Learning interacting kernels of mean-field equations of particle systems

Fei Lu

Department of Mathematics, Johns Hopkins University
Joint with Quanjun Lang

May 26, 2021; SIAM DS21

Thanks the supports from JHU, NSF

Outline

(1) Motivation and problem statement
(2) Nonparametric regression
(3) Numerical examples
(4) Ongoing work and open problems

An inverse problem

Mean-field equation of interacting particles

$$
\partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right], \quad x \in \mathbb{R}^{d}, t>0
$$

where $K_{\phi}(x)=\nabla(\Phi(|x|))=\phi(|x|) \frac{x}{|x|}$.
Question: identify ϕ from discrete data $\left\{u\left(x_{m}, t_{l}\right)\right\}_{m, l=1}^{M, L}$?

Motivation

Systems of interacting particles/agents

$$
\frac{d}{d t} X_{t}^{i}=\frac{1}{N} \sum_{i^{\prime}=1}^{N} \phi\left(\left|X_{t}^{j}-X_{t}^{i}\right|\right) \frac{X_{t}^{j}-X_{t}^{i}}{\left|X_{t}^{j}-X_{t}^{i}\right|}+\sqrt{2 \nu} d B_{t}^{i}, \quad i=1, \ldots, N
$$

- X_{t}^{i} : the i-th particle's position; B_{t}^{i} : Brownian motion
- From Newton's law (2nd-order) + 0-mass \rightarrow 1st-order
- Applications in many disciplines:

Statistical physics, quantum mechanics
Biology [Keller-Segal1970, Cucker-Smale2000]
Social science [Motsch-Tadmor2014] Monte Carlo sampling [Del Moral13]
Epidemiology (Agent-based models for COVID19 at Imperial)

Popkin. Nature(2016)

Motivation

Previous work: finite N

Maggioni et al: [Maggioni, L., Tang, Zhong, Miller, Li, Zhang: PNAS19, SPA20, etc]

- Data: many trajectories $\left\{X_{[0, T]}^{(m)}\right\}_{m=1}^{M}$.
- Nonparametric regression
- Function space of learning: $\mathcal{H} \subset L^{2}\left(\rho_{T}\right)$ with $\rho_{T} \leftarrow\left|X_{t}^{j}-X_{t}^{i}\right|$
- minimax convergence rate
- various systems

Opinion Dynamics

Lennard-Jones

Prey-Predator

Large system challenge: $N \rightarrow \infty$

Data at macroscopic scale:

- lack of trajectories $\left\{X_{[0, T]}^{(m)}\right\}_{m=1}^{M}\left(\right.$ recall $\left.X_{t} \in \mathbb{R}^{N d}\right)$
- only population density $u(x, t)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N} \delta\left(X_{t}^{i}-x\right)$

Discrete in space-time: $\quad\left\{u\left(x_{m}, t_{l}\right)\right\}_{m, l=1}^{M, L}$
\Rightarrow Infer kernel in Mean-field equation:

$$
\partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right]
$$

Outline

(1) Motivation and problem statement
(2) Nonparametric learning

- A probabilistic loss functional
- Identifiability: function spaces of learning
- Rate of convergence
(3) Numerical examples

4 Ongoing work and open problems

Variational approach: minimize a loss functional $\mathcal{E}(\psi)$

$$
\partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right]
$$

Loss functions that do not work (efficiently)

- discrepancy: $\mathcal{E}(\psi)=\left\|\partial_{t} u-\nu \Delta u-\nabla \cdot\left(u\left(K_{\psi} * u\right)\right)\right\|^{2}$ derivatives approx. from discrete data
- Free energy: $\mathcal{E}(\psi)=C+\left|\int_{\mathbb{R}^{d}} u[(\Psi-\Phi) * u] d x\right|^{2}$ limitted information from the 1st moment
- Wasserstein-2: $\mathcal{E}(\psi)=W_{2}\left(u^{\psi}, u\right)$ costly: require many PDE simulations in optimization

A probabilistic loss functional

$$
\mathcal{E}(\psi):=\frac{1}{T} \int_{0}^{T} \int_{\mathbb{R}^{d}}\left[\left|K_{\psi} * u\right|^{2} u-2 \nu u\left(\nabla \cdot K_{\psi} * u\right)+2 \partial_{t} u(\psi * u)\right] d x d t
$$

- = Expectation of the negative log-likelihood of the process

$$
\left\{\begin{aligned}
d \bar{X}_{t} & =-K_{\phi_{\text {true }}} * u\left(\bar{X}_{t}, t\right) d t+\sqrt{2 \nu} d B_{t}, \\
\mathcal{L}\left(\bar{X}_{t}\right) & =u(\cdot, t)
\end{aligned}\right.
$$

A probabilistic loss functional

A probabilistic loss functional

$$
\mathcal{E}(\psi):=\frac{1}{T} \int_{0}^{T} \int_{\mathbb{R}^{d}}\left[\left|K_{\psi} * u\right|^{2} u-2 \nu u\left(\nabla \cdot K_{\psi} * u\right)+2 \partial_{t} u(\psi * u)\right] d x d t
$$

- = Expectation of the negative log-likelihood of the process

$$
\left\{\begin{aligned}
d \bar{X}_{t} & =-K_{\phi_{t r u e}} * u\left(\bar{X}_{t}, t\right) d t+\sqrt{2 \nu} d B_{t} \\
\mathcal{L}\left(\bar{X}_{t}\right) & =u(\cdot, t)
\end{aligned}\right.
$$

- Derivative-in-space free!
- Suitable for high-dimension: $K_{\psi} * u\left(\bar{X}_{t}\right)=\mathbb{E}\left[K_{\psi}\left(\bar{X}_{t}-\bar{X}_{t}^{\prime}\right) \mid \bar{X}_{t}\right]$

$$
\mathcal{E}(\psi)=\frac{1}{T} \int_{0}^{T}\left(\mathbb{E}\left|K_{\psi} * u\left(\bar{X}_{t}\right)\right|^{2}+\partial_{t} \mathbb{E} \Psi\left(\bar{X}_{t}-\bar{X}_{t}^{\prime}\right)+2 \nu \mathbb{E}\left[\Delta \Psi\left(\bar{X}_{t}-\bar{X}_{t}^{\prime}\right)\right]\right) d t
$$

A probabilistic loss functional

Least squares estimator

$$
\begin{aligned}
\mathcal{E}(\psi) & :=\frac{1}{T} \int_{0}^{T} \int_{\mathbb{R}^{d}}\left[\left|K_{\psi} * u\right|^{2} u-2 \nu u\left(\nabla \cdot K_{\psi} * u\right)+2 \partial_{t} u(\Psi * u)\right] d x d t \\
& =\langle\psi \psi, \psi\rangle-2\langle\psi, \phi\rangle
\end{aligned}
$$

- bilinear form $\left\langle\langle\phi, \psi\rangle=\frac{1}{T} \int_{0}^{T} \int_{\mathbb{R}^{d}}\left\langle\left(K_{\phi} * u\right),\left(K_{\psi} * u\right)\right\rangle u(x, t) d x d t\right.$
- Hypothesis space $\mathcal{H}_{n}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}: \psi=\sum_{i=1}^{n} c_{i} \phi_{i}$

$$
\begin{aligned}
& \Rightarrow \quad \mathcal{E}(\psi)=c^{\top} A c-2 b^{\top} c \text { with } A_{i j}=\left\langle\left\langle\phi_{i}, \phi_{j}\right\rangle\right\rangle_{G_{T}} \\
& \Rightarrow \quad \text { Estimator: } \quad \widehat{\phi}_{n}=\sum_{i=1}^{n} \widehat{c}_{i} \phi_{i}, \quad \widehat{c}=A^{-1} b
\end{aligned}
$$

- From data $\left\{u\left(x_{m}, t_{l}\right)\right\}_{m, l=1}^{M, L}$:

$$
\widehat{\phi}_{n, M, L}=\sum_{i=1}^{n} \widehat{c}_{n, M, L}^{i} \phi_{i}, \quad \text { with } \widehat{c}_{n, M, L}=A_{n, M, L}^{-1} b_{n, M, L}
$$

Three fundamental issues

- Identifiability: uniqueness of minimizer, A^{-1}
- Choice of \mathcal{H}_{n} : B-splines $\left\{\phi_{i}\right\}_{i=1}^{n}$ and n ?
- Convergence rate when $\Delta x=M^{-1 / d} \rightarrow 0$? \rightarrow hypothesis testing and model selection

Identifiability

Identifiability and function space of learning

Recall that $\mathcal{H}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}$,

$$
\left.A_{i j}=\left\langle\left\langle\phi_{i}, \phi_{j}\right\rangle\right\rangle, \quad\langle\phi, \psi\rangle\right\rangle=\int_{\mathbb{R}^{+}} \int_{\mathbb{R}^{+}} \phi(r) \psi(s) \bar{G}_{T}(r, s) d r d s
$$

- function spaces of identifiability: RKHSs [LangLu21]
- \bar{G}_{T} is Mercer kernel \rightarrow RKHS $H_{\bar{G}_{T}} \subset L^{2}(\mathcal{X})$.
- $\bar{R}_{T}=\frac{\bar{G}_{T}}{\rho_{T} \otimes \rho_{T}} \rightarrow$ RKHS $H_{R} \subset L^{2}\left(\rho_{T}\right)$.
- Positive compact operators $L_{\bar{G}_{T}}$ and $L_{\bar{R}_{T}}$
- normal matrix $A=\left.L_{\bar{G}_{T}}\right|_{\mathcal{H}}$ in $L^{2}(\mathcal{X}) ; A=\left.L_{\bar{R}_{T}}\right|_{\mathcal{H}}$ in $L^{2}\left(\rho_{T}\right)$

$$
\left.c_{\mathcal{H}, T}=\inf _{\psi \in \mathcal{H},\|\psi\|_{L^{2}\left(\rho_{T}\right)}=1}\langle\psi, \psi\rangle\right\rangle_{\bar{G}_{T}}>0 \quad \text { (Coercivity condition) }
$$

- Regularization needed as $\operatorname{Dim}(\mathcal{H}) \uparrow \infty$

Convergence rate

Error bounds

$$
\mathbb{H}=L^{2}\left(\rho_{T}\right)
$$

Theorem (Lang-Lu20)

Let $\mathcal{H}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}$ and $\widehat{\phi}_{n}$ the projection of ϕ on $\mathcal{H} \subset \mathbb{H}$. Assume regularity conditions. Then

$$
\left\|\widehat{\phi}_{n, M, L}-\widehat{\phi}_{n}\right\|_{H} \leq 2 c_{\mathcal{H}, T^{-1}}\left(C^{b} \sqrt{n}+C^{A} n\|\phi\|_{\mathbb{H}}\right)\left(\Delta x^{\alpha}+\Delta t\right),
$$

- $\Delta x^{\alpha}+\Delta t$ comes from numerical integrator (Riemann sum)
- Dominating order: $n \Delta x^{\alpha}$ (neglecting Δt error)

Convergence rate

Optimal dimension and rate of convergence

Total error: trade-off

$$
\left\|\widehat{\phi}_{n, M, \infty}-\phi\right\|_{\mathbb{H}} \leq \underbrace{\left\|\widehat{\phi}_{n, M, \infty}-\widehat{\phi}_{n}\right\|_{\mathbb{H}}}_{\text {integration error }}+\underbrace{\left\|\widehat{\phi}_{n}-\phi\right\|_{\mathbb{H}}}_{\text {approximation error }}
$$

Theorem (Lang-Lu20)

Assume $\left\|\widehat{\phi}_{n, M, \infty}-\widehat{\phi}_{n}\right\|_{\mathbb{H}} \lesssim n(\Delta x)^{\alpha}$ and $\left\|\widehat{\phi}_{n}-\phi\right\|_{\mathbb{H}} \lesssim n^{-s}$. Then, with optimal dimension $n \approx(\Delta x)^{-\alpha /(s+1)}$:

$$
\left\|\widehat{\phi}_{n, M, \infty}-\phi\right\|_{\mathbb{H}} \lesssim(\Delta x)^{\alpha s /(s+1)}
$$

Outline

(1) Motivation and problem statement
(2) Nonparametric learning
(3) Numerical examples

- Granular media: smooth kernel $\phi(r)=3 r^{2}$
- Opinion dynamics: piecewise linear ϕ
- Repulsion-attraction: singular $\phi=r-r^{-1.5}$
(1) Ongoing work and open problems

Example 1: granular media

$$
\begin{aligned}
& \phi(r)=3 r^{2} \\
& \quad \partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right], \quad x \in \mathbb{R}^{d}, t>0, \quad K_{\phi}(x)=\phi(|x|) \frac{x}{|x|}
\end{aligned}
$$

The solution $u(x, t)$

Wasserstein $W_{2}(u, \widehat{u})$

Example 1: granular media

Example 2: opinion dynamics

$\phi(r)$ piecewise linear

$$
\partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right], \quad x \in \mathbb{R}^{d}, t>0, \quad K_{\phi}(x)=\phi(|x|) \frac{x}{|x|}
$$

Example 2: opinion dynamics

Convergence rate of $L^{2}\left(\rho_{T}\right)$ error Convergence rate of $\mathcal{E}_{M, L}$ sub-optimal ($\phi \notin W^{1, \infty}$)

Example 3: repulsion-attraction

$$
\begin{aligned}
\phi(r)= & r-r^{-1.5} \text { (singular) } \\
& \partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right], \quad x \in \mathbb{R}^{d}, t>0, \quad K_{\phi}(x)=\phi(|x|) \frac{x}{|x|}
\end{aligned}
$$

The solution $u(x, t)$
Estimators of ϕ

Wasserstein $W_{2}(u, \widehat{u})$

Example 3: repulsion-attraction

Summary and open problems

Problem: Estimate ϕ of Mean-field equation

$$
\partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right]
$$

from discrete data $\left\{u\left(x_{m}, t_{l}\right)\right\}_{m, l=1}^{M, L}$.
Solution: Least-squares-based algorithm

- A probabilistic loss functional

Theory:

- Function space of identifiability: intrinsic RKHSs
- Choice of hypothesis space basis functions \& dimension
- Optimal convergence rate

Open problem and future directions

- General systems/settings:
- 2nd-order systems / zero diffusion
- non-radial interaction kernel, multi-potentials
- High-dimensional state space (Monte Carlo)
- partial observation of large systems
- Data-adaptive RKHSs:
- optimal regularization
- feature selection
- Applications: graph and networks

