statistical model (1.1), which rules out the numerical error from the discretization of the differential

equations and the dependence between the components in trajectory data.



1.1 Main results

__2B_
This study establishes that the rate of M 25+1 is the optimal minimax rate of convergence under a
coercivity condition that ensures the well-posedness of the inverse problem in the large sample limit.
Informally, we establish the following minimax rate:

~ _ 2B
inf sup E[|¢r — ¢ul22] ~ M2, as M — oo,
bur pxEH(B) ’

where the infimum is among all estimators ggM inferred from data, and LIZJ is the space of square-
integrable functions under the weight p, which is the probability measure of pairwise distances. Here the
hypothesis space H () can be a Sobolev class W (3, L) or Holder class C(3, L) in Definitions 2.13-2.14).
Importantly, the rate also holds for the case 5 < 1/2, which contains discontinuous functions.

A major innovation of our study is a new approach to prove the upper minimax rate. We introduce
a tamed least square estimator (tLSE) in Definition 3.1 and show that it achieves the optimal rate with a
straightforward proof. The proof is based on non-asymptotic estimates of the left tail probability of the
smallest eigenvalue of the normal matrix; see Theorem 3.6 and the subsequent discussion on technical
innovations.

To affirm that the upper minimax rate is optimal, we prove in Theorem 4.1 that the rate is also the
lower minimax rate. We accomplish this by applying the Fano-Tsybakov method in [Tsy08|, which we
generalize to include the weight measure p. This involves careful construction of hypothesis functions
for hypothesis testing in Section 4.

1.2 Main difficulties and technical innovations

The optimal minimax rate is well-established for classical nonparametric estimation (see, e.g., [CS02b,
GKKWO06, Tsy08| and the reference therein). In this classical setting, one estimates the function ¢ :
R — R in the model Y = ¢(Z) + 1 from sample data {(Z™, Y™)}M_, where the data Y depends
on locally on a single value of ¢. A critical fact in this setting is that the conditional expectation
¢(z) = E[Y|Z = z] uniquely minimizes the large sample limit of the empirical squared loss, leading
to a well-posed inverse problem. Notable estimators achieving the minimax rate include the projection
estimator for deterministic Z data (see e.g., [Tsy08]), and the least squares estimator for random Z
using tools from the empirical process theory, which are based on covering arguments with the chaining
technique (see e.g., [VAV00| and [GKKWO06, Chapter 19]).

However, nonlocal dependance presents a new challenge in interaction kernel estimation. The nonlocal
dependence means that the operator R4[X| depends on the kernel ¢ non-locally through the weighted
sum of multiple values of ¢, similar to a convolution. Thus, this intersection of statistical learning and
deconvolution-type inverse problems raises significant hurdles in both well-posedness and constructing
estimators achieving the minimax rate.

To address these challenges, we show first that the inverse problem in the large sample limit is well-
posed for a large class of distributions of X satisfying Assumption 2.1. A key condition for well-posedness
is the coercivity condition studied in [LZTM19, LMT22, LLM*21, LL23|, and we examine it in Lemma
2.9. Due to this condition, a universal convergence rate for all distributions is not feasible. Importantly,
the coercivity condition also ensures that the nonlocal dependence does not affect the minimax rate, as
discussed after Lemma 3.3.

Our major technical innovation lies in developing the tamed least square estimator with straightfor-
ward proof. The tLSE is zero when the minimal eigenvalue of the normal matrix is below a threshold,
and it is the least squares estimator otherwise. That is,

Ol = > O ey, where (01, .., 00°) T = [AM]TIBY A, awate,y (1.5)
k=1



where the threshold ¢z is the coercivity constant in Definition 2.6. Here AM and b)Y are the normal
matrix and norm vector for the regression over the hypothesis space H,, = span{vy,}}_, with orthonormal
basis functions ;. Note that only in the set {Amin(AM) < Zcz}, the tLSE differs from the least squares
estimator (6%%¢,... 0%)T = [AM]'bM | where [AM]T denotes the Moore-Penrose inverse of AM. A
crucial observation in our proof is that the optimal minimax rate is attained if the probability of the

set {Amin(AM) < 71105} does not affect the bias-variance tradeoff. This leads to the study of the left

tail probability of Apin(AM) with the dimension n ~ M 28+1 chosen from the tradeoff, aiming for a
non-asymptotic bound exponentially decaying in M.

We establish two non-asymptotic estimates for the left tail probability of the smallest eigenvalue of
the normal matrix. Lemma 3.11 shows that with the coercivity condition alone and an application of
the Bernstein’s inequality for random matrices, we have

c1e2M

P { Amin(AM) < (1 —e)es} <2 —_
{Amin (A7) < (1 = €)ez} nexp( can? + c3e

) ,Ve e (0,1),

where c1, co, c3 are positive constants universal for €, n and M. This estimate enables a simple proof of
the minimax rate for the tLSE when the true function has a smoothness exponent 5 > 1/2. We also
extend the optimal rate to § < 1/2, under an additional assumption on the fourth moment of R4[X] in
Assumption 2.17. This extension relies on an improved bound for the left tail probability of the smallest
eigenvalue in Lemma 3.12:

1—¢
2

P{Amin(AnM) < cﬁ-} < exp (C4n—05z—:2M) ,Vee (0,1),
where ¢4, c5 are positive constants universal for n and M. The primary tool is the PAC-Bayes inequality
introduced in [Oli16, Mou22| to analyze the left tail of random matrices. We note that our fourth-moment
assumption on Ry[X] is an extension to the function space setting from a fourth-moment assumption
on covariance matrices in [Oli16, Mou22|. Notably, this assumption is supported by fractional Sobolev
embedding theorems when > 1/4, as elaborated in Remark 2.18. It remains open to study the case
B € (0,1/4), which we discuss in Section 3.4.

Table 1 summarizes these left tail probabilities and their applicable range of 8 in the minimax rate.

Table 1: The left tail probability bounds and applicable range of 5 in the minimax rate.

Left tail probability Method Assumptions Range of g
n exp (— c;gij\ie) Bernstein’s Ineq. Assum. 2.12 B>1/2

exp (C4n — 6562M) PAC-Bayes Ineq. Assum. 2.12 and 2.17 [ >1/4

1.3 Summary of the tLSE method

The tLSE offers a novel and efficient method for proving the minimax rate in nonparametric regression,
applicable to models with either local or nonlocal dependency. As long as the coercivity condition holds,
the proof is largely the same for both types of models. The process involves decomposing the L% error

of the estimator (En M in (1.5) into bias and variance components, and seeking a bias-variance tradeoff
in three steps:

e Variance Control: Control the variance term by the sum of a fast vanishing term 7 from the
well-conditioned parts of the tLSE, an exponentially decaying concentration term that arises
from the left tail probability for the smallest eigenvalue of the normal matrix and has the form
exp (an, — by M) with ay,, —by,, M — —oo for the optimal dimension {ns}, and an additional bias
term in cases of nonlocal dependence.



e Bias Control: Control the bias term by n~2? by considering functions in the Sobolev class W,(B,L).
1
e Optimal Dimension Selection: Select the dimension to be n &~ M 28+1 to get the optimal rate.

The tLSE method applies to both local and nonlocal models, and we summarize the bias-variance
tradeoff in Figure 1.

. . exp(en — M) or
Left Tail Probability exp(c, logn — c,n=2M)
Local model Error = Bias + Variance 1 2
on=%)

Sampling Error O(l)
Nonlocal model Error = Bias + Variance M

/O

Nonlocal Bias o(n=)

Figure 1: The bias-variance tradeoff in the tLSE approach for local and nonlocal models. Here a local
model is Y = ¢(X) +n with X,Y € R! in classical nonparametric regression; and nonlocal model refers
to Y = Ry[X]+nin (1.1) satisfying the coercivity condition. The left tail probability and the nonlocal
bias do not affect the bias-variance tradeoff that is dominated by the bias and the sampling error.

We note that there are many other methods of achieving the optimal minimax rates using more
delicate tools and assumptions. In particular, other LSEs must overcome a significant challenge in
achieving the optimal minimax rate. The LSE has to deal with the negative moments of the normal
matrices or, equivalently, the small ball probability of the smallest eigenvalue. It remains open to
establishing such a bound using the recent developments in [Mou22] on the negative moments of sample
covariance matrices. The regularized LSEs have to be defined with a delicate regularization and one has
to deal with the bias-variance tradeoff. Another commonly used approach based on empirical process
theory [CS02b, LMT21, LMT22] bounds the variance term uniformly on the function spaces via defect
function and covering techniques. This approach leads to a suboptimal rate with a logarithmic factor
due to a fixed cover. The chaining technique [Gee00, GKKW06] may remove the logarithmic factor with
additional effort. On the contrary, the tLSE straightforwardly achieves the optimal rate without using
any covering technique.

1.4 Summary of main contributions and insights

This study makes two key contributions:

1. Optimal rate of convergence for interaction kernel learning. We have established the optimal

__28
convergence rate M~ 25+1 for learning the interaction kernel in Model (1.1) with a wide range of
distributions. Moreover, this optimal rate applies to Sobolev classes with § < % This encompasses
widely used discontinuous functions such as piecewise constant functions.

2. Introduction of the Tamed Least Square Estimator (tLSE): The tLSE represents a new and efficient
method for proving the minimax rate in nonparametric regression. A key insight is that the
optimal minimax rate depends on whether the bias-variance tradeoff can remain unaffected by the
left tail probability of the smallest eigenvalue of the normal matrix. This revelation is crucial for
advancement in our understanding of nonparametric regression. It establishes a connection between
the minimax rate, the left tail probability of the smallest eigenvalue of the random normal matrix,
and fractional Sobolev embedding.

The insights gained from this study pave the way for future research on the minimax rate for non-
parametric regression regarding models with nonlocal dependence. The inverse problem in the large
sample limit plays a fundamental role. We’ve focused on scenarios where the inverse problem is well-

__28_
posed, finding that the optimal minimax rate M 28+ is consistent for regression with both local and



nonlocal dependencies. In contrast, when the inverse problem is ill-posed, i.e., with a zero coercivity

constant, the optimal rate, if it exists, is expected to be slower than M _22% since the current rate bears
a constant depending on the reciprocal of the coercivity constant. Thus, exploring the convergence rate
without the coercivity condition remains an open and intriguing area for further investigation.
Additionally, our study has centered on convergence in the sample size M while keeping the number
of particles N finite. An intriguing direction for future research lies in examining the convergence rate as
N increases. Given that the inverse problem in the limit of NV = oo becomes an ill-posed deconvolution,

__28_
we conjecture that the convergence rate will be slower than N~ 28+1 and may depend on the spectrum
of the normal operator.

1.5 Related work

Minimax rate for nonparametric regression. The study of the minimax rate in nonparametric
regression is a well-established and extensively explored topic within inference and learning. Due to
the vastness of the literature, we direct readers to [GKKWO06, Tsy08, CS02b, NR19], among others,
for comprehensive reviews. For lower minimax rates, this study utilizes the Fano-Tsybakov hypothesis
testing method [Tsy08|, and the van Trees method [GL95] is a viable alternative.

For the upper minimax rate, notable estimators achieving the optimal rate without the logarithmic
term include the projection estimator for deterministic input data (see, e.g., [Tsy08]), and the least
squares estimator whose rate is proved by using the empirical process theory with covering arguments
and chaining technique (see, e.g., [VAV00] and [GKKWO06, Chapter 19]). Additionally, we note that
the empirical process theory with a covering argument is widely used, and it applies to the interaction
kernel estimation (see, e.g., [LZTM19, LMT22, LMT21|). However, it leads to a sub-optimal rate with
a logarithmic factor when using a fixed cover. The chaining technique may remove the logarithmic
factor by constructing a sequence of covers and additional assumptions, but the nonlocal dependence
will further complicate the proof. Our tamed least square estimator (tLSE) stands out for its simplicity
and broad applicability to nonparametric regression problems with either local or nonlocal dependencies.

Inference for systems of interacting particles. A large amount of literature has been devoted
to the inference for systems of interacting particles, and we can only sample a few here. Parametric
inference has been studied in [DMH23, SKPP21, AHPP23, LQ22, Kas90, Che21] for the drift and in
[HLL19] for the diffusion. Nonparametric inference on estimating the drift Ry, but not the kernel ¢, has
been studied in [YCY22, DMH22|. The semi-parametric inference in [BPP23| estimates the interaction
kernel. All these studies consider the case when N — oo from a single long trajectory of the system.
Inference of the mean-field equations has also been studied in [MB22, MTB22, LL22, DMH22|. The
closest to this study are [LZTM19, LMT21, LMT22|, where the rate for learning the interaction kernels

__28
from multiple trajectories is (IOgLM) 26+1 is suboptimal due to the use of supremum norm in the covering
number argument. Building on these results, our study achieves the optimal rate in a simplified static

model (1.1), advancing the understanding of the inference problem.

Nonparametric deconvolution. Nonlocal dependence is a key feature in nonparametric deconvolu-
tion, particularly in estimating probability densities as studied in [Fan91, Mei09], among others. In such
contexts, the underlying inverse problem in the large sample limit typically manifests as an ill-posed

deconvolution challenge. The established optimal rate for these scenarios is M _Z’BfTBaH, where « is
the decay rate of the Fourier transform’s derivative of the convolution kernel. In contrast, our study
navigates a well-posed inverse problem made possible through the coercivity condition, differentiating it
from the typical deconvolution framework.

Linear regression for parametric inference and random matrices. The normal matrix Ay
in our study resembles the sample covariance matrix % ZT]‘,/{:l (™) in linear regression y ~ 0'x
from samples {(z",y")} of a distribution on R™ x R. Therefore, the analysis of this normal matrix can
draw parallels from the study of sample covariance matrices with independent columns or entries, as



explored in [Mou22, KM15, MWY23, LTV21, MP14, Tik18, Ver18, Wail9, Yas15|. With notation ®™ =
(Rypy [X™], ..., Ry, [X™]) € RN™ = for each sample X™, our least squares estimator can be analogized
to a linear regression estimator for Y ~ 7@ with a normal matrix AM = 1o M [gm])Tem =
Yy Zm SN 1[<I>m]T<I>m Because of the dependence between {'IJm}Z 1> AM can not be viewed as
an example of a sample covariance matrix with independent columns or entries. It’s worth noting
that there is ongoing interest in the study of sample covariance matrix with dependence, see, e.g.,
[BVZ21, MM22, Oli16, SN19, Ver20]. Compared to these studies, the random matrices in nonparametric
regression are the normal matrices depending on the basis functions. Notably, we extend the fourth-
moment condition for the PAC-Bayesian method in [Olil6] to a function space setting and find an
intriguing connection with fraction Sobolev embedding.

Notations. Throughout the paper, we use C to denote universal constants independent of the sample
size M and the dimension n. The notation in Cz denotes a constant depending on the subscript. We
use Eg, to denote the expectation w.r.t. the joint distribution of (X,Y’) in Model (1.1) where Y depends
on both X, n and the true interaction kernel ¢,. We omit the dependence on <b*, ie., E = Eg,, if the
random variable only relies on (X, 7). We denote L2 norm by | f[? 19 = =(|f(r r)dr and the supermom

norm by | f|w. Table 2 summarizes the main notations.

Table 2: Notations

Notations Description
M, N Sample size and number of particles
p Exploration measure of pairwise distances in Definition 2.3
L, cq The normal operator in (2.2) and its coercivity constant in Lemma 2.9

W,(B,L), C(B,L) Sobolev and Holder classes in Definitions 2.13-2.14
H = span{d)k} r—, Hypothesis space spanned by basis functions
AM pM Normal matrix and normal vector in (3.2)

The rest of the paper is organized as follows. We study the inverse problem in the large sample limit
in Section 2. In the process, we introduce assumptions and function spaces. Section 3 introduces the
tLSE and proves that the tLSE achieves the optimal rate, establishing an upper minimax rate. Section
4 proves the lower minimax rate via the hypothesis testing scheme. We present the technical proofs in
the Appendix.

2 Settings and inverse problem in large sample limit

At the foundation of inference is the well-posedness of the inverse problem in the large sample limit.
This section builds the foundation by imposing constraints on the distributions of X and the noise in
Section 2.1, setting a weighted function space in Section 2.2, and showing that the inverse problem is
well-posed (see Section 2.3). As last, Section 2.4 introduces the Sobolev and Holder classes.

2.1 Assumptions on distributions

Recall that the data {(X™,Y™)}M_, are i.i.d. samples of (X,Y’) satisfying the model in (1.1). The joint
distribution depends on the dlstrlbutlons of X, the noise 7, and the interaction kernel ¢. We make the
subsequent assumptions on the distributions of X and 7. Recall that a random vector X = (X,..., Xxn)
has an exchangeable distribution if the joint distributions of {X;},ez and {X;},ez, are identical, where
Zc{l,...,N} and Z, is a permutation of Z.

Assumption 2.1 (Distribution of X) We assume the entries of the ([0, 1]1)®N -valued random vari-
able X = (X1,...,XnN) satisfy the following conditions:



(A1) The random vector X = (Xy,...,Xn) has an exchangeable distribution.

(A2) For each pair {X; — X;,X; — Xy} with j # j' and j,j" # i, there exists a o-algebra X; such that
the pair are conditionally independent.

(A3) For each pair {X; — X;, X; — Xy} with j # j' and j,j' # i, it has a continuous joint probability
density function.

Here, Assumptions (A1)—(A3) are mild conditions to simplify the inverse problem of estimating
the kernel ¢, and weaker constraints may replace them with more careful arguments as in [LMT22,
LLM™"21]. The exchangeability in (A1) simplifies the exploration measure in Lemma 2.4. The conditional
independence in (A2), together with the exchangeability, enables the coercivity condition for the inverse
problem to be well-posed, as detailed in Lemma 2.9. The continuity in Assumption (A3) ensures that
the exploration measure has a continuous density, which is used in proving the lower bound minimax
rate in Section 4.

A sufficient condition for Assumptions (A1)-(A2) is that (Xi,...,Xx) are conditionally i.i.d. in
the sense that there exists a o-algebra X' such that {X;}¥, are i.i.d. igven X. The exchangeability
follows from the fact that P{(, X; € A} = E[[ [, E[Lix,eny | X1 = E[[ T, Bl1(x, eny | X1 =
P{ﬂfil Xy € Ai} for any permutation 7. Also, the random variables X; — X; and X; — X are
conditionally independent given X; and X. We note that exchangeability has a long history in probability,
statistics, and interacting particle systems. For example, [DF29, DF80, Hof09, Kal05, LN81, LMT22]
and references therein. Random variables in an exchangeable infinite sequence are conditional i.i.d. by
the well-known De Finetti theorem (e.g., [Kal05, Theorem 1.1]).

Examples of X = (Xi,...,Xx) satisfying (A1)-(A3) are prevalent in applications. A convenient
example is X with i.i.d. components. In particular, when X has i.i.d. components being uniformly
distributed on [0, 1], we can compute the joint distribution explicitly further to analyze the inverse
problem in the large sample limit as explained in Remark 2.10; see Section A.1.

More importantly, consider the interacting particle system (1.4) represented in the discrete form
using the Euler-Maruyama scheme for the stochastic differential equation. Specifically, when X is the
random vector X (tx41) in

X(tre1) = X(tr) + Ro[ X (te)| At + o AW (t1)

with At = tgy1 —te, AW (tg) = W(tr+1) — W(tr) and X (¢;) has an exchangeable distribution. Assump-
tion (A1) is fulfilled since X (tx+1) = (X1(tg+1),- -+, Xn(tg+1)) forms an exchangeable random vector.
Additionally, given X; = o{X (tx), Wi(tx+1)}, the pairs Xj(tk+1) — Xi(tg+1) and Xj/(tk+1) — Xi(tgs1)
are independent, satisfying Assumption (A2). Clearly, Assumption (A3) also holds within this context.

Assumption 2.2 (Distribution of noise.) The noisen is independent of the random array X. More-
over, we assume the following conditions:

(B1) The entries of the noise vector n = (n1,...,mn) are i.i.d. centered with finite variance 0727 and a
bounded fourth-moment.

(B2) The density p, of n satisfy that 3 ¢, > 0:

pn(u) 2 Nd
log —1——du < , VWVE R4,
f Ny pn(u) g n( U) U CT)HUH v

The fourth-moment assumption (B1) on the noise is mild. The density assumption (B2) on the noise
is also the commonly-used one in nonparametric learning (see e.g., [Tsy08, page 91|). For example, when
n ~ N(O,a?]ld)®N, the equality holds with ¢, = Nd/(QO‘%). But let us remark that the noise can be
non-Gaussian. The fourth-moment assumption on the noise is for convenience and may be removed.
We note that our minimax lower bound in Theorem 4.1 requires only Assumption (B2), whereas our
matching minimax upper bound in Theorem 3.5 requires only Assumption (B1) which is more relaxed.



2.2 Exploration measure

The first step in the regression is to set a function space of learning. We set the default function space
of learning to be L,% by defining measure p quantifying the exploration of the interaction kernel by the
data. The exploration measure is the counterpart of the probability measure of the independent variable
in classical statistical learning.

Definition 2.3 (Exploration measure) The exploration measure p of the independent variable of the
interaction kernel in (1.2) is the large sample limit of the empirical measure py; of the data {X™}M_,

N
. 1
p(A) = lim () = i,jzzl,]#jmxz — Xl € 4), (2.1)

1

where A < RT is any Lebesque measurable set and pp(A) = TNN=T) Dme1 Z%’:l,i;&j 1(|Xim_X;n|€A).

Lemma 2.4 (Exploration measure under exchangeability) Under Assumption 2.1, the measure
p is the distribution of | X1 — Xo| and has a continuous density.

Proof. The exchangeability in Assumption (A1) implies that the distributions of X; — X; and X; — X»
are the same for any 7 # j. Hence, by definition the exploration measure is the distribution of the
random variable | X; — Xo|:

p(A) = P(|X1 — Xo| € A)
It has a continuous density by Assumption (A3). m
2.3 Inverse problem in the large sample limit

We show that the inference via minimizing the loss function in the large sample limit is a deterministic
inverse problem. Importantly, the inverse problem is well-posed under Assumption 2.1.

Definition 2.5 (Normal Operator) For Model (1.2), the normal operator L : Lﬁ — Lf) 18

N
(Lot =y LECRIXL RulXIel, Vo0 e 1 22)

Definition 2.6 (Coercivity condition) A self-adjoint linear operator L : Lf) — Lg s coercive on LIZ)
with a constant ¢z > 0 if

(Lo, $yrz > %H¢HL27 Vo e L.
In other words, B[|Ry[X][2v4] = Nc,:Hd)HL?) for all g€ L2.

Remark 2.7 (Coercivity condition on a hypothesis space.) It is of practical and theoretical in-
terest to define the coercivity condition on a subset of Lf,, particularly when the normal operator is not
coercive on L2 Specifically, we say that L satisfies a coercivity condition in a hypothesis space H with
a constant cy > 0 if (Lo, ¢>L2 > CHchH%g for all ¢ € H. We refer to [LLM*21, LZTM19, LMT21,

LMT22, LL23| for more discussions.

Proposition 2.8 (Inverse problem in the large sample limit) Under Assumption 2.1, the large
sample limit of the empirical mean square loss function Epr(@) in (1.3) is

£2(6) = E[%IY - Ry[X ]lfw] = (L6013 — ALbs, O)p3 + 02

Moreover, the expected loss function Ex (@) is uniformly convex in leJ if and only if L is coercive; and
the true function ¢, is the unique minimizer when L is coercive.



Proof. Recall that Y = Ry, [X] + n and 7 is centered. Then by the definition of £, we have

1 1
Ey, [NHY — Rl X] Hﬁw} = FEURsIX]Iva + (Ro[X], Ro, [XDna + Inlfaa]
= (L¢, )z — 2L, Pz + opd.

The Hessian of &, is V2, = 2L, where V2 denotes the second-order Fréchet derivative in Lf,.
Hence, the loss function is uniformly convex if and only if £ is coercive. Additionally, the minimizer of
Eyp is a solution to 0 = VEx(¢) = 2L¢p — 2Lps. Thus, if L is coercive, the unique minimizer is ¢,. m

Proposition 2.8 implies that the inverse problem of minimizing the loss function is well-posed if and
only if £ is coercive. The next lemma shows that £ is coercive with a constant ¢ ;= % For simplicity,

we denote
_ X — X X — Xj

rii = |Xi — X;|, 1y = - . (2.3)
! ! ! Tij [ Xi — X
We define a operator Lq : L% — L% to be
(Lad, ¥yrz = E[o(ri12)Y(ri3)(riz, r1s)]. (2.4)

Lemma 2.9 (Properties of the normal operator) Under Assumptions (A1)~(A2), the operator L
in Definition 2.5 is self-adjoint and has a decomposition
- (N=1)(N-2) N -1

L= N2 La + N2 1, (2.5)

where the operator Lg in (2.4) is positive. Hence, L is coercive with a coercivity constant

N -1

Also, under Assumptions (A1)—(A2), we have
1£],, = sup {Lo¢y<1. (2.7)
Il 2 =1

Proof. Note by Assumption (A1), the components of X are exchangeable, r;; and r;; are independent
conditional on a o-albegra &; for any i = 1,---,N. By exchangeability, E[¢(ri;)¢(rij){rij,rij )] =
E[¢(r12)$(r13)(r12,113)] for all j # j" and E[|¢(rij)rij|?] = E[|¢(r12)r12|*] = E[|¢(r12)[?] for all i # j.
By the conditionally independence Assumption (A2), we have

E[¢p(r12)#(r13)(r12, r13)|X1] = (E[@(r12)r12|X1], E[d(r13)r13]X1])
and E[¢(7’12)I‘12|X1] = E[¢(T13)I‘13|X1] by exchangeability. Hence,

E[¢(r12)d(r13)(r12, r13)] = E[E[d(r12)$(r13){r12, T13)|X1]]
E[(E[¢(ri2)ri2|X1], E[¢(r13)ri3|X1])]

E[|E[¢(ri2)r12|%1]]%] > 0.

This means {(Lg¢, ¢y = 0 for any ¢. In other words, L is positive.

10



Moreover, the decomposition (2.5) follows from

N
(L6, 8)13 =3 ELRX], RolX Dol = 53 2, D) D) E[6(7ig) i )rig, v

i=1j#i j'#i

ZWE[(b(TH)Z] + <N — 1]2[(2]\[ — 2)]E[¢(7”12)¢(7"13)<I'12,I‘13>]

Thus, £ is coercive with the constant in (2.6) because L is positive. Additionally, the second equation
above also implies (2.7). m

N -1

Remark 2.10 (Sharp coercivity constant) The lower bound for the coercivity constant in (2.6) is
sharp. It is achieved when the operator Lg is compact, which is true under relatively weak constraints
on X by noticing that it is an integral operator (see e.g.,|[LZTM19, LLM*21, LMT22|). For example,
L is a compact integral operator when X is uniformly distributed on [0,1]3 illustrated in Section A.1.

Hence, the coercivity constant defined in (2.6) is ¢z = ]\][V_21'

Remark 2.11 (Differences from classical nonparametric estimation.) A key distinction between
the nonparametric estimation of the function ¢ in the classical model represented as' Y = ¢(X) +n, and
our model, Y = Ry[X] + n, lies in the nature of the normal operator in the large sample limit. For
the classical model, the normal operator is the identity operator (which follows by replacing the model in
Definition 2.5), and the inverse problem in the large sample limit is always well-posed. Conversely, in
our model, the normal operator may lack coercivity. This difference stems from the nonlocal dependence
of Ry on ¢, where Ry[X] depends on a convolution of multiple values of ¢. Although Assumption (A2)
guarantees the coercivity of the normal operator, this nonlocal dependence introduces an additional bias
term in the analysis of the least squares estimator, and we control this bias by relying on the coercivity
condition, see (3.6) in Lemma 3.3.

2.4 Sobolev class and Holder class

The function classes play a crucial role in nonparametric regression as they quantify the smoothness of
the functions. In this section, we recall the definitions of the Sobolev and Héder classes and introduce
two key assumptions on the functions.

Throughout this study, we consider a set of orthonormal basis functions of L%([O, 1]), denoted by

{Yr}7_,. Furthermore, we impose a uniform bound condition on the basis {1, };°_; to streamline the anal-
2sin(2knz)

ysis. For example, such basis functions can be the weighted trigonometric functions ¢y (z) = o
p(z

when p is bounded below by a positive constant.

Assumption 2.12 (Uniformly bounded basis functions) The orthonormal basis functions {1} are
complete and uniformly bounded with Cpax = supgs1 Yk < 0.

The following Sobolev class is a conventional function class (see e.g., [Tsy08, Defintion 1.12]) for
controlling the bias in the bias-variance tradeoff in the proof of the upper minimax rate.

Definition 2.13 (Sobolev class) Let {1x};° be a complete orthonormal basis of L([0,1]). For 3 >0
and L > 0, define the Sobolev class W, (3, L) L% as

W,(B,L) = {¢ = ) ke e L2([0,1]) : B € @(B,L)},

k=1

11



where ©(83, L) is the £?-ellipsoid

O(8,L) := {9 = (0p)32, € % i k267 < L} . (2.8)

k=1

The Holder class is also widely used in nonparametric regression (see e.g.,[Tsy08, page 5]), particularly
in the proof of the lower minimax rate (see in Section 4).

Definition 2.14 (Hoélder class) For 3,L > 0, the Hélder class C(B3, L) on [0, 1] is the set

e(8.L) = {£:1/) - FOW) < Ll — P~ ¥y e 0,11}, (2.9
where fO denotes the | = ||-th order derivative of functions f : [0,1] — R.

Remark 2.15 The weighted Sobolev class W,(3,L) contains the Holder class C(B,L) when B is an
integer and when the basis functions are the weighted trigonometric functions. In fact, first note that by
definition, the Hélder class is a subset of the conventional Sobolev class defined as

1
Wf(L) = {f € L%([O, 1)) : £V is absolutely continuous and L 17O (2)p(dz) < L2}, (2.10)

since p’s density is continuous on [0,1] by Lemma 2.4. Next, the weighted Sobolev class W,(/3,L) is

equivalent to Wpﬁ(L) by the proof for |[Tsy08, Proposition 1.14]. Combining these two facts, we obtain
that C(B8,L) < W,(B, L).

The Sobolev class W, (3, L) quantifies the “smoothness” of a function in terms of its coefficient decay,
as the next lemma shows.

Lemma 2.16 Let ¢ = > . | Ok € W, (B, L). Then ZZO:”H 0|2 < Ln=28 for alln = 1. In particular,
16% < L and supy, |0]* < L.

Proof. It follows directly from the definition of the Sobolev class that

0 0
Z |9k|2 < 77,_2’8 Z k‘2ﬁ|9k|2 < L?’L—2’8 .
k=n+1 k=n+1

The last two statements also follow directly from the definition. m

Next, we introduce a key assumption, namely the fourth-moment condition, for establishing the upper
minimax rate when 8 < 1/2. Specifically, it is used in the application of the PAC-Bayesian inequality
in Lemma A.5 to quantify the left tail probability of the smallest eigenvalue of the normal matrix when
B < 1/2, see Lemma 3.12. It is an extension of the fourth-moment condition on the distribution of the
input random vector in [Olil6, Eq.(3)] and [Mou22, Assumption 3| for linear regression for parameter
regression. Our innovation is to confine the condition to the functional space, which is important
for nonparametric regression. Interestingly, a natural connection emerges between our fourth-moment
condition and the fractional Sobolev embedding theorems such as [BCD11, Theorem 1.38, Theorem 1.66]
and [DNPV12, Theorem 6.7, Theorem 6.10].

Assumption 2.17 (Fourth-moment condition) Assume there exists a constant k > 0 such that

E[|R,[X]|IA
sup [l 7ol ]”2RM] < K < 0. (2.11)

96w, (80,16l 3 =1 (B[R [X]lgal)? b
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The fourth-moment condition is closely connected to fractional Sobolev embedding, as we shall
discuss in Remark 2.18. Note that by the exchangeability, we have

N
E [|Rs[X]gna] =N’E[|Rg[X]1lga] = N*E [l% > ¢(7‘1j)1"1j||ﬁ§d]
=2

N
<N Y E[[é(ry)'] < N*(N = DE[|é(r12)|'] = N* [] 20,1
j=2
Together with the coercivity condition E[|Rg[X]|Zna] = Nez|o[72, we have
)

E[Hqu[ ]H?RNd] 2 4
sup <c; sup |74 :
9eW, (8.1), 0l 3 =1 (B[ B[ X Iz ~al)? 6eW,(8.0),61] ,3=1 Fall01]

Thus, a sufficient condition for (2.11) is

4
sup ||¢||Lg([071]) < KeE (2.12)
¢EWP(/87L)7”¢”L%=1

In other words, the L* norm is controlled by the L? norm and the W,(5, L) bound, similar to the Sobolev
embedding.

Remark 2.18 (Connection with Sobolev Embedding) The fourth-moment condition holds when
B = 1/4 by fractional Sobolev embedding theorems, provided that p has a probability density bounded
from below and above by positive constants. Specifically, following the definition of classical fractional
Sobolev space (see, e.g., [DNPV12]), we can define (weighted) fractional Sobolev space WPB = W,,B’Q([O, 1])
as follows

Wp = {1 € L2(10,1]) : | flyp = I lpz + [y < o} (2.13)

1

where the term [f] ;5 1= <So é %p(d;{:)p(dyD % isa weighted semi-norm inspired by the so-called
P

Gagliardo (semi)norm of f. When 0 < ¢ < p/(z) < C < o0, it is clear that the weighted Sobolev norm
and weighted Gagliardo (semi)norm are equivalent to the unweighted ones. Namely,

1 1 ) — 2 %
Ul ~ e = ([ [ 2 S way)

0

[ Flve ~ 1 lws = 1£1 22 + [Flwe

Then by [DNPV12, Theorem 6.7], we have for any f € Wf with B < % and any q € [1, 2]

' 128
||f||Lg([o,1]) < ([0,1]) * (2.14)
for a constant Cgq > 0. When B = 35, by [DNPV12, Theorem 6.10], we have (2.14) holds for any
€ [1,00). Thus, applying these embeddmg inequalities with q =4 to bound H(bHL‘l([O,l as in (2.12) by

D
H¢HW;,B([0,1])’ we obtain k = C 5.4C7 2(L + 1)*, provided that 1—2,3 > 4, equivalently, B > 1.
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3 Upper bound minimax rate

In this section, we establish an upper minimax rate of M 3 by introducing the tamed least squares
estimator (tLSE), as detailed in Theorem 3.6. The tLSE not only achieves this rate efficiently but also
allows for a relatively simple proof. Its efficacy extends beyond the scope of this study, rendering the
tLSE a valuable tool in proving upper minimax rates for general nonparametric regression, as discussed
in Section 1.3.

3.1 A tamed least squares estimator

Given data {(X™,Y™)}M_, we consider an estimator that minimizes the loss function of the empirical
mean square error in (1.3) over a hypothesis space H,, = span{yy}}_,. Since Ry is linear in ¢, the loss
function is quadratic in ¢, and one can solve the minimizer by least squares.

We introduce the forthcoming tamed least squares estimator.

Definition 3.1 (Tamed least squares estimator (tLASE)) The tamed least squares estimator in H,,
span{yy}i_, is ¢nM D 19k¢k with OnM (01,... 0,)" solved by

A - 0 if Amin(AM) < Leg
_ My—1yv. M B o ’ min n 1 Cr s
en,M = [An ] bn l{Amin(A%)>i05} - {[A%]_IB%, Zf/\mm( 24) < % . (31)
where AM and bM are the normal matrix and normal vector, respectivly
AV (kD) = Z Ry [X™), Ry [ X Dgva (3.20)
Z Ry [X™], Y™ )pna, (3.2b)

and the constant ¢z is the coercivity constant in (2.6).

The threshold in (3.1), denoted as fcz, can be eased to 15¢c; for any e € (0,1), as demonstrated in
Lemma 3.12.
We emphasize that the tLSE is not the widely used least squares estimator (LSE):

0125, = [AM]TBM (3.3)

where AT of a matrix A denotes its Moore-Penrose inverse satisfying ATA = AAT = rank(A)- The tLSE
differs from the LSE in the random set {Apin(AM) < icz}: in this set, the tLSE simply is zero while the
LSE retrieves informatino from data by pseudo-inverse. The probability of this set decays exponentially
as M increases (see Section 3.3), making the tLSE and LSE the same with a high probability. However,
this probability is non-negalibile, as we show in Remark 3.2 below that the normal matrix may be
singular with a positive probability.

Remark 3.2 (Positive probability of a singular normal matrix) We construct an ezample show-

ing the normal matrix Aﬁ/[ can be singular with a positive probability. Consider N = 3 and X1, X2, X3 i

U([0,1]) as follows. We have r12 = |X1 — Xa| ~ p(r) = 2(1 — 7)o 1(r) and R¢[ ] = 2¢(\X1 —
X2|)|X1 — + 30( X1 — Xs|) ¥ =iy Let o(r) = 21p1)19(r). Note that ||¢||2 = §, lo(r)[2p(r)dr =
51/24 - 2(1 —r)dr = 1. Thus, if ¢ is one of the basis functions in the deﬁntzon of AM we have
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Amin(AM) < ke S| Rg[X™] |2 xa. As a result,

(

M
For any N, we can show similarly that IP’{/\mm = 0} ( { £11{Xi e [0, 1/8]}}) > SNL )

P{Amin(AY) = 0} =P % [Rs[X™]|2 = 0} > (P{| Ry[X]|* = 0})"

M 3 M
o(1X; - X|>|—0}}) ><P{H{Xie[o,1/8]}}> > g7

i=1

M«il

A major advantage of the tLSE over the LSE is its appealing effectiveness in proving the minimax
rate. The main challenge in proving the convergence rate for the LSE is to control the variance term
E[\]éffﬁw — 0*|?] uniformly in n, where 8* denotes the true parameter. Since the LSE uses the pseudo-
inversé, one has to study the negative moments of the normal matrices. However, as Remark 3.2
shows, the normal matrix can be singular with a positive probability; hence the negative moments
are unbounded. Thus, one has to either study additional conditions for the negative moments to be
uniformly bounded for all n, or properly study regularized least squares [GKKWO06, Tsy08].

In contrast, the tLSE achieves the minimax rate with a notably simpler proof, requiring only the co-
ercivity condition. The key component is that the left tail probability of {)\mm(AM ) < 4CL} is neghglble
in the bias-variance tradeoff, which is realized by the ‘tamed’ variance term ]E[Hﬂn M (AM)<r — 0*|?].

The forthcoming lemma shows that in the large sample limit, the normal matrix is 1nvert1ble Then,
the tLSE is the same as the LSE, and it recovers the projection of the true function in the hypothesis
space with a controlled error.

Lemma 3.3 Under Assumption 2.1 and Assumption (B1), and assume that the basis functions {1y} are
orthonormal and complete in L%,. Let ¢, = 1 05 be the true kernel. Then, for each 1 < k,l <n,
the limits AL (k,1) = limps_ o0 AM (k1) and b;‘f(k) = limps oo M (k) exist and satisfy

A7 (k1) = B Ry, [X], By [XDwa] = Looidss, 1< ki<n: (3.4)
1

by (k) = v BBy [X], Y )pova] = Lok, $uprz, 1<k<n, (3.4D)

and the smallest eigenvalue of AL satisfies Amin(AL) = cz > 0. Importantly,

0;: = ( T?eéka U ’GZ)T = [A;‘LO]_IB;? - [A%}]_lg;‘fa (35)

where IN)OO( k) = <£Q,[)k,¢* n>L2 for 1 < k < n with gb* ' Z?inﬂ 0/, and

0
165 — [AZ] "B R < 2 D, (67)* (3.6)
l=n+1

Proof. The existence of the limits follows from the law of large numbers under Assumption 2.1. The
equations in (3.4) follow directly from the definitions of the operator and Y = Ry, [X] + 7.

To show the bound for the smallest eigenvalue of the expected normal matrix, note that for any
0 = (01,...,0,) € R", Eq.(3.4a) and Lemma 2.9 implies that

0TAYO = Z 00K Lopr, iz = <£Zek¢k,291¢l>m czl Z%%H%g-
B

k=1
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Also, Eq.(3.5) follows from the fact that for any k =1,--- ,n

= (L, (Q+ X3 0012 = [ALOR] (k) + Lok, by )12
=1 I=n+1

= [A76;1(k) + b7 (k).
We proceed to prove Eq.(3.6). Since L is self-adjoint, by Parseval’s identity and definition of operator
norm, we have that

0

1B B = D [<¥ks L3 0012 Z Ktk Loz = L¢3,
k=1

Hence, applying [[AL] 7?2 = Amin(A®) 72 < ¢

52, contraction inequality (2.7) and qujnH%% = > i 10512,

we obtain "
A 001—13 0012 A 071112130012 =2 A2 4L |2 -2 2
ILAZT D7 IR < AT PIDY IR < FPIL1p N 0nnle < 22 ) 16717
l=n+1
Then, the inequality (3.6) follows by combining the above inequality with Eq.(3.5). m
The extra bias term [A%]~!'b%, controlled by (3.6), underscores a key distinction between the
classical local model and our nonlocal model in nonparametric regression. It is absent in the classical
nonparametric estimation, where the normal matrix is the identity matrix and the normal vector is
the projection 8*, since the normal operator is the identity operator. Therefore, this extra term is
directly attributable to the nonlocal dependence and we call it nonlocal bias. It leads to an extra
term in the variance in the bias-variance tradeoff, as we will show in Lemma 3.9. Importantly, the
coercivity condition plays a pivotal role in controlling this term by the bias of the hypothesis space
M, = span{yy}i_y, i.e., infyeyy, |ds — ng%% = 22,11 16F 2. Thus, as long as the coercivity condition
holds, the nonlocal dependence does not affect the minimax rate resulted from the bias-variance tradeoftf.

Remark 3.4 The tLSE also differs from commonly used reqularized estimators in practice: the reg-
ularized LSE by truncated SVD or Tikhonov regularization (see e.g., [Han87, LLA22, CS02al), or the
truncated LSE that uses a cutoff to make estimator bounded. These three estimators retrieve information
from data by tackling the challenge from an ill-conditioned or even singular normal matriz. In contrast,
the tLSE is zero when the normal matriz has an eigenvalue smaller than the threshold, abandoning the
estimation task without extracting information in data. Thus, the tLSE is not an option in practice since
the normal matrixz often has a small eigenvalue with a non-negligible probability when the data size is
relatively small. However, the tLSE has a significant theoretical advantage over these practical estima-
tors: it achieves the optimal minimax rate based on the coercivity condition alone, while these practical
LSFEs have to deal with the negative moments of the small eigenvalues of the normal matriz.

3.2 Upper bound minimax rate

Our main result is the forthcoming theorem, which shows that the tamed LSE estimator achieves the
minimax convergence rate when the dimension of the hypothesis space is properly selected.

Theorem 3.5 (Upper bound minimax rate) Suppose Assumption 2.1, and Assumption (B1) on the
model and Assumption 2.12 on the basis functions hold. If B > % then

23 A~
limsupinf sup  Eg, [MW [ — s ||%2] < Cuypper (3.7)
M—w ¢ ¢xeW,(B,L) g

where Cypper > 0 s a constant. Moreover, if Assumption 2.17 is also satisfied with i <p < % then the
upper bound (3.7) holds for > %
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The upper bound minimax rate follows immediately from Proposition 3.6, which shows that the
tamed LSE ¢,,,, ar achieves the rate, since

28~
limsupinf sup [Eg, [M25+1 H¢ ¢*HL2] <limsup  sup  Ey, [M25+1|dp,, m — ¢*H2L2]
M—w0 ¢ ¢xeW,(B,L) M—w0 ¢reW,(8,L) ?
Thus, we focus on proving Proposition 3.6 in this section.

Proposition 3.6 (Convergence rate for tLSE) Suppose Assumptions 2.1 and Assumption (B1) on

the model and Assumption 2.12 on the basis functions hold. Then, the tLSE in (3.1) with ny =
28(Lc%+2)

1 _ 28
I ( Coct M)?3%1 | converges at the rate M~ ?3+1 for any B> %, i.e.,

28~ _ o9 28
limsup  sup o, [M#7 |Gy, 01 — 60l | < Cupper = 2C5,0(Cocg?) 577 . (3.8)
M—w ¢eW,(B,L) g

Furthermore, the rate holds for all 5 = i provided that Assumption 2.17 is also satisfied with i < B < %

N-1

The constants in the theorem are as follows: ¢z > is the coercivity constant defined in (2.6),

N2
*1 .
Cg’L 2'8+1 [25([1 + 20 )] 28+1, (Cp = QloﬁcéaxL(icémlezN2 Cn + 1) with Crax = SUPg>1 Hwkuoo, and

L
Cupper = 2CB,L(COC£— )BT

28
Remark 3.7 (Optimality of the rate) The rate M 25+1 in Theorem 3.6 is optimal because it aligns
with the rate in the lower bound that will be presented in Theorem 4.1. It improves the suboptimal rate

[M/log(M)]" 24T in [LZTM19, LMT21, LMT22].

Remark 3.8 (Necessity of § < 1/2 and Sobolev embedding in Hélder space) The case f < 1/2
holds practical significance, particularly because the weighted Sobolev class W, (B, L) can contain discon-
tinuous interaction functions. This includes piecewise constants, which are commonly observed in ap-
plications like opinion dynamics in (see, e.g.,[MT14]). On the other hand, when B > 1/2, the functions
in W,(B, L) are typically continuous when the density of p is both lower-bounded away from zero and
upper-bounded. This follows from the fact that W,(53, L) ~ Wpﬂ ~ WP as discussed in Remark 2.18 and

the Sobelev embedding that WP embeds continuously in Cﬁ_%, see e.g., [BCD11, Theorem 1.50, Theo-
rem 1.66] and [DNPV12, Theorem 8.2|. Therefore, to cover discontinuous functions, it is necessary to
consider the case f < 1/2.

Proof of Proposition 3.6. The proof follows the standard technique of bias-variance tradeoff, except
an extra term bounding the probability of the set where the tLSE is zero. The bound follows from the
left tail probability P {Amin(AA) < ez} < Greg(n, M), which we establish in Lemma 3.9. The term
Gr,c;(n, M) enjoys an exponential decay since it comes from the concentration inequality of the smallest
eigenvalue of the normal matrix.

Let ¢y = D01 051k and 0 = (6F,...,07%). We start from the bias-variance decomposition:
o0
f 2 0 2 2
Eo,[lénar — dulZ2] = Eo, [18nar — 05171+ D) 165 .
.7 k=n+1
variance term
bias term

The variance term is controlled by, as we detailed in Lemma 3.9 (see below),

~ oM
B, [10n1 = 031"] <Cocz* 47 + Grea(n, M) +2¢;” Z 6717,
— l=n+1

concentration term
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where the fast vanishing term of order 4 comes from the well-conditioned parts of the tLSE, a concen-
tration term Gp ..(n, M) comes from the left tail probability for tLSE to be zero, and the bias term
2052 2 i1 |67 |? originates from the nonlocal dependence in 3.6. Here the universal positive constants
C,
are Cy = QIOﬁCéaXL(szW + 1), and Cax = Supgs1 |V wo-
The bias term is bounded above by the smoothness of the true kernel in W,(3,L). That is, by

Lemma 2.16 we have "

D I6iP < Ln .
k=n+1
Combining these three estimates, we have

N 9y — _on
B, [ 6n0r = 0x[75] < (L + 227" + Cocg® 17 + Grep (n, M)

=:g(n) + Gpr,es(n, M). (3.9)

Minimizing the trade-off function g(n) = Ln=2% + C()CEQTLM_l with L = L + 20;:2, we obtain the

AL 1 ~_1 28 2B

optimal dimension of hypothesis space nys = [(é—OLM)i’ﬁlJrlJ, and g(nar) < 2L BT (C’oczz)ﬂ§+1 M
When S8 > %, Gr,c;(n, M) is defined in (3.11), and with M » n3,, we have

Gr.c.(na, M) <2E251+1(C —2)%1\4—%
L,cz nyr, X OCE .

When 8 < 1/2, G, (n, M) is defined in (3.12), the above inequality remain valid if M is large enough.

1 g\ 28
2041 (Coc ;%) 2P+, we have

Hence, in either case, with Cz | y 7 = 4L

b _.28_
E¢*[H¢7’L,M - Qb*”%%] < CﬁyL,N,EM 2B+1

which implies (3.8). =

Recall A? = E[AM] = limy; oo AM and b® = E[bM] = limps o, bM as defined in Lemma 3.3.
Then we can estimate the variance as follows.

Lemma 3.9 (Bound for variance) Under Assumption 2.12 on the basis functions with Ciax = supg=1 [¥i] e,
the following bound for the tamed LSE in Definition 3.1 satisfies

o n

01 — 0} 2

2
]<COC

Eg, [ + 26, + Gres(n, M), (3.10)

C _
where CO _ 210\/§Célax[/(w£2]v2 + 1), €En = CC_2 Zloin-i-l |9l*|2 and

9M 2% /64
— 2 L
Gr.es(n, M) = 2L nexp <_n2031ax+cr2nax05/4) . (3.11)
Moreover, if (2.11) is also satisfied, the bound in (3.10) holds with
5Cmax | _ Mz
Gr.e;(n, M) = Lexp (nlog( o ) ~ e |- (3.12)

Proof. Recall é\n’M = [A%]*IB%I{)\M“(A%P%%} in (3.1) and
0; — [AZ] 15 v
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n (3.5) with v = [A%]~ b2 satisfying | v|? < ¢, by (3.6). For simplicity of notation, denote
A= Doin(AM) > i%}.
Thus, with A€ denoting the complement of the set A, we have
80 = O3[R = [[AN]" D" — 635014 + 6550 Lae
2(ILAT B ~ [AF] 67 B + 0 ) La + 03] Lo
2<|[Af¥]‘1(b5¥ = b))+ I([A]7F — [AF]™ )bOOH2> L+ 260 + 65 L ae.
Taking expectation, we get
Eg, |10 — 0312] < 20, [IIAN] ™ (b) — bf)[*1.4]
+ 2B, [|([AR]T7F = [AFTHBY[14] + 677 P{A} + 26,

The first three terms on the right hand side are bounded as follows. Applying Holder inequality and
Lemma 3.10, we have

~ M1—1,% = ~ M- = = o T
Eo, [I[A7"171(b3" = bi7) [ 1] <(EI[AZ] ™ 1) 2 (B, [ — b7 |"DY2 < 166°Ch -

Similarly, using the facts ([A% bl [ MI=)bX = [AM]71(AM — AP)[A®]"'b? on the set A =
{Qmin(AM) > cocz} and 0% = [AP]"1b%, we bound the second term as

Eg, [I([AZ]7" — [AZ]7 )b A“R"] <(E|[AZT 14" (B, [ (A — AZ)6} 2 ])?

Following (3.16) in Lemma 3.11 and 6 € O(f3, L), we have
|65 1P{A} < Grep(n, M). (3.13)
Combining the preceding three estimates, we have
~ _ n
Eg. [Hen,M - 0::,”2] < 16652(CA + Cb)M + 2€, + GL,CE (n, M) .

Recall that C4 and Cp in (3.14a) and (3.14b) are Cy = 8V/3CL. L and C, = 2°v/3C2, (C4 . L? +
~=Ch )12, Hence, 2(Ca + Cy) < 264/3C2 . L (WC + 1), and we conclude the proof of (3.10). The
bound with (3.12) follows directly by applying (3.19) in Lemma 3.12 to Eq. (3.13). =

The succeeding lemma establishes the fourth-moment bounds for the normal vectors. Its proof is
included in Section A.2.

Lemma 3.10 (Fourth-moment bounds for the normal vectors) Let A® = E[AM] and b® =
E[bM], where AM and bM are defined in (3.2). Let 0F = (0F,...,0%) be the first n coefficients of the
true function ¢.. Then, under Assumption 2.12 on the eigenfunctions, we have

n.

M?
1

(E[IBY - b7lik])* < Cor (3.14b)

(E[IAY - A2)651t.]) < Ca (3.14)

where the constants Cy = 8y/3C2 . L and Cy, = 25/3C2,.(
are independent of n and M.

Citax L+ 32 C) Y2 with Crnax = supysy |11
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3.3 Left tail probability of the smallest eigenvalue

Recall that the smallest eigenvalue of AM is defined as

M
_ _ 1
Ain(AM) = inf 0TAM@ = inf —— Ry, [X™]|I?
(Aw) = inf 0 A0 = inf MNmEZIH RS |

where ¢g = D_, Oxtbx. We characterize the left tail probability of Apin(A2!) in terms of its exponential
decay in M and increment in n in Lemma 3.11 and Lemma 3.12.

Lemma 3.11 (First left tail probability of the smallest eigenvalue) Consider AM as defined in
(3.2a) associated with the basis functions {1y} satisfying Assumption 2.12. Then, we have

- Me?c2 /4
P{min(AM) < (1 —&)ept <2 — £ , 3.15
{ ( " ) ( €)CE} P ( (nCr2nax)2 + n(j?naxscﬁ_/3 ( )
for any € € (0,1). In particular,
_ - 9Mc2 /64
P (AM) < L1 <9 — £ . 1
{A (An) 4 } nexp < n2C3 . + C2axCr/4 (3.16)

Proof. The proof follows from the matrix Bernstein inequality [Ver18, T 15], which we recall in Theorem
A.2. Note that Lemma 3.3 implies

) , _ 1

Amin(AL) = ,nf 6" ATH = ~ElIRs, [X]|2na] = ¢z > 0. (3.17)
We denote @™ = (Ry,[X™],..., Ry, [X™]) for each sample X™ and thus A} = -1 SM_ (e Tem,
Also, we define

_ _ - 1
Qun =AY — A7 = VN

NG

[[(I)m]'l'q)m _ E[[q)m]T‘I)m]] ’
1
where {Q™ = £ [®™]T®™ — LE[[@™]T®™]}M_, form a sequence of mean zero independent matrices.
Note that [Q™| < 2nC2,, and | an‘f:l E[(Q™)?]| < 2(nC2,,)?. Then the matrix Bernstein inequality
gives that

~ Mt?/4
Qw8 <2new (~ e

max max

for any ¢t < c¢z. So, by (3.17) and then Weyl’s inequality in Theorem A.3 we have
P{)‘min(Aﬁ/[) S ez — ECE} < P{P‘min(Awl\z/j) - )‘min(ASzo” = 505} < P{HQM,NH = ECE} .

Thus, we finish the proof of (3.15). The inequality (3.16) follows by taking ¢ = %. ]
A notable limitation of the bound in (3.16) lies in its dependency on 3 > 1/2 to ensure exponential

decay as M approaches infinity within the minimax framework with n = M ﬁ. While scenarios with
f > 1/2 are common, exploring the range 5 € (0,1/2] is equally significant, especially since piecewise
constant functions fall in W,(3, L) for 8 < 1/2. In response to this, we introduce another left tail
probability bound that encompasses cases where 8 < 1/2. Additionally, the method and results derived
from this approach are not only remedies to the aforementioned limitation but are also of intrinsic
interest in their own right.
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Lemma 3.12 (Second left tail probability of the smallest eigenvalue) Consider AM as defined
in (3.2a) associated with the basis functions {1} satisfying Assumption 2.12 and Assumption 2.17. Then,
we have for any € € (0, 1)

. 1—¢ 5C2 e2Mc2
M _ max L
P{Amin(An ) < 5 cﬁ} < exp (nlog( c; ) ~ TenNg | (3.18)
where M > 16%?]2 log (56;'22_“) - % and n = 2. In particular, letting e = %, we have
_ Cr 502 MC2—
]P{ min AM < —E} < 1 max ) — L ) 1
in(A2) < L} < oxp  miog (*nen ) T (3.19)

Remark 3.13 The bound in (3.18) does not imply a small ball probability for the smallest eigenvalue of
the normal matriz [LS01, Hul7, Mou22|. In our context, we say a small probability holds for Amin (AM)
if P{Amin(A,,I‘f[) < t} < Ct¢ fO?: all t € [0,1] for some a > 0. The small ball probability does not hold

because the probability of Amin(AM) =0 can be positive (see Remark 3.2).

Our proof of Lemma 3.12 adapts the approach outlined in [Mou22|, with simplifications tailored to
the distinct assumptions inherent in a nonparametric setting. We split the proof into three steps:

Step 1: Construct from 8TAMO = WZ%ZI |Rs[X™]|IZna an empirical process with uniformly

bounded moment generating function, and apply the PAC-Bayesian inequality that we recall
in Lemma A.5.

Step 2: Obtain a parametric lower bound for Ay, (AM) via controls of the approximation and entropy
terms in the PAC-Bayesian inequality.

Step 3: Select the parameter properly to achieve the desired bound for the probability of the minimal
eigenvalue being below the threshold.

The primary tool employed in the proof is the PAC-Bayesian variational inequality in Lemma A.5,
introduced to address the left tail probability of the smallest eigenvalue in [Olil6] and further customized
in [Mou22|. The detailed proof for Lemma 3.12 is provided in Section A.3.

3.4 Minimax rate, random matrices, and Sobolev embedding

The tamed least squares estimator (tLSE) not only serves as an efficient tool for proving the minimax
rate but also elucidates the inherent links between the minimax rate, random matrices theory, and
Sobolev embedding. Here we further discuss these fundamental connections and an open question.

A crucial insight from our approach is the dependency of the optimal minimax rate on the bias-
variance tradeoff remaining unaffected by the small left tail probability of the smallest eigenvalue of the
normal matrix. This insight establishes a link between the minimax rate, random matrices theory on
the left tail probability of the smallest eigenvalue, and fractional Sobolev embedding.

__2B
Specifically, to achieve the minimax rate M~ 25+1 | the left tail probability exp (a,, — b, M) must decay

faster than M _% when n = M B oo to avoid affecting the bias-variance tradeoff. When g > 1/2,
the left tail probability from a direct application of Bernstein’s inequality has a, = logn and b, = n=2,
so it decays faster than the rate. Then, the tLSE achieves the optimal minimax rate with the coercivity
alone. When < 1/2, a refined estimation is necessary to yield a slower vanishing b,. The PAC-Bayes
inequality yields b, = 1 along with a,, = n under a fourth-moment condition (2.11). Roughly speaking,

the fourth-moment condition requires

4
wp ol <.
¢€Wp(ﬁvL)7H¢”L%=1
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which is a continuous embedding of the Sobobev class W,(3, L) in L‘;. This naturally connects to the

fractional Sobolev embedding of the weighted fractional Sobolev space Wf into Lﬁ, as discussed in
Remark 2.18, applicable when 5 > 1/4. Extending this to cover 3 € (0, %) remains an open challenge,
potentially requiring replacing the fourth-moment condition to a 2 + e-moment condition, as indicated
in various random matrix references (see e.g., [KM15, Tik18, Yas15|).

We summarize the key gradients of the tLSE method in Figure 2.

Nonparametric regression

Minimax rate

|
Sobolev Class

v
Random Matrix

Sobolev embedding Left tail probability of A,

=

Figure 2: The tLSE connects the minimax rate with random matrices and Sobolev embedding.

4 Lower bound minimax rate

This section is dedicated to the lower bound minimax rate by the Fano-Tsybakov method |Tsy08, Chapter
2]. The lower rate matches the upper rate in Theorem 3.6, confirming the optimality of the rate.

Recall that C(8, L) is the Holder continuous class defined in (2.9), p is the exploration measure in
Definition 2.3, and E,, is the expectation with respect to the dataset {(X™,Y™)}M_, generated from
model (1.1) with ¢,. We have our main result on the minimax lower bound. Because C(3,L) < W (3, L)
in general, we only need to consider the hypothesis space to be C(3, L) for the lower bound.

Theorem 4.1 (Lower bound minimax rate) Under Assumption 2.1 and Assumption (B2), if 5 > 0,
then there exists a constant crower > 0 independent of M such that

28~
liminfinf sup Eg, [M2+1|¢pp — QS*H%Q] > ClLower (4.1)
M=% gy ¢xeC(8,L) .
where inf(;M is the infimum over all estimators. Here, Crower = Cocg,N With co independent of M, N and
s
CgN = N_ﬁ.

__28
Remark 4.2 (Rate in N) The lower bound in (4.1) suggests that N~ 26+1 is a lower bound rate in N.
In other words, the number of particles plays a similar role as the sample size in the lower bound rate.

26
The rate N~ 23+1 is the slowest among decay rates {N 7} with v = % that can ensure Eq.(4.1).

We follow the general scheme in [Tsy08, Chapter 2 and Theorem 2.11]. This scheme reduces the
infimum over all estimators and the supremum over all functions to the bound of the probability of
testing error of a finite hypotheses test. We summarize it in three steps, as follows.
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Step 1: Reduce (4.1) to bounds in probability by Markov inequality and to a finite number of hypotheses
© = {¢om, - ,ox.m} S C(B,L). We set ¢gr = 0 so that P, « Py, where Py, denotes the
measure of the model with ¢y, /.

Step 2: Transform to bounds in the average probability of the test error of 2s-separated hypotheses. The
key idea in the transformation is a minimum distance test Ktest = arg ming i<y d(dar, dr,nmr)
[Tsy08, (2.8)].

Step 3: Bound the average probability of the test error from below by the Kullback-Leibler divergence
of the hypotheses.

Our main innovation, which is also the major difficulty, is the construction of the hypotheses
{boms b1, o.M} S C(B, L) satisfying two conditions: (i) they are 2s-separated in Lf,, and (i)
their average Kullback-Leibler divergence KL(Py,Py) has a logarithmic growth in K. These two condi-
tions are used in the next lemma to prove Step 3. This lemma follows from a combination of a lower
bound based on multiple hypotheses, Fano’s lemma, and its corollary, which are in [Tsy08, Theorem 2.6,
Lemma 2.10, and Corollary 2.6] respectively, and we omit its proof.

Lemma 4.3 (Lower bound for hypothesis test error ) Let © = {0}, with K > 2 be a set of
2s-seperated hypotheses, i.e., d(0g,0p) = 25 > 0 for all 0 < k < k' < K, for a given metric d on ©.
Denote P, = Py, and suppose they satisfy P, « Py for each k =1 and

T

—— ) KL(P%,Pp) < alog(K), ; 1/8 49
K+1kZ=:1 (P, Po) < alog(K), with0 <a <1/8 (4.2)

Then, the average probability of the hypothesis testing error has a lower bound:

K
_ . 1 log(K + 1) —log(2)
:= inf P k) = —a, 4.3
Ped == RV K +1 ];) b (eest # k) log(K) “ (43)
where infy, ., denotes the infimum over all tests.
The next lemma constructs the hypothesis functions {¢o ar, ¢1,0m, -+ s ¢x ). Its proof is deferred

to Section A.4.

Lemma 4.4 For each data set {(X™,Y™)}M_,  there ewists a set of hypothesis functions {pon =

0,01,:m, -+ ,¢x,m} and positive constants {Co, C1} independent of Mand N, where

K >2KB, with B = [eo nMP71], con = CoNZ71, (4.4)
such that the following conditions hold:
(C1) Holder continuity: ¢xar € C(B,L) (defined in (2.9)) for each k =1,--- , K;

__B_
(C2) 2sn,a-separated: | g v — d’k',MHLg = 2snym with sy = Clc&]ﬁvM 2B+ ;

C3) Kullback-Leibler divergence estimate: - K: KL(Py,Py) < alog(K) with a < 1/8, where Py(-) =
K k=1
Py ar (- | X1 XM,

Remark 4.5 (The exponent in N) The ezponent for N in ¢y Ny = CON%% in (4.4) is the smallest

1
possible. That is, when one replaces the the constant co y = CoN 25+1 in by co y = CoN7, the exponent

v must satisfy v = Tlﬂ Such a constraint arises when we aim for a < % in (A.25) for all N.
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Proof of Theorem 4.1. The proof consists of three steps. We will denote

On = Cicyn

so that sy ps in Condition (C2) can be writen as sy = C’NM_%.

Step 1: Reduction to bounds in probability for a finite number of hypothesis functions. Recall that
the Markov inequality E[|Z|?] = ¢®P[|Z| > c] holds for any ¢ € R and square-integrable random variable
Z, and the equalities P(A) = E[14] = E[E[14 | Z]] = E[P(A|Z)] hold for any measurable set A. Then,
we can reduce (4.1) to bounds in probability by

28~
sup Eg, [M”“ |éar — 64 ||L2] > max Eg, [M2P+1 ] ¢pr — ¢ 7]
¢xeC(B,L) de{bo, M+ P, M} P

> C? max ]P)(dA)M—é 2>8NM)
N¢€{¢0,M7"'7¢K,M} ¢ H *HL” ’

K
1
T 20 Bt o [Pl = dnarlzg > s X' X0
K
= CNEXl { H¢M Ok, MHL2 SNM|X ,XM)} . (4.5)
We remark that {X!,---, XM} inside the expectation are fixed and can be treated as deterministic

values in the conditional probability.

Step 2. Transform to bounds in the average probability of testing error of the 2sy p/-separated
hypotheses. Define fest : 2 — {0,1,..., M} the minimum distance test

Ftest = argmin [ das — ép | 2.
0<k<K

Then, i s, # £, we have |83 — dr 2 < 1601 — Grarl 3. Together with Property (C2) in Lemma
4.4 (i.e., the functions in © are 2sy ps-separated) and the triangle inequality, we obtain

2sN.M < | Okar = Greese || S |01 = Pricarrallzz + [dar — SrpallLz < 20Pnr — drarlzz- (4.6)
That is, ktest # k implies H¢M bk, MHL2 sn,M, and hence, Pk(chM b, M||L2 sy | X XMy >
P(kgest # k | X1, -+, XM). Consequently, we have

K
k(| dar — Gk rz > s X1 XM

k=
1

> inf
RKtest K

K K
Z Py, (Frest # k| X1, -, X M) = inf K — ; ke (test # k) =: Pe,n, (4.7)

where Py (-) = Py, ,, (- | X',..., XM). We call pe,as the average probability of testing error.

Step 3: Bound p. s from below. Conditional on each data {X™}M_,  the Kullback divergence

m=1’

1
estimate (C3) holds with 0 < a < 1/8, and hence by Lemma 4.3 and the fact that K = 2[conM>7¥ 1] iy
(4.4) increases exponentially in M, we have
log(K +1) —log(2)

log(K')

N =

ﬁe,M =
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if M is large. Note that the above lower bound of pe 5/ is independent of the dataset {X™}M_,. Together
with (4.5) in Step 1 and (4.7) in Step 2, we obtain with ¢y = %[ClC'O_B]2

~ 02 28 28
sup  Eg, [[om — 9/)*”%2] > TNM 2+ = co(NM) 29+
$%€C(B,L) P

for any estimator. Hence, the lower bound (4.1) follows. m
A Technical results and proofs
A.1 Example: X with uniform distribution

This section explicitly computes the exploration measure p in Definition 2.3 and the normal operator
L= (N_IK,gN_?) La+ ]\]’\,_211 in Definition 2.5. We consider the example with X having i.i.d. components
uniformly distributed on [0, 1]. We will show that the operator L is compact and the coercivity constant
of £ is exactly c; = %

Recall the exploration measure p defined in Definition 2.3:

1
N(N —1)

p(4) = STP(X; - X;| € A) = B(IX; — Xa| € A)

J#i
by exchangeability of X7, Xs and X3. Then, it is easy to see that p has a density

§(r) = (2= 211 jpeper) (A1)
Proposition A.1 Let X = (X, X9, X3) with X; b U([0,1]). Then, the operator Lz defined in (2.4)
18 a compact integral operator with integral kernel

G(r,s)

G =27 with G =[2—(|r— —[2-2 1 . A2

(T7 S) p’(r)p’(s) ) 1 (T’ 8) [ (|T Sl + ’T + S|)] [ |T’ + 8|] {r+s<1} ( )
. 7 (N-1)(N-2) N—17 . .. N—1

Consequently, the smallest eigenvalue of the normal operator L = “—5——Lc + 7 1 1s ¢z = 7

X;—X;

Proof. Let us recall the notations r;; = |X; — X;| and r;; =
¢(rij)ri; and W(X; — X;) = ¢(r45)r;; and then have

in (2.3). We write ®(X; — X;) =

(Lad, Yyrz = E[¢(ri2)riav(ris)ris]
=E[®(X; — Xo)U(X1 — X3)]

3
= f D(x1 — x2)V (21 — 23) dei. (A.3)
[0,1]3 i=1

We introduce a change of variables:

1
r1=-(r+y+2);
Tr=x] —T2; 2

1
Yy =1 —T3; which is equivalent to \ T2 = 5(_37 +y+2);
Z=x9+I3;

1
T3 = §(x—y+z).
Thus, (A.3) becomes

3
| e - w) e ) [ [doi = 5 | e@wdsdyaz,
[0,1]3 i=1 2 D
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where the cube [0, 1]? is transformed to a region D under the change of variables:
4

D = U {(z,y,2) : (x,y) € B;}

j=
and the projected disjoint regions {B; } : ( y)-plane are defined as follows
Blz{(x,y):xe[O,l]ye[Ol]} By ={(z,y) :x€[0,1],-1+ 2z <y <0},
={(z,y) ;2 e[-1,0],ye [-1,0]}, Ba={(x,y):2€[-1,0,0<y<1+uz}.
Let us consider the decomposition

B = By U By := {(z,y) € [0,1]? :U>y}U{xy e[0,1?:z <y}.

Thus, let Dy = Dj; U Djg, where the projection of Dj; to (x,y)-plane corresponds to Bj; and the
projection of Dja to (z,y)-plane corresponds to Bis. Thus, we have

J O(2)V(y)dedydz = J o dz - ®(z)V(y)dzdy
Dy z—y

B

T4y
+ J f dz - ®(x)V(y)dzdy
B2 Jy—x

— J[o " D(2)U(y) - 2[(1 — 2)1(psyy + (1 — y)Lip<yyldady.

Note that ®(x) = ¢(x )m = ¢(z) and ¥(y) = Qb(y)% = 1(y) on {(x,y) € [0,1] x [0,1]}. So, with the
change of variables r = x and s = y we have

J O(2)V(y)dedydz = J o(r)(s) - 2[1 — Ty — sl{Tgs}]drds
Dy [0,1]2

_ Aoy 2= r=sl+lr+sh] o
- J[o,m e pr)p'(s) A,

where p'(r) = (2 — 2r)1jp<,<13- On D3, we get the same formula similarly. On the other hand, Dy is a
region with the projected domain on (z,y)-plane corresponds to Bs. Then, we get

JD2<1>(z)\p(y)dxdydz: f fw Y e ()W) drdy

f f 2(1+y —2)1_i1<y_gydydr

- r(s w s
B J[O,l] ¢( )w( ) p/(,,,)p( ) 1{7"+5<1},0(d ) (d )

On Dy, we get the same formula similarly.
In conclusion, we get

3
E[®(X; — Xo)U(Xy — X3)] = f[o ; O(w1 — w2)W(2y — w3) | [ das = %fp () ¥ (y)dxdydz
i=1

(2= (Ir = s[ + | + s[)]

= J o) S T ot

_ J[ . SR ik LI PR R

7 (s)

- j 6(r) ()G (r, 5)pl(dr)p(ds)
[0,1]2
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with G defined in (A.2).
Now, we show G(r,s) € L*(p). This is

~ 2
| Glr.5)p(arp(as) = [ EIGL) P
[0,1]x[0,1]

[0,1]x[0,1] 4(1 = 7)(1 = s)
:2f [1—s] —[1—|r+s[]lgpseyl?
0<r<s<l1 (1—=7)(1—5s)

1—
<2f ( ) drds = ZJ fdrds
0<r<s<l (1 - 7”) o<s<r<1 T

1
=j rdr = —.
0<r<1 2

So, we conclude that Lg is a Hilbert-Schmidt integral operator and therefore compact. Consequently,

the smallest eigenvalue of the normal operator £ is ¢z = ]\]7\7_21. ]

drds

A.2 Proofs for the upper bound minimax rate

This section presents technical proofs in Section 3.2. First, we recall a concentration inequality for
random matrix and the Weyls’ inequality, which can be found in [Ver18, T*15|. They are used in the
proof of the first left tail probability in Lemma 3.11.

Theorem A.2 (Matrix Bernstein’s inequality) Let {X;}M, < R"™ " be independent mean zero
symmetric random matrices such that || Xllop < K almost surely for all i. Then, for every t > 0,

we have u
t2/2
P H Xi| =t) <2 e —
<; op ) nexp( O'2+K7f/3)

M
where 02 = I Zizl E[Xiz]”op-

Theorem A.3 (Weyl’s inequality) For any symmetric matrices S and T with the same dimensions,

we have
max [A;(S) = Xi(T)] < |15 = Tlop,

where X\i(S) is the i-th eigenvalue of S in descending order.

Proof of Lemma 3.10. We prove these bounds by applying the fourth-moment bounds for empirical
mean in Lemma A.4. To do so, we only need to show that both AM@* — A®@* and b —b® are centered
empirical means of two random vectors, each of which random vector has bounded fourth-moment.

We start from AM@% — AP@%. Let ¢f = > _; 0F4y. Since Ry[X] is linear in ¢, we have Ryx[X] =
Dhey 05 Ry, [X] for any X. Define an R"-valued random vector Z4 to be

Za(l) = %aewl [X], Rys [XDgva, 1<l <n. (A.4)

Then, we can write the R"-valued random variable AM@* as

_ n 1 M
[AX165) = 3 57 2 B[ X™], B [X ™ Dvat
k=1 m=1
1 M . . 1 &
= Mmzzll N<sz[X ]aRqaz [X ]>RNd = MmZ::1 Zy (l)7
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where Z77 (1) = +(Ry, [X™], Ry [X™])pnva is a sample of Z4(l) for each m. Also, A*Ox (1) = E[Z4(1)]
for each I by the definition of A%. Meanwhile, note that by definition of Z4, the boundedness of the
basis functions in Assumption 2.12, and the definition of the operator R4[X], we have

N

1240 = | 5 D 2 2 O valri)) 5 rig Mo mig

i—l JF1 g #1
Sllp HwkHoo Sup |6k’ max sup ’9;‘”
k> k> k=1

Thus, we have shown that AM@F — A®* is the centered empirical mean of i.i.d. samples of a bounded
random vector Z4 (hence its fourth-moment). As a result, applying Lemma A.4, we obtain

6M —5

B|(AY - AD)05lk. <

25]E\ZA\4 W192Cmax(supk>l ‘Qk’)

Taking square root and using the fact that sup;~; |0}|> < L in Lemma 2.16, we obtain (3 14a).

The proof for the bound in (3 14b) is similar. By definition, the normal vector b = i ZM b is
the average of M samples {b™}M_, of the R"-value random vector b, with entries

1
bn(l) = N<R¢Z[X]vR¢*[X] + 77>RNd, I1<li<n.

To show that b,, has a bounded fourth-moment, we decompose it into a bounded part and an unbounded
part, b, = £ + 7, where

() = (R [X], R, [XDva, (D) = 1-CRo [X] myve

The random vector £ is bounded because by the boundedness of the eigen-functions in Assumption 2.12,
we have

OIS Sup H"tbklloosup 10| < Chhax Sup 6]
k> k> k=1
To bound the noise term, we use the Cauchy-Schwarz inequality,

~ 1 1 1
Bl = S ELCR [X], mraal T < S Bl IRy [X 1] < 57z CrmaxCos

where the first inequality follows from the assumption that the fourth moment of n is bounded by some

constant C,, > 0, and the last inequality follows from that ||Ry,[X]|? < NC2,, for all X.
Combining these bounds, we have, for 1 <1 < n,
Elb, (|* < ElE() + 70" < 241@[!5@)\4 + i) |
1
< 24[C1max Sup |6l |4 Cﬁlaxc ] 240;4nax[0;4nax Sull) lel*|4 + Wcﬂ]

Consequently, applying Lemma A.4 with Z,, (k) = (R, [X™],Y™)gna, We obtain

1 2

n*(6M —5) g
P2 a0l < c,,M2

BB — blk] < 2

[Ca

s SUD 671" +
with C, = 2°4/3C2,. (C4. L?+ Cn)l/Z, using again the fact that supys, [0f|*> < L in Lemma 2.16. =
The next lemma provides bounds for the fourth moment of the empirical mean of i.i.d. samples. It

is of general interest beyond this study. The proof follows from applying the independence between the
samples and the direct expansion of the fourth power of the sum.
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Lemma A.4 (fourth-moment bounds of empirical mean) Let {Z,,}_, be i.i.d. samples of the

R"-valued random variable Z = (Z(1),...,Z(n)). Assume that >, _, ]EIZ(k)]_4 < 0. Then,

M

|7 2, (Zn - B1Z))| <11 2, BIZ(0) ~BIZB)" < i kZlEIZ

Proof. The second inequality follows directly from
E|Z(k) — E[Z(K)]|* < 2* (E|Z(K)|* + E[E[Z(F)]|") < 2°E|Z(k)|*

for each 1 < k < n since E|[E[Z(k)]|* < E|Z(k)|* by Jensen’s inequality.
To prove the first inequality, it suffices to consider E[Z] = 0 and prove

4 6n

2
M k=1

M
E‘M Zzl o ]E]Z( ) (A.5)

We first prove the case with n = 1, then extend it to the case with n > 1.
Case n = 1: Z is a 1-dimensional random variable. Note that

M 4 M 4
12 %0l = Y T%n
m=1 mi,-- ,ma=11=1
M
— 4 3 2 2
= Z Zy, +4 Z T By +6 > Zp 22,
mi1,ma=1 mi,ma=1
mi1#me m1#Em2
M M
2
+6 > 22 Ty, + > Ty Zos Zos Zom -
mi,mz,mg=1 mi,mz,m3,ma=1
mi#mo#ms m1FEmeFEms3FEmy

Meanwhile, the independence between these mean zero samples implies that E[Z,,, Zf’m] =
0, and E[Z, Ziny Zms Zms| = 0, for any mutually different indices 1 < my, ma, m3,mgy < M. Then, the
desired inequality in (A.5) with n = 1 follows from

M
COEAEEHERTINE X
m=1

mi,mo=1
mi#me

— ME[|Z|*] + 6M (M — 1)(E[|Z%[])? < 6 M*E|Z|*,

where the second equality follows from that {Z,,} are samples of Z, and the last inequality follows from
(E[|Z?(])? < E|Z|* by Jensen’s inequality.

Case n > 1: Z is a random vector. We prove it by applying the above bound to each component
of the vector. Note that

1 M 4_ n 1 M 2 n M
w3 al = (k3 aef) <a$i|y S ae)

m=
Meanwhile, applying the result in Case n = 1 to each component {Z,,(k)}, we have

oy 2 2]

Combining the two inequalities, we obtain the inequality (A.5). m

6
SE|Z(k)!, VL<k<n.
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A.3 Proof for the 2nd left tail probability

Here, we include some technical proofs in Section 3.3.

Lemma A.5 (PAC-Bayesian inequality) Let © be a measurable space, and {Z(0) : 0 € O} be a
real-valued measurable process. Assume that

Elexp(Z(0))] <1, for everyfe©. (A.6)

Let m be a probability distribution on 6. Then,

P {Vu, J@ Z(0)u(0) < KL(p,m) + t} >1—e", (A.7)

where p spans all probability measures on O, and KL(u, ) is the Kullback-Leibler divergence between p
and 7:
lo [Q’i]d if p < m;
KL(u, ) i {0108 [ 71
o0 otherwise.
The next lemma, from [Mou22, Section 2.3|, controls the approximate term in the application of the
PAC-inequality. Here we present an alternative constructive proof.

Lemma A.6 For every vy € (0,1/2], ve S"!, define

le, . (0)

Op:={0eS" 0 —v|<n}, andm,.(df) = 6
v,y

m(d6), (A.8)
where 7 is a uniform measure on the sphere. That is, ©,~ is a “spherical cap” or “contact lens” in n-th

dimension space, and m,~ 15 a uniform surface measure on the spherical cap. Then,

Fun(2) = [ (£0,0)m(@6) = [1 = g)KE00) 4 90) T, (A9)

for any symmetric matriz 3, where

2

L)[l —(0,0)|mu(d6) € [0, (n”j 1)] . (A.10)

n
-1

g(v) = -
Proof of Lemma A.6. Note that
For(X) = f (20,0)T,,(d) = f Te[0 T 20]7, -, (d6)
C] C]

= Tr[ZA, -] :=Tr [2 L eeTwm(de)] .

To conclude (A.9), we proceed to show that

Ay = [1—g(W]ov" + 9(7)% : (A.11)

By isometric invariance, we set without loss of generality

v=e; =(1,0,---,0)eR".
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So we get a R™-“spherical cap” ©, = ©(e1,) centered at v = e;. The notations A, 5 and 7, ,(df) are
abbreviated as A, and 7, (df). Thus, for 6 = (61,04, ,0,) € ©, < S" ! we have

02 010 --- 010,
0200 02 - 090,
A= | 60T (a0) = J LT I (ae)
o, o, | : : :
0001 Op0y --- 02
— diag [ J 03, (do), J 037.,(do), - - f egm(de)]
O O, O
since Sev 037, (dO) = -+ = Sev 027 (df) and Sev 0;0;m,(df) = 0 if i # j. Moreover, it is readily seen

that

1 :f 16|12 (d6) :f (024 62 + - + 62 (do) f 62r () + (n—1) | 62x (d6),
v Oy Oy

and consequently

f 027.,(df) = - = f 02, (df) = L h —f 037, (do) | = 90)
e"/ e"/ n-— 1 e"/ n
Hence, we have
A, = diag “ 037, (do), M, e ,M (A.12)
97 n n

Noticing that g(7) = 2 [ (o, O3, de)] and (1 — g(7) = §o_ 63m,(d6), the right-hand side
of (A.11) can be written as

I .

(1= 90" +g(7) ™ = ding [ 02, (d0), 0. .. M] ,
n o, n n

which matches (A.12).
The bound of g(v) in (A.10) can follow the same argument in [Mou22|. This completes the proof. m

We introduce an inequality in [Olil6, Lemma A.1] to control the generating moment function before
the proof of 3.12.

Lemma A.7 Let X be a nonnegative random variable with a finite second moment. Then for all A = 0
E[eX] < o E[X]+ A E[X?]

Proof. We include the proof for completeness. It is clear that

)\2

E[e—)\X] <1-— )\E[X] + _E[XQ] < e—)\]E[X]+¥lE[X2]

by using 1 + y < €Y in the second inequality. m
Proof of Lemma 3.12. Step 1: For every § € S~ ! and A > 0, the bound for the moment generating
function can be derived by Lemma A.T7:

B [exp (AL 1R X712 ) | < exp (A Bl X112 + Bl R, X1
o (o) (s

SE[| Ry, [X™]] ])

A
<exp | —Acz + = N
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By (2.11) and Jensen’s inequality

i=1
2 2

N 2
E[|Ro, [X™1|"] < & - (E[|Rg,[X™]I%))* < & (E [Z | R, [Xm]i|2]>
N

Z —Z¢9 i )T
i=1 j#i

(2 S e [l ])2.

i=1 J#

Remember that ¢g(rf}) = >_; Okk(r]}), the distribution of random variable rf? is p and {¢x} are
ONB in Lg, then we can proceed to get

ZE[\¢9 ) ]— - E E(Wk )

]7&1 ];éz k=1
Therefore, we have
E[]| Ry, [X™]I"] < kN?. (A.13)
Combing (A.13) and the fact that +E[[|Rg,[X™]|*] = cz, we obtain
2
A m72 A 2 n—1
E [exp —NHR% [(X™° + Aeg — ?/QN <1, V9eS",A>0. (A.14)

Thus, by the independence of samples, we obtain

A
sup E [exp (—— Z |Rp [X ™I + AM 7 — —/sMN2>] 1, VA>0.

PeSn—1 m=1

In other words, the process

Zx\(0) := Z |Rp [X ™| + AM ¢ — A—/-duN2

m 1

with # € S"~! has a uniformly bounded moment generating function. Then, applying the PAC-Bayes
inequality in Lemma A.5 with © = S"~!, we obtain

P {Supf Zx(0)p(8) < KL(p, ) + t} >1—e! Vt>0, (A.15)
peP Jo

where 7, u € P with P denoting the set of all probability measures on ©. In the next step, we will select
a specific 7 and a subset of P in (A.15) to obtain a A-dependent bound P {\nin(AM) < ez}, and we
remove the dependence on A in Step 3.

Step 2: Obtain a lower bound for Ay, (AM) through constructing probability measures 7 and u in
(A.15) to control {g Zx(0)u(df). This lower bound depends on A, which will be selected in Step 3 to
achieve the desired bound in (3.18).
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Let 7 be a uniform probability measure on S"~!. For each v € S"~! and v € (0, 1/2], define ©, ., and
probability measures 7,y as in (A.8). Then, the PAC-Bayesian inequality (A.15) with p(df) = m, . (d0)
implies that

IP’{ sup J Z)\(0)my~(0) — KL(7y 5, m) < t} >1—et

veS™—1,~€(0,1/2] JO

Meanwhile, note that

1 _ A2
—J Z\(0) Ty (dB) = [— )\f (AM0,0)m, - (dO) + \eg — —KNQ]
M Jo ’ o ’ 2
_ 22
=: [~ AFy,(AM) + e — 7;1N2] :
Hence, the above inequality implies that, with at least probability 1 — e~

_ 2 1
sup { — Ny (AMY 4 Aep — %nz\ﬂ — —KL(WU,A,,W)} <L_.

veSn—1 ~ve(0,1/2] M
A
= inf AF, A —KL vy T) = Acg — —kKN —u. Al
veSn—llge(O,l/Q] 77( ) + M (7T Y ) CL 2 : v ( 6)

Follow the conventions in [Mou22|, we refer F,,(AM) to be the approximation term and KL(m,,)
the entropy term. The controls of these terms follow from the above selection of measure , , and 7.
The control of approximate term follows from applying Lemma A.6 with ¥ = AM:

Tr(X)

Foy (A7) = [1 = g(7)KAZ v, 0) + g(v)—

with ¢g() in (A.10). The control of the entropy term is from Section 2.4 in the supplement of [Mou22|).
Specifically, we have for every v € S*~! and v > 0,

KL(ry.m) = | log (d;r;’j <9>) o (d9) = | oz [W(@lw)] s (d0)

= log [W(@lm)] <nlog(l+2/7),

where the bound for surface area 7(0, ) is from [Ver18, Lemma 4.2.13].
Plugging these two estimates into (A.16) we obtain with at least probability 1 — e~M*  for all
ve Sy e (0,1/2],

_ Tr(AM A2
A1 = g1 0) ~ Ag() ) 4 log(1 +2/3) 2 deg — 5 RN~
which amounts to
A 1 X2 n g(v)  Tr(AF)
AMy 27[)\0——/@N2——10g1+2'y —u]— Lo A7
e () ) (A7 e A ] I ) ey A
Also, the uniform boundedness of {¢;} in Assumption 2.12 implies:
Tr(AM)
m=1k=1
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Moreover, when v € (0,1/2] we have by (A.10)

9(7) 27?

1—yg(v) S1 -g(7)

Letting ¢, := #(7), one can note that 1 < ¢, <2 and ¢, — 1 as v — 0. Therefore, we have for every
v€(0,1/2] and u >0

and  log(l+ 2/v) < log <4i72) .

22 5
& 2 2 .2
velsnnf 1<A v, vy = oY [Acﬁ — —HN - Ml I (4—72) — u] —2¢,ChaY
/\/ﬁl]\[2 n 5 u 9 2 M
= Cy {CZ — 5 T8 (4—72) — 3~ 2Cmaxy ] =Gy (71,2) (A.18)

holds with probability at least 1 — e~ M,

Step 3: Select ),y properly to obtain the probability bound for Apin(AM) = inf,cgn1(AMv, v). Based
n (A.18), we have

P{Amm(AM) <sup Gy (v, )} <e M (A.19)
QN
Choosing 72 = 4Cc§iax < tand X = QCWCSN;, in (A.18), then writing Cy v = ”TNQ and Co /iy =

17 log (50‘2“) in short, we have

Y A
=y [ £~ 2y/Cun(Commi + ) |

Cp C u
GM(y,\) = ¢, - [7‘1—0&1@— On/M ]

with the choice of \ = Cog/—w

Letting G (v, A) = §(1 — €)cz for any € > 0, namely

z 2
[C’Y -1+ 6] - C’O,n/M )

T 1620, N

we have by PAC Bayesian inequality (A.19) that

—Mu Mc—
(1—5)05} <e ™ =exp(MC()7n/M 82/<;N2[ 1+5]2>

log  3Cinax CgMc
= exp | nlog o )T e )

where we denote Cyp = é (¢y =1+ ¢€). Then notice that

l\.')l)—t

P {Amin(A% ) <

cy—1+¢
Co="1—>
Cy

by 1 < ¢, < 2. The inequality (A.20) and the range of Cy imply that

_ 1 502 e2Mc
P min AM (1 — < 1 max | _ L
{)\ ( ) < =( e)c,:} exp (n og ( - ) e

which is an exponential decay tail in M. We conclude the proof of (3.18). m

Y

| ™

\V]
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A.4 Constructions of the hypotheses for the lower bound

We prove Lemma 4.4 by directly constructing the hypothesis functions {¢o ar, - - - , ¢k} satisfying Con-
ditions (C1)—(C3), that is, they are Holder-continuous, 2s-separated in L%, and they induce hypotheses
satisfying a Kullback-Leibler divergence upper bound.

The construction consists of two steps:

Step 1: construct K disjoint equidistance intervals with a proper length in support of the exploration
measure p, and

Step 2: define the hypothesis functions as a linear combination of K functions supported in these disjoint
intervals with binary coefficients, and prove that these hypothesis functions satisfy Conditions

(C1)~(C3).

The second step largely follows the proof in [Tsy08, page 303|, particularly, the Varshamov-Gilbert bound
leads to the upper bound for the Kullback-Leibler divergence of the hypothesis. Our main innovation is
the first step, constructing disjoint equidistance intervals in support of the measure p. Importantly, we
only need the exploration measure to have a density function that is either uniformly bounded below by
a positive number or continuous on the interval.

We let ¢ € C(3,1/2) n C*(R) a bounded nonnegative smooth function:

Y(u) = edo(2u),  do(u) = € TP 1y <y (A.21)

Note that ¥(u) > 0 if and only iff u € (—1/2,1/2), and [1]s = max, ¥ (x) = epp(0) = 1.
We recall the Varshamov-Gilbert bound in [Tsy08, Lemma 2.9].

Lemma A.8 (Varshamov-Gilbert bound) Let K > 8. Then there exists a subset {w©®, ... wF)}
of Q such that w© = (0,---,0) and

° ~ K
K =288 and pH(w(J),w(k))2§,V0<j<k<K, (A.22)
where pg(w,w') = Z{il 1(w; # wj) is called the Hamming distance between two binary sequences w =
(w1, ,wg) and W' = (W, ,Wg).

Proof of Lemma 4.4. The proof consists of two steps.

— 1
Step 1: we construct K = [co v M 23+T] disjoint equidistance intervals

Lo
SROK ’

where the numbers {r;}, ng, and Lg are to be specified next according to p so that {ry} < supp(p) and
ng > 1. Here the constant ¢y y is defined in (4.4).

Note that if p has a density function that is bounded from below by ag > 0, we can simply use
the uniform partition of supp(p) to obtain the desired {A\;}. That is, we set ng = 1, Ly = 4, and
re = (20 — 1)hyps. Since p’s density may not be bounded below by a positive constant in general, we use
the continuity of the density function as follows.

By Lemma 2.4, the exploration measure p has a density function p’ continuous on the interval [0, 1].
Then, the number ag = sup,¢[o,17 p'(7) is finite. Take ag < ag A 1.

{Dg = (ro—har,re + ha)}isy,  with hy = (A.23)

We construct intervals in (A.23) satisfying | J, Ay < Ag := {r € [0,1] : p(r) > ag}. Let Lo := 10

ap—agp
Note that Leb(A4p) = Ly since

1= Ll o (r)dr = JAO o (r)dr + J o (r)dr

A5
< apLeb(Ag) + ap[1 — Leb(Ap)] .
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Also, note that the set A is open by continuity of p’. Thus, there exist disjoint intervals (aj,b;)
such that Ag = U;';l(aj, b;). Without loss of generality, we assume that these intervals are descendingly
ordered according to thelr length b; — a;. Let

. = Lo
np = min{n : j;(bj —a;) > 5 )

It is clear that ng = 1. Now, we construct disjoint intervals {A; = (ry — has,re + har)}y2, < (a1,b1)
such that 7, = a1 + Chyr and ny = [(by —a1)/(2har)]. If n1 = K, we stop. Otherwise, we construct
additional disjoint intervals {A; = (rp — has, 7o + hM)}?i:?jl c (ag,bs) similarly, and continue to
(aj,b;) until obtaining K intervals {A;}. To show that we will at least obtain K such intervals, we show
that K, > K, where K, is the total number of intervals {Ag}e ¥ to exhuast all {(aj,b;)72,. Since the
Lebesgue measure of (a], \U o Agis less than 2h )y for each j, the Lebesgue measure of the uncovered
parts U 1(aj, b; (Ué A Ag) is at most 2nghps. Thus, the intervals {Ag}g , must have a total length
no less than £ — 2nghys. Consequently, the total number must statisfy Ky > (%2 — 2nohas)/(2hn) =
2Kng —ng = K ~

Step 2: construct hypothesis functions satisfying Conditions (C1)-(C3). We first define 2% func-
tions, from which we will select a subset of 2s-separated hypothesis functions,

(st(’l") = wfwl,M(’r)’ w = (wla o awl_{) € {Oa ]-}K?

D>

l

Il
—

where the basis functions are

Y (r) = thﬂb(rh_ W), I=1,---,K, rel0,1] (A.24)
M

1 _
with¢(u) = e 1-Cw? 1, <15 asin Eq. (A.21). Note that the support of 1 5/ (r) is Ay, and SAe [ (r)2dr =

1
Lh'i;Q [1]2. By definition, these hypothesis functions satisfy Condition (C1), i.e., they are Holder con-
tinuous.

Next, we select a subset of 25y -separated functions {¢g s := ¢w<k>}kK=1 satisfying Condition (C2),

__B_
ie., |, — ¢w<k/)HL% > 2sy v for any k # k' € {1,..., K}. Here sy = Clca?VM 25+1 with C; being
a positive constant to be determined below. Since {A, = supp(¢; as)} are disjoint, we have
D (we = wp)ra(r)

1
o~ el = ([
=1

(Z 2|, l\wl,mr)ﬁp'(r)dr)é.

K 2

N|=

g )

Since p'(r) = ag over each A\;, we have

L Wt (r) 20 (r)de > @L e () 2 = ao L2R25H [ 2
0 Y4

Meanwhile, applying the Vashamov-Gilbert bound ([Tsy08, Lemma 2.9], see Lemma A.8), one can obtain
a subset {w® 1} with K > 25/% such that Zf(wék) - wék ))2 > & for any k # k' € {1,..., K}. Thus,

SIS

1 K
o = ey > yaaLniy ko Y(ee - ?)

=1
B
1
Z@Lhﬁ_?q/ /8—2\/71}( > ICONM 25+1_23NM
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with Cl \/7L( Lo )'3\/_ Cn = C’lcaﬁ, = %\/a__OL(LO/ZlcO’N)ﬁ by recalling that K = [covNMﬁ] and
= Sno = (A.23).
To verify Condition (C3) for each fixed dataset X1, .-, XM we ﬁrst compute the Kullback diver-

gence. Recall rj? = [ X" — X" and 1} = ij:nxlm then Ry[X™]; = & ZJ# o(ri7)ri;. By the Assump-

tion 2.1 on the noise 7 (i.e., being i.i.d. with a distribution p, satisfying {p,(u)log pn(zf—i-)v) du < cp|v|?

for all |v| < vp), we obtain

KL(]PkaPO) = J flog Wll_:[l pn( R¢k M Xm Wll_:[l pn du
-y [rog )
m=1 pTi(u - R¢k,M [Xm]) !
<o 2 | Rigyong [X ™ e
m=1

Employing Jensen’s inequality, we have
N
”RlﬁkM[Xm]H]RNd_Z‘_ZK@gM z] ‘ <2 2|¢kM z]
=1 J#i =1 ];éz
Recalling that ¢y ar(r; ) Zl 1% wlM( ZL) where supp (¢ 1) S A are disjoint and |1,/)17M(7“Z-L)| =
thﬂ( ) LA [t ]o L gmen,y, we have

Mw

[ (P2 = | Y

O Zw!wM1j><M%w@2um%w

l

Il
_

where we have used the fact that 0 < wlgk) <1
Combining the above three inequalities, we obtain

o LRy
KL(Pk7PO) M¢max Z Z Z 1{7""‘6&@}

i,7=1;i#j m=11=1
2
< eq2 o LN MRS,

where the second ineqaulty follows from that Z%:l Zlfi 1 Lgmen,y < M since the intervals {Ay} are
disjoint. Hence, recalling that has = Lo/(8noK) in (A.23), K = 25/8 and K = [CO,NMTI‘H], we obtain
Ly \*
L*NM -
(8n0K>
< eqthax LN (Lo/8n0)* ¢y /'K < alog(K)

max

% Z KL(Py, Po) < cyth2a LENMB3S = ¢ )2
k=1

with
o = 8ey2 L2N (Lo/Sn0) ey 30 " (A.25)
To ensure o < % for all N, we need
11
co.N > (64cyth L*(Lo/8ng)*) 2551 N 2551,

Setting co v = CONﬁ with Cp = 2(64cn¢glaxL2(L0/8no)25)ﬁ, we obtain the desired bound in
Condition (C3). m
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