Learning interacting kernels of mean-field equations of particle systems

Fei Lu

Department of Mathematics, Johns Hopkins University

Joint with Quanjun Lang

May 26, 2021; SIAM DS21

Thanks the supports from JHU, NSF

- Motivation and problem statement
- 2 Nonparametric regression
- Numerical examples
- Ongoing work and open problems

Problem statement

An inverse problem

Mean-field equation of interacting particles

$$\partial_t u = \nu \Delta u + \nabla \cdot [u(\mathbf{K}_{\phi} * u)], \quad x \in \mathbb{R}^d, t > 0,$$

where $\mathcal{K}_{\phi}(x) = \nabla(\Phi(|x|)) = \phi(|x|) \frac{x}{|x|}$.

Question: identify ϕ from discrete data $\{u(x_m, t_l)\}_{m,l=1}^{M,L}$?

Motivation

Systems of interacting particles/agents

$$\frac{d}{dt}X_{t}^{i} = \frac{1}{N}\sum_{i'=1}^{N}\phi(|X_{t}^{j} - X_{t}^{i}|)\frac{X_{t}^{j} - X_{t}^{i}}{|X_{t}^{j} - X_{t}^{i}|} + \sqrt{2\nu}dB_{t}^{i}, \quad i = 1, \dots, N$$

- X_t^i : the i-th particle's position; B_t^i : Brownian motion
- From Newton's law (2nd-order) + 0-mass \rightarrow 1st-order
- Applications in many disciplines: Statistical physics, quantum mechanics Social science [Motsch-Tadmor2014]
 Epidemiology (Agent-based models for COVID19 at Imperial)

Popkin. Nature(2016)

COVID-19 Simulation Summit

Motivation

Previous work: finite N

Maggioni et al: [Maggioni, L., Tang, Zhong, Miller, Li, Zhang: PNAS19, SPA20, etc]

- Data: many trajectories $\{X_{[0,T]}^{(m)}\}_{m=1}^{M}$.
- Nonparametric regression
 - ▶ Function space of learning: $\mathcal{H} \subset L^2(\rho_T)$ with $\rho_T \leftarrow |X_t^j X_t^i|$
 - minimax convergence rate
 - various systems

Motivation

Large system challenge: $N \rightarrow \infty$

Data at macroscopic scale:

- lack of trajectories $\{X_{[0,T]}^{(m)}\}_{m=1}^{M}$ (recall $X_t \in \mathbb{R}^{Nd}$)
- only population density $u(x, t) = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \delta(X_t^i x)$

Discrete in space-time: $\{u(x_m, t_l)\}_{m,l=1}^{M,L}$

 \Rightarrow Infer kernel in Mean-field equation:

$$\partial_t u = \nu \Delta u + \nabla \cdot \left[u(K_{\phi} * u) \right]$$

Outline

- Motivation and problem statement
- 2 Nonparametric learning
 - A probabilistic loss functional
 - Identifiability: function spaces of learning
 - Rate of convergence
- Numerical examples
- Ongoing work and open problems

Variational approach: minimize a loss functional $\mathcal{E}(\psi)$

$$\partial_t u = \nu \Delta u + \nabla \cdot [u(K_{\phi} * u)]$$

Loss functions that do not work (efficiently)

- discrepancy: *E*(ψ) = ||∂_tu ν∆u ∇.(u(K_ψ * u))||² derivatives approx. from discrete data
- Free energy:
 E(ψ) = *C* + | ∫_{ℝ^d} u[(Ψ − Φ) * u]dx|²
 limitted information from the 1st moment
- Wasserstein-2: *C*(ψ) = W₂(u^ψ, u) costly: require many PDE simulations in optimization

A probabilistic loss functional

A probabilistic loss functional

$$\mathcal{E}(\psi) := \frac{1}{T} \int_0^T \int_{\mathbb{R}^d} \left[\left| K_{\psi} * u \right|^2 u - 2\nu u (\nabla \cdot K_{\psi} * u) + 2\partial_t u (\Psi * u) \right] dx dt$$

Expectation of the negative log-likelihood of the process

$$\left\{egin{array}{l} d\overline{X}_t = - \, {\it K}_{\phi_{true}} st u(\overline{X}_t,t) dt + \sqrt{2
u} d{\it B}_t, \ {\cal L}(\overline{X}_t) = u(\cdot,t), \end{array}
ight.$$

A probabilistic loss functional

A probabilistic loss functional

$$\mathcal{E}(\psi) := \frac{1}{T} \int_0^T \int_{\mathbb{R}^d} \left[\left| K_{\psi} * u \right|^2 u - 2\nu u (\nabla \cdot K_{\psi} * u) + 2\partial_t u (\Psi * u) \right] dx dt$$

Expectation of the negative log-likelihood of the process

$$\left\{egin{array}{l} d\overline{X}_t = - \, {\it K}_{\phi_{true}} * {\it u}(\overline{X}_t,t) dt + \sqrt{2
u} d{\it B}_t, \ {\cal L}(\overline{X}_t) = {\it u}(\cdot,t), \end{array}
ight.$$

- Derivative-in-space free!
- Suitable for high-dimension: $K_{\psi} * u(\overline{X}_t) = \mathbb{E}[K_{\psi}(\overline{X}_t \overline{X}'_t)|\overline{X}_t]$

$$\mathcal{E}(\psi) = \frac{1}{T} \int_0^T \left(\mathbb{E} |K_{\psi} * u(\overline{X}_t)|^2 + \partial_t \mathbb{E} \Psi(\overline{X}_t - \overline{X}'_t) + 2\nu \mathbb{E} [\Delta \Psi(\overline{X}_t - \overline{X}'_t)] \right) dt$$

A probabilistic loss functional

Least squares estimator

$$\mathcal{E}(\psi) := \frac{1}{T} \int_0^T \int_{\mathbb{R}^d} \left[\left| K_{\psi} * u \right|^2 u - 2\nu u (\nabla \cdot K_{\psi} * u) + 2\partial_t u (\Psi * u) \right] dx dt$$
$$= \langle\!\langle \psi, \psi \rangle\!\rangle - 2 \langle\!\langle \psi, \phi \rangle\!\rangle$$

- bilinear form $\langle\!\langle \phi, \psi \rangle\!\rangle = \frac{1}{7} \int_0^T \int_{\mathbb{R}^d} \langle (K_\phi * u), (K_\psi * u) \rangle u(x, t) dx dt$
- Hypothesis space $\mathcal{H}_n = \operatorname{span}\{\phi_i\}_{i=1}^n$: $\psi = \sum_{i=1}^n c_i \phi_i$

$$\Rightarrow \quad \mathcal{E}(\psi) = c^{\top} A c - 2b^{\top} c \text{ with } A_{ij} = \langle\!\langle \phi_i, \phi_j \rangle\!\rangle_{\overline{G}_{T}}$$

$$\Rightarrow \quad \text{Estimator:} \quad \widehat{\phi}_n = \sum_{i=1}^n \widehat{c}_i \phi_i, \qquad \widehat{c} = A^{-1} b$$

• From data $\{u(x_m, t_l)\}_{m,l=1}^{M,L}$:

$$\widehat{\phi}_{n,M,L} = \sum_{i=1}^{n} \widehat{c}_{n,M,L}^{i} \phi_{i}, \quad \text{with } \widehat{c}_{n,M,L} = A_{n,M,L}^{-1} b_{n,M,L}$$

Identifiability

Three fundamental issues

- Identifiability: uniqueness of minimizer, A⁻¹
- Choice of \mathcal{H}_n : B-splines $\{\phi_i\}_{i=1}^n$ and n?
- Convergence rate when Δx = M^{-1/d} → 0?
 → hypothesis testing and model selection

Identifiability

Identifiability and function space of learning

Recall that $\mathcal{H} = \operatorname{span}\{\phi_i\}_{i=1}^n$,

$$oldsymbol{A}_{ij} = \left<\!\!\left< \phi_i, \phi_j \right>\!\!\right>, \quad \left<\!\!\left< \phi, \psi \right>\!\!\right> = \int_{\mathbb{R}^+} \int_{\mathbb{R}^+} \phi(r) \psi(s) \overline{G}_T(r,s) dr ds$$

• function spaces of identifiability: RKHSs [LangLu21]

• \overline{G}_T is Mercer kernel \rightarrow RKHS $H_{\overline{G}_T} \subset L^2(\mathcal{X})$.

•
$$\overline{R}_T = \frac{\overline{G}_T}{\rho_T \otimes \rho_T} \rightarrow \text{RKHS } H_R \subset L^2(\rho_T).$$

• Positive compact operators $L_{\overline{G}_{\tau}}$ and $L_{\overline{B}_{\tau}}$

• normal matrix $A = L_{\overline{G}_{\mathcal{T}}} \mid_{\mathcal{H}} \text{ in } L^{2}(\mathcal{X}) \text{ ; } A = L_{\overline{R}_{\mathcal{T}}} \mid_{\mathcal{H}} \text{ in } L^{2}(\rho_{\mathcal{T}})$

$$c_{\mathcal{H},\mathcal{T}} = \inf_{\psi \in \mathcal{H}, \|\psi\|_{L^{2}(\rho_{\mathcal{T}})} = 1} \langle\!\!\langle \psi, \psi \rangle\!\!\rangle_{\overline{G}_{\mathcal{T}}} > 0 \quad \text{(Coercivity condition)}$$

• Regularization needed as $\textit{Dim}(\mathcal{H}) \uparrow \infty$

Convergence rate

Error bounds

$$\mathbb{H} = L^2(\rho_T)$$

Theorem (Lang-Lu20)

Let $\mathcal{H} = \operatorname{span} \{\phi_i\}_{i=1}^n$ and $\widehat{\phi}_n$ the projection of ϕ on $\mathcal{H} \subset \mathbb{H}$. Assume regularity conditions. Then

$$\|\widehat{\phi}_{n,M,L} - \widehat{\phi}_n\|_{\mathbb{H}} \leq 2c_{\mathcal{H},T}^{-1} \left(C^b \sqrt{n} + C^A n \|\phi\|_{\mathbb{H}}\right) (\Delta x^{\alpha} + \Delta t),$$

- $\Delta x^{\alpha} + \Delta t$ comes from numerical integrator (Riemann sum)
- Dominating order: $n\Delta x^{\alpha}$ (neglecting Δt error)

Convergence rate

Optimal dimension and rate of convergence

Total error: trade-off

Outline

- Motivation and problem statement
- 2 Nonparametric learning
- Numerical examples
 - Granular media: smooth kernel $\phi(r) = 3r^2$
 - Opinion dynamics: piecewise linear ϕ
 - Repulsion-attraction: singular $\phi = r r^{-1.5}$
- Ongoing work and open problems

Numerical examples

Example 1: granular media

 $\phi(r) = 3r^2$

$$\partial_t u = \nu \Delta u + \nabla \cdot [u(K_{\phi} * u)], \quad x \in \mathbb{R}^d, t > 0, \quad K_{\phi}(x) = \phi(|x|) \frac{x}{|x|}$$

Numerical examples

Example 1: granular media

Convergence rate of $L^2(\rho_T)$ error Convergence rate of $\mathcal{E}_{M,L}$ close to optimal

Example 2: opinion dynamics

$\phi(r)$ piecewise linear

$$\partial_t u = \nu \Delta u + \nabla \cdot [u(K_{\phi} * u)], \quad x \in \mathbb{R}^d, t > 0, \quad K_{\phi}(x) = \phi(|x|) \frac{x}{|x|}$$

Numerical examples

Example 2: opinion dynamics

Example 3: repulsion-attraction

 $\phi(r) = r - r^{-1.5}$ (singular)

$$\partial_t u = \nu \Delta u + \nabla \cdot [u(K_{\phi} * u)], \quad x \in \mathbb{R}^d, t > 0, \quad K_{\phi}(x) = \phi(|x|) \frac{x}{|x|}$$

Example 3: repulsion-attraction

Convergence rate of $L^2(\rho_T)$ error Convergence rate of $\mathcal{E}_{M,L}$ low rate: theory does not apply

22/24

Summary and open problems

Problem: Estimate ϕ of Mean-field equation

$$\partial_t u = \nu \Delta u + \nabla \cdot [u(K_{\phi} * u)]$$

from discrete data $\{u(x_m, t_l)\}_{m,l=1}^{M,L}$.

Solution: Least-squares-based algorithm

• A probabilistic loss functional

Theory:

- Function space of identifiability: intrinsic RKHSs
- Choice of hypothesis space basis functions & dimension
- Optimal convergence rate

Open problem and future directions

- General systems/settings:
 - 2nd-order systems / zero diffusion
 - non-radial interaction kernel, multi-potentials
 - High-dimensional state space (Monte Carlo)
 - partial observation of large systems
- Data-adaptive RKHSs:
 - optimal regularization
 - feature selection
- Applications: graph and networks