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Problem and motivation

Problem: ensemble prediction of x(t)

x ′= F (x) + U(x , y), resolved scales
y ′ = G(x , y), subgrid-scales

Data:{x(nh)}

Motivation:

Model reduction by data-driven modeling

 2

Why? 
- Param. est. 
- Data assimilation 
- UQ 
- dynamical mechanisms 
- …

Goal: xn+1 = f(xn) + · · ·orẋ= f(x) + · · ·
- Statistics: time correlations, marginals, … 
- Forecast (if possible)

=)

φ

t

Ẋt = F(Xt) , Xt 2 RD

Observe
xn = ⇡Xn�t + ⌫n

⇡ : RD! Rd , d⌧ D

xn

φ

t

Many approaches 
- Slow-fast; equation-free… 
- Linear models: AR(MA), …  
- Moment closures 
- Reduced order modeling: POD [Lumley, Holmes…]; 

DMD [Schmid…]; SINDy [Kutz, Brunton]; LSPG [Carlberg…]; … 
- Koopman / transfer operator [Mezic, Froyland…] 
- Mori-Zwanzig [Chorin; Stinis; Karniadakis, Venturi; Li; Levermore…] 

- Machine learning [Kevrekidis; Maggioni; Ott; Sauer…] 
- …

- High-dim 
- Chaotic / stochastic fit

arise from numerical ODE/PDE/SDEs
Data assimilation: partial noisy observation

I ensemble prediction
I can only afford to resolve x ′ = F (x)

Objective: a closed numerical model of x that
captures key statistical + dynamical properties
ensemble simulations (with a large time-step)
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Example

Example

Numerical stochastic Burgers equation
vt = νvxx − vvx + f (x , t), x ∈ [0,2π], periodic BC

Fourier-Galerkin: N Fourier modes
Need small space-grid & time-step:
N & 10/ν, dt ∼ 1/N by (CFL)
→ Costly: e.g. ν = 10−3 → N ∼ 104, time steps= 104T

Interested in: efficient predictions of low modes (v̂1:K ), K << N.

Question: a reduced model of low modes?

Space-time reduction:
Reduce spatial dimension + Increase time-step size
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Review

Closure modeling, model error UQ, subgrid parametrization

Direct constructions:

non-linear Galerkin [Fioas, Jolly,

Kevrekidis, Titi...]

moment closure [Levermore, Morokoff...]

Mori-Zwanzig formalism
memory→ non-Markov process
[Chorin, Hald, Kupferman, Stinis, Li, Darve, E,

Karniadarkis, Venturi, Duraisamy ...]

Data-driven RM

PCA/POD, DMD, Kooperman [Holmes,

Lumley, Marsden, Wilcox, Kutz, Rowley ...]

ROM closure [Farhat, Carlberg, Iliescu, Wang...]

stochastic models: SDEs/GLEs,
time series models [Chorin/Majda/Gil groups]

machine learning (... )

Question:

when and why data-driven approach work?

Best space-time time reduction?

This talk: a stochastic modeling perspective — statistical inference
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Flow map approximation

x ′ = F (x) + U(x , y), y ′ = G(x , y).

Data {x(nh)}Nn=1
Classical numerical schemes(
xn
yn

)
= Fn

(
xn−1
yn−1

)
trajectory-wise Approx.

fine resolution
(stability and accuracy)

Closure flow map:
xn = Fn(x1:n−1):

I Taylor expansion no
longer work

I depend on subsgrid
scale trajectory

Data-driven methods:
approximate the flow map

Fn(x1:n−1) ≈ F̂n(xn−p:n−1)

average the subgrid-scales
KEY: approximate in distribution

Learning: curse of dimensionality

I machine learning: blackbox,
many parameters

I parametric inference
use the structure of the map
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NARMA: a numerical time series model

(Xn − Xn−1)/h = Rh(Xn−1) +
∑

i

ciφi (xn−p:n−1, ξn−p:n−1) + ξi

NARMA(p,q) [Chorin-Lu (15)]

(Xn − Xn−1)/h = Rh(Xn−1) + Zn,

Zn = Φn + ξn,

Φn =

p∑
j=1

ajXn−j +
r∑

j=1

s∑
i=1

bi,jPi (Xn−j )︸ ︷︷ ︸
Auto-Regression

+

q∑
j=1

cjξn−j︸ ︷︷ ︸
Moving Average

Rh(Xn−1) from a numerical scheme for x ′ ≈ F (x)

Φn depends on the past

NARMAX in system identification Zn = Φ(Z ,X ) + ξn,
Tasks:
Structure derivation: terms and orders (p, r , s,q) in Φn;
Parameter estimation: aj ,bi,j , cj , and σ. Conditional MLE
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Example: a chaotic system

Example: the two-layer Lorenz 96 model
A NARMA model for the X variables

d
dt

xk = xk−1 (xk+1 − xk−2)− xk + 10− 1
J

∑
j

yk,j ,

d
dt

yk,j =
1
ε
[yk,j+1(yk,j−1 − yk,j+2)− yk,j + xk ],

where x ∈ R18, y ∈ R360.

no scale-separation

Ansatz: polynomial with 2-time lag

tolerate to large time-step

The NARMA model can

reproduces statistics: ACF, PDF
[Chorin-Lu15PNAS]

improves Data Assimilation
[Lu-Tu-Chorin17MWR]
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Kuramoto-Sivashinsky Equation

Kuramoto-Sivashinsky: vt = −vxx − νvxxxx − vvx

Burgers: vt = νvxx − vvx + f (x , t),

Goal: a closed model for (v̂1:K ), K << N.

d
dt

v̂k = −qνk v̂k +
ik
2

∑
|l|≤K ,|k−l|≤K

v̂l v̂k−l + f̂k (t),

+
ik
2

∑
|l|>K or |k−l|>K

v̂l v̂k−l

View (v̂1:K ) ∼ x , (v̂k>K ) ∼ y : x ′ = F (x) + U(x , y), y ′ = G(x , y).

TODO: represent the effects of high modes to the low modes
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Kuramoto-Sivashinsky Equation

Derivation of a parametric form (KSE): vt = −vxx − νvxxxx − vvx
Let v = u + w . In operator form: vt = Av + B(v),

du
dt

= PAu + PB(u) + [PB(u + w)− PB(u)]

dw
dt

= QAw + QB(u + w)

Nonlinear Galerkin: approximate inertial manifold (IM)1

dw
dt ≈ 0⇒ w ≈ A−1QB(u + w)⇒ w ≈ ψ(u)

Need: spectral gap condition ;
dim(u) > K :

parametrization with time delay (Lu-Lin17)
A time series (NARMA) model of the form

un
k = Rδ(un−1

k ) + gn
k + Φn

k ,

with Φn
k := Φn

k (un−p:n−1, gn−p:n−1) in form of

Φn
k =

p∑
j=1

cv
k,j u

n−j
k + cR

k,j R
δ(un−j

k ) + cw
k,j

∑
|k−l|≤K ,K<|l|≤2K

or |l|≤K ,K<|k−l|≤2K

ũn−1
l ũn−j

k−l

KEY: high-modes = functions of low modes

1Foias, Constantin, Temam, Sell, Jolly, Kevrekidis, Titi et al (88-94)
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Kuramoto-Sivashinsky Equation

Test setting: ν = 3.43
N = 128, dt = 0.001
Reduced model: K = 5,δ = 100dt

3 unstable modes

2 stable modes

Long-term statistics:

reproduce PDF /ACF

Prediction: Forecast time:

truncated sys.: T ≈ 5

NARMA: T ≈ 50
(≈ 2 Lyapunov time)
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Stochastic Burgers equation

Derivation of parametric form: stochastic Burgers
vt = νvxx − vvx + f (x , t)

Let v = u + w . In operator form:
du
dt

= PAu + PB(u) + Pf + [PB(u + w)− PB(u)]

dw
dt

= QAw + QB(u + w) + Qf

spectral gap: Burgers ? (likely not)
w(t) is not function of u(t), but a functional of its path

Integration instead:

w(t) = e−QAt w(0) +

∫ t

0
e−QA(t−s)[QB(u(s) + w(s))]ds

wn ≈ c0QB(un) + c1QB(un−1) + · · ·+ cpQB(un−p)

Linear in parameter approximation:

PB(u + w)− PB(u) = P[(uw)x + (u2)x ]/2 ≈ P[(uw)x ]/2 + noise

≈
p∑

j=0

cj P[(unQB(un−j ))x ] + noise

KEY: high-modes = functionals of paths of low modes
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Stochastic Burgers equation

A time series (NARMA) model of the form

un
k = Rδ(un−1

k ) + f n
k + gn

k + Φn
k ,

with Φn
k := Φn

k (un−p:n−1, f n−p:n−1) in form of

Φn
k =

p∑
j=1

cv
k ,ju

n−j
k + cR

k ,jR
δ(un−j

k ) + cw
k ,j

∑
|k−l|≤K ,K<|l|≤2K

or |l|≤K ,K<|k−l|≤2K

ũn−1
l ũn−j

k−l
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Stochastic Burgers equation

Numerical tests:
ν = 0.05, K0 = 4→ random shocks

Full model: N = 128,dt = 0.005

Reduced model: K = 8, δ = 20dt
1 2 3 4 5 6 7 8

Wavenumber

10-2

10-1

100
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pe

ct
ru

m
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Energy spectrum
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Stochastic Burgers equation
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Stochastic Burgers equation
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Optimal space-time reduction

Optimal memory length

(Xn − Xn−1)/h = +Rh(Xn−1) +
∑

i

ciφi (xn−p:n−1, ξn−p:n−1) + ξi

Best performance at medium memory length?

Relative error of energy
spectrum

first decrease,
then increase
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Optimal space-time reduction

Optimal space-time reduction

How small can K be? (Space reduction) arbitrary

How large can δ be? (Time reduction) numerical stability

What is the optimal space-time reduction ratio?

Best performance when: CFL (truncated Galerkin) = CFL(full model).

CFL numbers

NARMA

I stable up-to large gap
I best at intersections

(squares)
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a priori estimate on optimal space-time reduction?
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Optimal space-time reduction

Non-global Lipschitz SDE

Ergodic with non-global Lipschitz drift:

dXt = f (Xt )dt + σdBt

Explicit scheme: unstable/inaccurate [Mattingly-Stuart-Highm02]

Implicit scheme: costly (implicit, small ∆t)

Infer from data an explicit scheme [Li-Lu-Ye21]

(Xn − Xn−1)/h =
∑

i

ciφi (Xn−1,∆Bn) + ξi

Data from an implicit scheme

φi from parametrizing numerical schemes
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Optimal space-time reduction

Non-global Lipschitz SDE

Non-global Lipschitz drift:

dXt = f (Xt)dt + σdBt

The inferred explicit scheme [Li-Lu-Ye21]

tolerate large time-step & keep order

convergent estimators (MLE)

Insights on optimal time-step

I medium time-step is the best
I trade-off: approx. error v.s.

sampling /numerical error
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Summary

x ′ = f(x) + U(x,y), y ′= g(x,y).
Data {x(nh)}Nn=1

“X ′ = f (X ) + Z (t , ω)”

Inference

“Xn+1 = Xn + Rh(Xn) + Zn ”
for prediction

Discretization

Inference

Inference-based stochastic model reduction

non-intrusive time series (NARMA)

parametrize projections on path space

xn = Fn(x1:n−1) ≈
∑

k

ck Φk
n−p:n−1

→ space-time model reduction
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Outlook

a bright future for Numerical + inferential
general dissipative systems + model selection

post-processing to predict shocks

optimal space-time/time reduction
I bias-variance tradeoff: “the best in the medium (Zhongyong) ”
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