A statistical learning perspective of data-driven model reduction

Fei Lu

Department of Mathematics, Johns Hopkins

06/06, 2022, CAS-AMSS
supports from JHU, NSF
(9) Motivation and objective
(2) Inference-based Model reduction
(3) From nonlinear Galerkin to inference

Prediction with Uncertainty Quantification

$$
\begin{array}{rrr}
x^{\prime} & =F(x)+U(x, y), & \text { resolved scales } \\
y^{\prime} & =G(x, y), & \text { subgrid-scales } \\
\text { Data: }\{x(n h)\} & \text { partial observation }
\end{array}
$$

(courtesy of Kevin Lin)

Prediction with Uncertainty Quantification

$$
\begin{array}{rr}
x^{\prime}=F(x)+U(x, y), & \text { resolved scales } \\
y^{\prime}=G(x, y), & \text { subgrid-scales } \\
\text { Data: }\{x(n h)\} & \text { partial observation }
\end{array}
$$

Motivation: Data assimilation:

- ensemble forecasting
- can only afford to resolve $x^{\prime}=F(x)$

(courtesy of Kevin Lin)

Problem: ensemble prediction of $x(t)$

$$
\begin{array}{rlr}
x^{\prime}=F(x)+U(x, y), & \text { resolved scales } \\
y^{\prime}=G(x, y), & \text { subgrid-scales } \\
& \text { Data: }\{x(n h)\} &
\end{array}
$$

Objective: model the flow map: $x_{1: n-1} \rightarrow x_{n}$

- captures key statistical + dynamical properties
- ensemble simulations (with a large time-step)

Space-time reduction: spatial dimension \downarrow; time-step size \uparrow

Closure modeling, model error UQ, subgrid parametrization

Direct constructions:

- nonlinear Galerkin [Fioas, Jolly,

Kevrekidis, Titi...]

- moment closure [Levermore, Morokoff...]
- Mori-Zwanzig formalism memory \rightarrow non-Markov process [Chorin, Hald, Kupferman, Stinis, Li, Darve, E, Karniadarkis, Venturi, Duraisamy ...]

Data-driven RM

- PCA/POD, DMD, Kooperman [Holmes, Lumley, Marsden, Wilcox, Kutz, Rowley ...]
- ROM closure [Farhat, Carlberg, Iliescu, Wang...]
- stochastic models: SDEs/GLEs, time series models [Chorin/Majda/Gil groups]
- machine learning (...)
- Why and when a data-driven ROM work?
- What does a ROM approximate?
a statistical learning perspective of model reduction

Data-driven Model reduction
Computational reduction:

- space: dimension reduction
- time: large time stepping
- space-time

Data (time series):

- full observation: dominating coordinates/basis
- partial observation

Goal: time series model for quantities of interest
(9) Motivation and objective
(2) Inference-based Model reduction
(3) From nonlinear Galerkin to inference
$x^{\prime}=F(x)+U(x, y), y^{\prime}=G(x, y)$. Data $\{x(n h)\}_{n=1}^{N}$

Two Examples of Flow map: $x_{1: n-1} \rightarrow x_{n}$
$x^{\prime}=F(x)+U(x, y), y^{\prime}=G(x, y)$.
Data $\{x(n h)\}_{n=1}^{N}$
Two Examples of Flow map: $x_{1: n-1} \rightarrow x_{n}$
Example 1 (deterministic):

$$
x^{\prime}=\lambda x ; \quad \Rightarrow \quad x(h)=x(0) e^{\lambda h}, \quad \forall h>0
$$

Numerical (Euler):

$$
x_{n}=x_{n-1}+h \lambda x_{n-1}, \quad \text { stability: }|1+h \lambda|<1
$$

Data $\{x(h), x(2 h)\}$, infer $x_{n}=\theta x_{n-1}$:

$$
\theta=x(h)^{-1} x(2 h)=e^{\lambda h} \quad \Rightarrow \quad x_{n}=e^{\lambda h} x_{n-1}, \quad \forall h>0
$$

$$
\begin{aligned}
& x^{\prime}=F(x)+U(x, y), y^{\prime}=G(x, y) . \\
& \text { Data }\{x(n h)\}_{n=1}^{N}
\end{aligned}
$$

Flow map: $x_{1: n-1} \rightarrow x_{n}$
Example 2 (stochastic, Ornstein-Uhlenbeck):

$$
d x_{t}=\lambda x_{t} d t+d W_{t} ; \quad \Rightarrow \quad x(h)=x(0) e^{\lambda h}+\int_{0}^{h} e^{\lambda s} d W_{s}
$$

Numerical solution (Euler-Maruyama)

$$
x_{n}=x_{n-1}+h \lambda x_{n-1}+N(0, h), \quad \text { stability: }|1+h \lambda|<1
$$

Data $\{x(n h)\}_{n}$, infer $x_{n}=\theta x_{n-1}+N(0, \sigma)$:

$$
\begin{aligned}
\theta & =\mathbb{E}\left[x(h)^{2}\right]^{-1} \mathbb{E}[x(2 h) x(h)]=e^{\lambda h} \\
\sigma & =\mathbb{E}\left[\left|x_{n}-\theta x_{n-1}\right|^{2}\right]=\left(1-e^{2 \lambda h}\right) /(2 \lambda)
\end{aligned} \Rightarrow \quad \begin{gathered}
x_{n}=e^{\lambda h} x_{n-1}+N(0, \sigma), \\
\end{gathered} \quad \forall h>0
$$

$$
\begin{aligned}
& x^{\prime}=F(x)+U(x, y), y^{\prime}=G(x, y) . \\
& \text { Data }\{x(n h)\}_{n=1}^{N}
\end{aligned}
$$

Classical numerical schemes $\binom{x_{n}}{y_{n}}=\mathbf{F}\binom{x_{n-1}}{y_{n-1}}$

- trajectory-wise Approx.
- fine resolution
- Closure flow map
(Mori-Zwanzig):
$x_{n}=F_{n}\left(x_{1: n-1}\right)$

$$
\begin{aligned}
& x^{\prime}=F(x)+U(x, y), y^{\prime}=G(x, y) . \\
& \text { Data }\{x(n h)\}_{n=1}^{N}
\end{aligned}
$$

Classical numerical schemes
$\binom{x_{n}}{y_{n}}=\mathbf{F}\binom{x_{n-1}}{y_{n-1}}$

- trajectory-wise Approx.
- fine resolution
- Closure flow map (Mori-Zwanzig): $x_{n}=F_{n}\left(x_{1: n-1}\right)$

Data-driven methods:

$$
F_{n}\left(x_{1: n-1}\right) \approx \widehat{F}_{n}\left(x_{n-p: n-1}\right)
$$

- average the subgrid-scales approximate in distribution
- Learning: curse of dimensionality
- machine learning: great success
- parametric inference use the structure of the map

$$
\left(X_{n}-X_{n-1}\right) / h=R_{h}\left(X_{n-1}\right)+\sum_{i} c_{i} \phi_{i}\left(x_{n-p: n-1}, \xi_{n-p: n-1}\right)+\xi_{i}
$$

NARMA (p, q) [Chorin-Lu (15)]

$$
\begin{aligned}
& \left(X_{n}-X_{n-1}\right) / h=R_{h}\left(X_{n-1}\right)+Z_{n} \\
& Z_{n}=\Phi_{n}+\xi_{n} \\
& \Phi_{n}=\underbrace{\sum_{j=1}^{p} a_{j} X_{n-j}+\sum_{j=1}^{r} \sum_{i=1}^{s} b_{i, j} P_{i}\left(X_{n-j}\right)}_{\text {Auto-Regression }}+\underbrace{\sum_{j=1}^{q} c_{j} \xi_{n-j}}_{\text {Moving Average }}
\end{aligned}
$$

- $R_{h}\left(X_{n-1}\right)$ from a numerical scheme for $x^{\prime} \approx F(x)$
- Φ_{n} depends on the past
- NARMAX in system identification $Z_{n}=\Phi(Z, X)+\xi_{n}$,

Tasks:

Structure derivation: terms and orders (p, r, s, q) in Φ_{n}; Parameter estimation: $a_{j}, b_{i, j}, c_{j}$, and σ. Conditional MLE

Example: the two-layer Lorenz 96 model

A NARMA model for the X variables

- no scale-separation
- Ansatz: polynomials with time lag 2

Example: a chaotic system

Example: the two-layer Lorenz 96 model

A NARMA model for the X variables

- no scale-separation
- Ansatz: polynomials with time lag 2

The NARMA model can

- tolerate large time-step
- reproduces statistics: ACF, PDF [Chorin-Lu15]
- improves Data Assimilation [Lu-Tu-Chorin17]
(1) Motivation and objective
(2) Inference-based Model reduction
(3) From nonlinear Galerkin to inference
- Kuramoto-Sivashinsky: $v_{t}=-v_{x x}-\nu v_{x x x x}-v v_{x}$
- Burgers:

$$
v_{t}=\nu v_{x x}-v v_{x}+f(x, t)
$$

Goal: a closed model for $\left(\widehat{v}_{1: K}\right), K \ll N$.

$$
\begin{aligned}
\frac{d}{d t} \widehat{v}_{k}= & -q_{k}^{\nu} \widehat{v}_{k}+\frac{i k}{2} \sum_{|||\leq K,|k-I| \leq K} \widehat{v}_{l} \widehat{v}_{k-1}+\widehat{f}_{k}(t), \\
& +\frac{i k}{2} \sum_{|| |>K \text { or }| k-\| \mid>K} \widehat{v}_{l} \widehat{v}_{k-1}
\end{aligned}
$$

View $\left(\widehat{v}_{1: K}\right) \sim x,\left(\widehat{v}_{k>K}\right) \sim y:$

$$
x^{\prime}=F(x)+U(x, y), y^{\prime}=G(x, y)
$$

TODO: represent the effects of high modes to the low modes

Derivation of a parametric form (KSE): $v_{t}=-v_{x x}-\nu v_{x x x x}-v v_{x}$

Let $v=u+w$. In operator form: $v_{t}=A v+B(v)$,

$$
\begin{aligned}
& \frac{d u}{d t}=P A u+P B(u)+[P B(u+w)-P B(u)] \\
& \frac{d w}{d t}=Q A w+Q B(u+w)
\end{aligned}
$$

Nonlinear Galerkin: approximate inertial manifold (IM) ${ }^{1}$

- $\frac{d w}{d t} \approx 0 \Rightarrow w \approx A^{-1} Q B(u+w) \Rightarrow w \approx \psi(u)$
- Need: spectral gap condition \checkmark;
- $\operatorname{dim}(u) \gg K\left(u \leftrightarrow \widehat{v}_{1: K}\right)$:

[^0]
Derivation of a parametric form (KSE): $v_{t}=-v_{x x}-\nu v_{x x x x}-v v_{x}$

Let $v=u+w$. In operator form: $v_{t}=A v+B(v)$,

$$
\begin{aligned}
\frac{d u}{d t} & =P A u+P B(u)+[P B(u+w)-P B(u)] \\
\frac{d w}{d t} & =Q A w+Q B(u+w)
\end{aligned}
$$

Nonlinear Galerkin: approximate inertial manifold (IM) ${ }^{1}$

- $\frac{d w}{d t} \approx 0 \Rightarrow w \approx A^{-1} Q B(u+w) \Rightarrow w \approx \psi(u)$
- Need: spectral gap condition \checkmark;
- $\operatorname{dim}(u) \gg K\left(u \leftrightarrow \widehat{v}_{1: K}\right)$: parametrization with time delay (Lu-Lin17)

A time series (NARMA) model of the form

$$
u_{k}^{n}=R^{\delta}\left(u_{k}^{n-1}\right)+\Phi_{k}^{n}+g_{k}^{n},
$$

KEY: high-modes = functions of low modes
${ }^{1}$ Foias, Constantin, Temam, Sell, Jolly, Kevrekidis, Titi et al (88-94)

Test setting: $\nu=3.43$
$N=128, d t=0.001$
Reduced model: $K=5, \delta=100 d t$

- 3 unstable modes
- 2 stable modes

Test setting: $\nu=3.43$
$N=128, d t=0.001$
Reduced model: $K=5, \delta=100 \mathrm{dt}$

- 3 unstable modes
- 2 stable modes

Long-term statistics:

- reproduce PDF /ACF

Prediction: Forecast time:

- truncated sys.: $T \approx 5$
- NARMA: $T \approx \mathbf{5 0}$
(≈ 2 Lyapunov time)

Derivation of parametric form: stochastic Burgers

$$
v_{t}=\nu v_{x x}-v v_{x}+f(x, t)
$$

Let $v=u+w$. In operator form:

$$
\begin{aligned}
\frac{d u}{d t} & =P A u+P B(u)+P f+[P B(u+w)-P B(u)] \\
\frac{d w}{d t} & =Q A w+Q B(u+w)+Q f
\end{aligned}
$$

- no spectral gap
$w(t)$ is not function of $u(t)$, but a functional of its path

Derivation of parametric form: stochastic Burgers

$$
v_{t}=\nu v_{x x}-V v_{x}+f(x, t)
$$

Let $v=u+w$. In operator form:

$$
\begin{aligned}
\frac{d u}{d t} & =P A u+P B(u)+P f+[P B(u+w)-P B(u)] \\
\frac{d w}{d t} & =Q A w+Q B(u+w)+Q f
\end{aligned}
$$

- no spectral gap
$w(t)$ is not function of $u(t)$, but a functional of its path
Integration instead:

$$
\begin{aligned}
w(t) & =e^{-Q A t} w(0)+\int_{0}^{t} e^{-Q A(t-s)}[Q B(u(s)+w(s))] d s \\
w^{n} & \approx c_{0} Q B\left(u^{n}\right)+c_{1} Q B\left(u^{n-1}\right)+\cdots+c_{p} Q B\left(u^{n-p}\right)
\end{aligned}
$$

Linear in parameter: $P B(u+w)-P B(u) \approx \sum_{j=0}^{p} c_{j} P\left[\left(u^{n} Q B\left(u^{n-j}\right)\right)_{x}\right]+$ noise

$$
u_{k}^{n}=R^{\delta}\left(u_{k}^{n-1}\right)+f_{k}^{n}+g_{k}^{n}+\Phi_{k}^{n},
$$

KEY: high-modes $=$ functionals of paths of low modes

Numerical tests:

$\nu=0.05, K_{0}=4 \rightarrow$ random shocks

- Full model: $N=128, d t=0.005$
- Reduced model: $K=8, \delta=20 d t$

Energy spectrum

- Temporal correlation
- Trajectory prediction
© Shock trace prediction

Stochastic Burgers equation

Shock trace prediction:

Binary shock trace based on a threshold for u_{x}

Motivation and objective 0000

Stochastic Burgers equation

Cross-ACF of energy (4th moments!)

Space-time reduction

Open questions in space-time reduction

$$
\left(X_{n}-X_{n-1}\right) / h=R_{h}\left(X_{n-1}\right)+\sum_{i} c_{i} \phi_{i}\left(X_{n-p: n-1}, \xi_{n-p: n-1}\right)+\xi_{i}
$$

Observed from numerical tests:

- Memory length: best at medium
- Space reduction: arbitrary $K=2$
- Time reduction: stability h limited by R_{h} : medium CFL (truncated-G) $=\mathrm{CFL}(\mathrm{FM})$.

Optimal space-time reduction?

Summary

$x^{\prime}=f(x)+U(x, y), y^{\prime}=g(x, y)$. Data $\{x(n h)\}_{n=1}^{N}$

Numerical + inferential model reduction

- non-intrusive time series (NARMA)
- flow map approximation

$$
\begin{aligned}
x_{n} & =F_{n}\left(x_{\left[0, t_{n-1}\right]}\right) \\
& \approx \widehat{F}_{n}\left(x_{1: n-1}\right)=\sum_{k} c_{k} \Phi_{n-p: n-1}^{k}
\end{aligned}
$$

\rightarrow space-time reduction

Data-driven modeling of dynamics

- Large time stepping for stiff ODEs/SDEs:
- Approx. the discrete-time flow map
- Parametric inference: improves but limited (Li-Lu-Ye21)
- Dependent on the parametric form
- Nyström: $(0.50,0.40)$, not the Störmer-Verlet $(0.5,0.5)$
- Machine learning: promising
- Space-time reduction for PDEs/SPDEs
- Data-based coordinates
- Optimal space-time reduction
- Optimal memory length

Data-driven modeling of dynamics

- Large time stepping for stiff ODEs/SDEs:
- Approx. the discrete-time flow map
- Parametric inference: improves but limited (Li-Lu-Ye21)
- Dependent on the parametric form
- Nyström: $(0.50,0.40)$, not the Störmer-Verlet $(0.5,0.5)$
- Machine learning: promising
- Space-time reduction for PDEs/SPDEs
- Data-based coordinates
- Optimal space-time reduction
- Optimal memory length

Probabilistic/statistical numerical integrators adaptive to

- time-step
- space-basis
- parameter distribution

References

- Data-driven stochastic model reduction
- Chorin-Lu: Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics. PNAS 112 (2015).
- Lu-Lin-Chorin: Comparison of continuous and discrete-time data-based modeling for hypoelliptic systems. CAMCoS, 11 (2016).
- Lu-Lin-Chorin: Data-based stochastic model reduction for the Kuramoto Sivashinsky equation. Physica D, 340 (2017).
- Lin-Lu: Data-driven model reduction, Wiener projections, and the Mori-Zwanzig formalism. JCP (2021).
- Lu: Data-driven model reduction for stochastic Burgers equations. Entropy 2020.
- Li-Lu-Ye: ISALT: Inference-based schemes adaptive to large time-stepping for locally Lipschitz ergodic systems, DCDS-S (2021).
- Data assimilation
- Lu-Tu-Chorin: Accounting for model error from unresolved scales in EnKFs: improving the forecast model. MWR, 340 (2017).
- Nan Chen, Honghu Liu and F. Lu. Shock trace prediction by reduced models for a viscous stochastic Burgers equation. Chaos (2022).

Thank you!

[^0]: ${ }^{1}$ Foias, Constantin, Temam, Sell, Jolly, Kevrekidis, Titi et al (88-94)

