Motivation and objective
 Inference-based Model reduction
 From nonlinear Galerkin to inference
 Summary and outlook

Stochastic model reduction of nonlinear dynamics by inference

Fei Lu

Department of Mathematics, Johns Hopkins

Joint work with: Alexandre J. Chorin (UC Berkeley), Xuemin Tu (KU) Kevin K. Lin (U. of Arizona) Xingjie Li (UNC) and Felix Ye (JHU)

> March 31, 2021 Mathematics Department, U. of Kansas

FL acknowledges supports from JHU, LBL, NSF.

Motivation and objective

- Problem and motivation
- Example
- Review

Inference-based Model reduction

- Flow map approximation
- NARMA: a numerical time series model
- Example: a chaotic system
- 3 From nonlinear Galerkin to inference
 - Kuramoto-Sivashinsky Equation
 - Stochastic Burgers equation
 - Optimal space-time reduction

 Motivation and objective
 Inference-based Model reduction
 From nonlinear Galerkin to inference
 Summary and outlook

 •···
 ····
 ····
 ····
 ····
 ····
 ····
 Summary and outlook

Problem and motivation

Problem: ensemble prediction of x(t)

x' = F(x) + U(x, y), resolved scales y' = G(x, y), subgrid-scales Data:{x(nh)}

Motivation:

- arise from numerical ODE/PDE/SDEs
- Data assimilation: partial noisy observation
 - ensemble prediction
 - can only afford to resolve x' = F(x)

Objective: a closed numerical model of x that

- captures key statistical + dynamical properties
- ensemble simulations (with a large time-step)

Motivation and objective ○●○	Inference-based Model reduction	From nonlinear Galerkin to inference	Summary and outlook
Example			
Example			

Numerical stochastic Burgers equation

 $v_t = \nu v_{xx} - vv_x + f(x, t), x \in [0, 2\pi]$, periodic BC

- Fourier-Galerkin: N Fourier modes
- Need small space-grid & time-step: $\frac{N \ge 10/\nu, dt \sim 1/N \text{ by (CFL)}}{\rightarrow \text{ Costly: e.g. } \nu = 10^{-3} \rightarrow N \sim 10^4, \text{ time steps} = 10^4 T$

Interested in: efficient predictions of low modes ($\hat{v}_{1:K}$), $K \ll N$.

Question: a reduced model of low modes?

Space-time reduction:

Reduce spatial dimension + Increase time-step size

Motivation and objective	Inference-based Model reduction	From nonlinear Galerkin to inference	Summary and outlook
000			

Review

Closure modeling, model error UQ, subgrid parametrization

Direct constructions:

- non-linear Galerkin [Fioas, Jolly, Kevrekidis, Titi...]
- moment closure [Levermore, Morokoff...]
- Mori-Zwanzig formalism memory → non-Markov process [Chorin, Hald, Kupferman, Stinis, Li, Darve, E, Karniadarkis, Venturi, Duraisamy ...]

Data-driven RM

- PCA/POD, DMD, Kooperman [Holmes, Lumley, Marsden, Wilcox, Kutz, Rowley ...]
- ROM closure [Farhat, Carlberg, Iliescu, Wang...]
- <u>stochastic models</u>: SDEs/GLEs, time series models [Chorin/Majda/Gil groups]
- machine learning (...)

Question:

- when and why data-driven approach work?
- Best space-time time reduction?

This talk: a stochastic modeling perspective — statistical inference

Motivation and objective	Inference-based Model reduction	From nonlinear Galerkin to inference	Summary and outlook

Motivation and objective

- Problem and motivation
- Example
- Review

Inference-based Model reduction

- Flow map approximation
- NARMA: a numerical time series model
- Example: a chaotic system
- 3 From nonlinear Galerkin to inference
 - Kuramoto-Sivashinsky Equation
 - Stochastic Burgers equation
 - Optimal space-time reduction

Motivation and objective	Inference-based Model reduction	From nonlinear Galerkin to inference	Summary and outlook
	000		

Flow map approximation

$$x' = F(x) + U(x, y), y' = G(x, y).$$

Data $\{x(nh)\}_{n=1}^{N}$

Classical numerical schemes $\begin{pmatrix}
x_n \\
y_n
\end{pmatrix} = \mathbf{F}_n \begin{pmatrix}
x_{n-1} \\
y_{n-1}
\end{pmatrix}$

- trajectory-wise Approx.
- fine resolution (stability and accuracy)
- Closure flow map:

 $x_n = F_n(x_{1:n-1})$:

- Taylor expansion no longer work
- depend on subsgrid scale trajectory

Motivation and objective

Inference-based Model reduction

From nonlinear Galerkin to inference Summary and outlook

Flow map approximation

Classical numerical schemes $\begin{pmatrix}
x_n \\
y_n
\end{pmatrix} = \mathbf{F}_n \begin{pmatrix}
x_{n-1} \\
y_{n-1}
\end{pmatrix}$

- trajectory-wise Approx.
- fine resolution (stability and accuracy)
- Closure flow map: $x_n = F_n(x_{1:n-1})$:
 - Taylor expansion no longer work
 - depend on subsgrid scale trajectory

x' = F(x) + U(x, y), y' = G(x, y).Data $\{x(nh)\}_{n=1}^{N}$

Data-driven methods: approximate the flow map

$$F_n(x_{1:n-1}) \approx \widehat{F}_n(x_{n-p:n-1})$$

- average the subgrid-scales KEY: approximate in distribution
- Learning: curse of dimensionality
 - machine learning: blackbox, many parameters
 - parametric inference use the structure of the map

From nonlinear Galerkin to inference Summary and outlook

NARMA: a numerical time series model

$$(X_n - X_{n-1})/h = R_h(X_{n-1}) + \sum_i c_i \phi_i(X_{n-p:n-1}, \xi_{n-p:n-1}) + \xi_i$$

NARMA(p, q) [Chorin-Lu (15)]

$$(X_n - X_{n-1})/h = R_h(X_{n-1}) + Z_n,$$

$$Z_n = \Phi_n + \xi_n,$$

$$\Phi_n = \underbrace{\sum_{j=1}^p a_j X_{n-j}}_{\text{Auto-Regression}} \underbrace{\sum_{i=1}^s b_{i,j} P_i(X_{n-j})}_{\text{Moving Average}} + \underbrace{\sum_{j=1}^q c_j \xi_{n-j}}_{\text{Moving Average}}$$

• $R_h(X_{n-1})$ from a numerical scheme for $x' \approx F(x)$

• Φ_n depends on the past

• NARMAX in system identification $Z_n = \Phi(Z, X) + \xi_n$, **Tasks:**

<u>Structure derivation</u>: terms and orders (p, r, s, q) in Φ_n ; Parameter estimation: $a_i, b_{i,j}, c_j$, and σ . Conditional MLE Motivation and objective Inference-based Model reduction From nonlinear Galerkin to inference Summary and outlook

Example: a chaotic system

Example: the two-layer Lorenz 96 model

A NARMA model for the X variables $\frac{d}{dt}x_{k} = x_{k-1}(x_{k+1} - x_{k-2}) - x_{k} + 10 - \frac{1}{J}\sum_{j}y_{k,j},$ d = 1

$$\frac{d}{dt}y_{k,j}=\frac{1}{\varepsilon}[y_{k,j+1}(y_{k,j-1}-y_{k,j+2})-y_{k,j}+x_k],$$

where $x \in \mathbb{R}^{18}$, $y \in \mathbb{R}^{360}$.

- no scale-separation
- Ansatz: polynomial with 2-time lag
- tolerate to large time-step

The NARMA model can

- reproduces statistics: ACF, PDF [Chorin-Lu15PNAS]
- improves Data Assimilation

[Lu-Tu-Chorin17MWR]

Motivation and objective

- Problem and motivation
- Example
- Review

2 Inference-based Model reduction

- Flow map approximation
- NARMA: a numerical time series model
- Example: a chaotic system
- 3 From nonlinear Galerkin to inference
 - Kuramoto-Sivashinsky Equation
 - Stochastic Burgers equation
 - Optimal space-time reduction

Motivation and objective	Inference-based Model reduction	From nonlinear Galerkin to inference	Summary and outlook
Kuramoto-Sivashinsky Equation			

- Kuramoto-Sivashinsky: $v_t = -v_{xx} \nu v_{xxxx} vv_x$
- Burgers: $v_t = \nu v_{xx} vv_x + f(x, t),$

Goal: a closed model for $(\hat{v}_{1:K})$, $K \ll N$.

$$\begin{aligned} \frac{d}{dt}\widehat{v}_{k} &= -q_{k}^{\nu}\widehat{v}_{k} + \frac{ik}{2}\sum_{|l| \leq K, |k-l| \leq K}\widehat{v}_{l}\widehat{v}_{k-l} + \widehat{f}_{k}(t), \\ &+ \frac{ik}{2}\sum_{|l| > K \text{ or } |k-l| > K}\widehat{v}_{l}\widehat{v}_{k-l} \end{aligned}$$

View $(\widehat{v}_{1:K}) \sim x$, $(\widehat{v}_{k>K}) \sim y$: x' = F(x) + U(x, y), y' = G(x, y).

TODO: represent the effects of high modes to the low modes

Motivation and objective Inference-based Model reduction From nonlinear Galerkin to inference Summary and outlook

Kuramoto-Sivashinsky Equation

Derivation of a parametric form (KSE): $v_t = -v_{xx} - \nu v_{xxxx} - v v_x$

Let v = u + w. In operator form: $v_t = Av + B(v)$,

$$\frac{du}{dt} = PAu + PB(u) + [PB(u+w) - PB(u)]$$
$$\frac{dw}{dt} = QAw + QB(u+w)$$

Nonlinear Galerkin: approximate inertial manifold (IM)¹

•
$$\frac{dw}{dt} \approx 0 \Rightarrow w \approx A^{-1}QB(u+w) \Rightarrow w \approx \psi(u)$$

- Need: spectral gap condition
- dim(u) > K:

¹Foias, Constantin, Temam, Sell, Jolly, Kevrekidis, Titi et al (88-94)

Motivation and objective

Inference-based Model reduction From nonlinear Galerkin to inference Summary and outlook

Kuramoto-Sivashinsky Equation

Derivation of a parametric form (KSE): $v_t = -v_{xx} - \nu v_{xxxx} - vv_x$

Let v = u + w. In operator form: $v_t = Av + B(v)$,

$$\frac{du}{dt} = PAu + PB(u) + [PB(u+w) - PB(u)]$$
$$\frac{dw}{dt} = QAw + QB(u+w)$$

Nonlinear Galerkin: approximate inertial manifold (IM)¹

- $\frac{dw}{dt} \approx 0 \Rightarrow w \approx A^{-1}QB(u+w) \Rightarrow w \approx \psi(u)$
- Need: spectral gap condition

dim(u) > K: parametrization with time delay (Lu-Lin17)

A time series (NARMA) model of the form

$$u_k^n = R^{\delta}(u_k^{n-1}) + \frac{g_k^n}{g_k^n} + \Phi_k^n,$$

with $\Phi_k^n := \Phi_k^n(u^{n-p:n-1}, g^{n-p:n-1})$ in form of $\Phi_k^n = \sum_{i=1}^p c_{k,j}^v u_k^{n-j} + c_{k,j}^R R^{\delta}(u_k^{n-j}) + c_{k,j}^w \sum_{\substack{|k-l| \le K, K < |l| \le 2K \\ \propto 1 |l| < K K < |k-l| \le 2K}} \widetilde{u}_l^{n-1} \widetilde{u}_{k-l}^{n-j}$

KEY: high-modes = functions of low modes

¹Foias, Constantin, Temam, Sell, Jolly, Kevrekidis, Titi et al (88-94)

 Motivation and objective
 Inference-based Model reduction

 000
 000

From nonlinear Galerkin to inference Summary and outlook

Kuramoto-Sivashinsky Equation

Test setting: $\nu = 3.43$ N = 128, dt = 0.001Reduced model: K = 5, $\delta = 100dt$

- 3 unstable modes
- 2 stable modes

 Motivation and objective
 Inference-based Model reduction

 000
 000

From nonlinear Galerkin to inference Summary and outlook

Kuramoto-Sivashinsky Equation

Test setting: $\nu = 3.43$ N = 128, dt = 0.001Reduced model: K = 5, $\delta = 100dt$

- 3 unstable modes
- 2 stable modes

Long-term statistics:

reproduce PDF /ACF

Prediction: Forecast time:

- truncated sys.: $T \approx 5$
- NARMA: *T* ≈ **50** (≈ 2 Lyapunov time)

From nonlinear Galerkin to inference Summary and outlook

Stochastic Burgers equation

Derivation of parametric form: stochastic Burgers

$$\mathbf{v}_t = \nu \mathbf{v}_{\mathbf{X}\mathbf{X}} - \mathbf{v}\mathbf{v}_{\mathbf{X}} + f(\mathbf{X}, t)$$

Let v = u + w. In operator form:

$$\frac{du}{dt} = PAu + PB(u) + Pf + [PB(u+w) - PB(u)]$$
$$\frac{dw}{dt} = QAw + QB(u+w) + Qf$$

spectral gap: Burgers ? (likely not)
 w(t) is not function of u(t), but a functional of its path

 Motivation and objective
 Inference-based Model reduction

 000
 000

From nonlinear Galerkin to inference Summary and outlook

Stochastic Burgers equation

Derivation of parametric form: stochastic Burgers

$$\mathbf{v}_t = \nu \mathbf{v}_{\mathbf{X}\mathbf{X}} - \mathbf{v}\mathbf{v}_{\mathbf{X}} + f(\mathbf{X}, t)$$

Let v = u + w. In operator form:

$$\frac{du}{dt} = PAu + PB(u) + Pf + [PB(u+w) - PB(u)]$$
$$\frac{dw}{dt} = QAw + QB(u+w) + Qf$$

spectral gap: Burgers ? (likely not)
 w(t) is not function of u(t), but a functional of its path

Integration instead:

$$w(t) = e^{-QAt}w(0) + \int_0^t e^{-QA(t-s)} [QB(u(s) + w(s))] ds$$
$$w^n \approx c_0 QB(u^n) + c_1 QB(u^{n-1}) + \dots + c_p QB(u^{n-p})$$

Linear in parameter approximation:

$$PB(u+w) - PB(u) = P[(uw)_x + (u^2)_x]/2 \approx P[(uw)_x]/2 + noise$$
$$\approx \sum_{j=0}^{p} c_j P[(u^n QB(u^{n-j}))_x] + noise$$

KEY: high-modes = functionals of paths of low modes

Motivation and objective	Inference-based Model reduction	From nonlinear Galerkin to inference	Summary and outlook
		0000000000	

Stochastic Burgers equation

A time series (NARMA) model of the form

$$u_k^n = R^{\delta}(u_k^{n-1}) + f_k^n + g_k^n + \Phi_k^n,$$

with $\Phi_k^n := \Phi_k^n(u^{n-p:n-1}, f^{n-p:n-1})$ in form of

$$\Phi_{k}^{n} = \sum_{j=1}^{p} c_{k,j}^{v} u_{k}^{n-j} + c_{k,j}^{R} R^{\delta}(u_{k}^{n-j}) + c_{k,j}^{w} \sum_{\substack{|k-l| \le K, K < |l| \le 2K \\ \text{or } |l| \le K, K < |k-l| \le 2K}} \widetilde{u}_{l}^{n-1} \widetilde{u}_{k-l}^{n-j}$$

Stochastic Burgers equation

Numerical tests: $\nu = 0.05, K_0 = 4 \rightarrow$ random shocks

From nonlinear Galerkin to inference Summary and outlook

Stochastic Burgers equation

Cross-ACF of energy (4th moments!)

From nonlinear Galerkin to inference Summary and outlook

Stochastic Burgers equation

Trajectory prediction in response to force

From nonlinear Galerkin to inference Summary and outlook

Optimal space-time reduction

Optimal memory length

$$(X_n - X_{n-1})/h = +R_h(X_{n-1}) + \sum_i c_i \phi_i(X_{n-p:n-1}, \xi_{n-p:n-1}) + \xi_i$$

Best performance at medium memory length?

Relative error of energy spectrum

 first decrease, then increase

From nonlinear Galerkin to inference Summary and outlook

Optimal space-time reduction

Optimal space-time reduction

- How small can K be? (Space reduction) arbitrary
- How large can δ be? (Time reduction) numerical stability
- What is the optimal space-time reduction ratio?

Best performance when: CFL (truncated Galerkin) = CFL(full model).

- OFL numbers
- NARMA
 - stable up-to large gap
 - best at intersections (squares)

a priori estimate on optimal space-time reduction?

From nonlinear Galerkin to inference Summary and outlook

Optimal space-time reduction

Non-global Lipschitz SDE

Ergodic with non-global Lipschitz drift:

 $dX_t = f(X_t)dt + \sigma dB_t$

- Explicit scheme: unstable/inaccurate [Mattingly-Stuart-Highm02]
- Implicit scheme: costly (implicit, small Δt)

Infer from data an explicit scheme [Li-Lu-Ye21]

$$(X_n - X_{n-1})/h = \sum_i c_i \phi_i (X_{n-1}, \Delta B_n) + \xi_i$$

- Data from an implicit scheme
- *φ_i* from parametrizing numerical schemes

From nonlinear Galerkin to inference Summary and outlook

Optimal space-time reduction

Non-global Lipschitz SDE

Non-global Lipschitz drift:

 $dX_t = f(X_t)dt + \sigma dB_t$

The inferred explicit scheme [Li-Lu-Ye21]

- tolerate large time-step & keep order
- convergent estimators (MLE)
- Insights on optimal time-step
 - medium time-step is the best
 - trade-off: approx. error v.s. sampling /numerical error

Motivation and objective	Inference-based Model reduction	From nonlinear Galerkin to inference	Summary and outlook

Summary

$$x' = f(x) + U(x,y), y' = g(x,y).$$
Data $\{x(nh)\}_{n=1}^{N}$

Inference-based stochastic model reduction

- non-intrusive time series (NARMA)
- parametrize projections on path space

$$x_n = F_n(x_{1:n-1}) \approx \sum_k c_k \Phi_{n-p:n-1}^k$$

 \rightarrow space-time model reduction

Motivation and objective	Inference-based Model reduction	From nonlinear Galerkin to inference	Summary and outlook

Outlook

a bright future for Numerical + inferential

- general dissipative systems + model selection
- post-processing to predict shocks
- optimal space-time/time reduction
 - bias-variance tradeoff: "the best in the medium (Zhongyong) "