Joint state–parameter estimation for nonlinear stochastic energy balance models

Fei Lu1 Nils Weitzel2 Adam Monahan3

1Department of Mathematics, Johns Hopkins
2Meteorological Institute, University of Bonn, Germany
3School of Earth and Ocean Science, University of Victoria, Canada

SIAM DS 2019, May 22
1. An SPDE from paleoclimate reconstruction
 - Stochastic energy balance model
 - State space model representation

2. Bayesian joint state-parameter estimation
 - Sampling the posterior: Particle MCMC
 - Ill-posedness: regularized posterior

3. Numerical results
 - Parameter estimation
 - State estimation
Paleoclimate: reconstruct past climate temperature from proxy data

- the temperature: a spatio-temporal process
 - physically laws: energy balance → SPDEs
 - discretized: a high-D process with spatial correlation

Sparse and noisy data

- Proxy data: historical data, tree rings, ice cores, fossil pollen, ocean sediments, coral etc.

Plan: inference of SPDEs from sparse noisy data

- joint state-parameter estimation
The SPDEs: stochastic Energy Balance Models

Idealized atmospheric energy balance (Fanning&Weaver1996)

\[
\begin{align*}
\partial_t u &= Q_T + Q_{SW} + Q_{SH} + Q_{LH} + Q_{LW} - Q_{LPW} \\
&= \nabla \cdot (\nu \nabla u) + \theta_0 + \theta_1 u + \theta_4 u^4 + \mathcal{W}(t, x) \\
\end{align*}
\]

- \(\theta = (\theta_k)\): unknown parameters
 - prior: a range of physical values
 - \(g_\theta(u)\) has a \textbf{stable} fixed point

- \(\mathcal{W}(t, x)\): Gaussian noise,
 - white-in-time Matern-in-space

Data: sparse noisy observations
State space model formulation

SEBM: \[\frac{\partial}{\partial t} u = \nabla \cdot (\nu \nabla u) + \sum_{k=0,1,4} \theta_k u^k + W(t, x) \]

Observation data: \[y_{t_i} = H(u(t_i, x)) + V_i \]

Discretization (simplification):
- finite elements in space
- semi-backward Euler in time

State space model

SEBM: \[U_n = g(\theta, U_{n-1}) + W_n \]

Observation data: \[y_n = HU_n + V_n \]
Joint parameter-state estimation

SEBM: \[U_n = g(\theta, U_{n-1}) + W_n \]
Observation data: \[y_n = HU_n + V_n \]

Goal: Given \(y_{1:N} \), we would like to jointly estimate \((\theta, U_{1:N})\)
- Gaussian prior for \(\theta \)
- 12 spatial nodes, 100 time steps

![Solution at time step n =10](image1)

![Trajectories of all 12 nodes](image2)
Bayesian joint state-parameter estimation

Bayesian approach:

\[p(\theta, u_{1:N}|y_{1:N}) \propto p(\theta)p(u_{1:N}|\theta)p(y_{1:N}|u_{1:N}) \]

- Posterior: quantifies the uncertainties

Approximate the posterior by sampling

- high dimensional (> \(10^3\)),
- non-Gaussian, mixed types of variables \(\theta, u_{1:N}\)
- Gibbs Monte Carlo: \(U_{1:N}|\theta\) and \(\theta|U\) iteration
 - \(U_{1:N}|\theta\) needs highD proposal density \(\rightarrow\) Sequential MC
 - combine SMC with Gibbs (MCMC) \(\rightarrow\)

Particle MCMC methods based on conditional SMC
Sampling: particle MCMC

Particle MCMC (Andrieu&Doucet&Holenstein10)

- Combines Sequential MC with MCMC:
 - SMC: seq. importance sampling \rightarrow highD proposal density
 - conditional SMC: keep a reference trajectory in SMC
 - MCMC transition by conditional SMC
 \rightarrow target distr invariant even w/ a few particles

- Particle Gibbs with Ancestor Sampling (Lindsten&Jordan&Schon14)
 - Update the ancestor of the reference trajectory
 - Improving mixing of the chain
Ill-posed inverse problem

For the Gaussian prior $p(\theta)$,
unphysical samples of posterior: systems blowing up
Ill-posed inverse problem

For the Gaussian prior $p(\theta)$, unphysical samples of posterior: systems blowing up

Parameter estimation is ill-posed:

Singular Fisher infomation matrix

\rightarrow large oscillation in sample θ from Gibbs $\theta | \hat{U}_{1:N}$

Std of errors of MLE from noisy observations
Regularized posterior

Recall the regularization in variational approach

Variational: \[(\hat{\theta}, \hat{u}_{1:N}) = \arg \min_{(\theta, u_{1:n})} C_{\lambda,y_{1:N}}(\theta, u_{1:N}) \]

Bayesian: \[p_{\lambda}(\theta, u_{1:N}|y_{1:N}) \propto p(\theta)^{\lambda} p(y_{1:N}|u_{1:N})p(u_{1:N}|\theta) \]

\[
C_{\lambda,y_{1:N}}(\theta, u_{1:N}) = \lambda \log p(\theta) + \log[p(y_{1:N}|u_{1:N})p(u_{1:N}|\theta)]
\]

\[
= \lambda \left(\log p(\theta) + \frac{1}{\lambda} \log[p(y_{1:N}|u_{1:N})p(u_{1:N}|\theta)] \right)
\]

- \(\lambda = 1 \): Standard posterior \(\overset{N \to \infty}{\sim} \) likelihood\(^1\)
- \(\lambda = N \): regularized posterior

\[p_{\lambda}(\theta, u_{1:N}|y_{1:N}) \propto p(\theta) \left[p(y_{1:N}|u_{1:N})p(u_{1:N}|\theta) \right]^{1/N} \]

\(^1\)Bernstein-von Mises theorem
posterior close to prior;

Errors in 100 simulations

<table>
<thead>
<tr>
<th></th>
<th>θ_0</th>
<th>θ_1</th>
<th>θ_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Posterior mean</td>
<td>-0.44 ± 0.58</td>
<td>0.09 ± 0.42</td>
<td>0.11 ± 0.20</td>
</tr>
<tr>
<td>MAP</td>
<td>-0.32 ± 0.61</td>
<td>0.02 ± 0.42</td>
<td>0.03 ± 0.21</td>
</tr>
</tbody>
</table>
State estimation

Observed node: noise filtered

Unobserved node: large spread
State estimation

Observed node: noise filtered

Unobserved node: large spread

Sample trajectories of node 1. Relative error of Mean = 0.007

Sample trajectories of node 2. Relative error of Mean = 0.008

Time steps

State

Probability
Observing more or less nodes:

When more modes are observed:

- State estimation gets more accurate

- Parameter estimation does not improve much:
 The posterior keeps close to prior due to the need of regularization
Bayesian approach to jointly estimate parameter-state

- a stochastic energy balance model
- sparse and noisy data
- Ill-posed parameter estimation problem
 (The parameters are correlated on a lowD manifold)

Introduced a regularized posterior:

- Enabling state estimation
- Large uncertainty in parameter estimation due to ill-posedness
Open questions

1. Re-parametrization/ nonparametric to avoid ill-posedness?

2. How many nodes need to be observed (for large mesh)?
 (theory of determining modes)
Open questions

1. Re-parametrization/ nonparametric to avoid ill-posedness?

2. How many nodes need to be observed (for large mesh)? (theory of determining modes)

Thank you!