A statistical learning perspective of data-driven model reduction

Fei Lu

Department of Mathematics, Johns Hopkins

06/06, 2022, CAS-AMSS

supports from JHU, NSF

From nonlinear Galerkin to inference

Motivation and objective Inference-based Model reduction From nonlinear Galerkin to inference Summary and outlook 0000

Problem and motivation

Prediction with Uncertainty Quantification

x' = F(x) + U(x, y), $\mathbf{y}' = G(\mathbf{x}, \mathbf{y}),$

resolved scales subgrid-scales Data: $\{x(nh)\}$ partial observation

(courtesy of Kevin Lin)

Motivation and objective Inference-based Model reduction From nonlinear Galerkin to inference Summary and outlook 0000

Problem and motivation

Prediction with Uncertainty Quantification

x' = F(x) + U(x, y), $\mathbf{y}' = G(\mathbf{x}, \mathbf{y}),$

resolved scales subgrid-scales Data: $\{x(nh)\}$ partial observation

(courtesy of Kevin Lin)

Motivation: Data assimilation:

- ensemble forecasting
- can only afford to resolve x' = F(x)

subgrid-scales

 $x_{n} = \pi x_{nat} + v_{n}$ $x_{n} = \pi x_{nat} + v_{n}$ $x_{n} + y_{n} + y_{n}$

courtesy of Kevin Lin

Objective: model the flow map: $x_{1:n-1} \rightarrow x_n$

 $\mathbf{v}' = G(\mathbf{x}, \mathbf{v}),$

Data: $\{x(nh)\}$

- captures key statistical + dynamical properties
- ensemble simulations (with a large time-step)

Space-time reduction: spatial dimension \downarrow ; time-step size \uparrow

Motivation and objective	Inference-based Model reduction	From nonlinear Galerkin to inference	Summary and outlook
0000			

Review

Closure modeling, model error UQ, subgrid parametrization

Direct constructions:

- nonlinear Galerkin [Fioas, Jolly, Kevrekidis, Titi...]
- moment closure [Levermore, Morokoff...]
- Mori-Zwanzig formalism memory → non-Markov process [Chorin, Hald, Kupferman, Stinis, Li, Darve, E, Karniadarkis, Venturi, Duraisamy ...]

Data-driven RM

- PCA/POD, DMD, Kooperman [Holmes, Lumley, Marsden, Wilcox, Kutz, Rowley ...]
- ROM closure [Farhat, Carlberg, Iliescu, Wang...]
- stochastic models: SDEs/GLEs, time series models [Chorin/Majda/Gil groups]
- machine learning (...)

Why and when a data-driven ROM work?

What does a ROM approximate?

a statistical learning perspective of model reduction

Motivation and objective	Inference-based Model reduction	From nonlinear Galerkin to inference	Summary and outlook
0000			

Review

Data-driven Model reduction

Computational reduction:

- space: dimension reduction
- time: large time stepping
- space-time

Data (time series):

- full observation: dominating coordinates/basis
- partial observation

Goal: time series model for quantities of interest

From nonlinear Galerkin to inference

Motivation and objective	Inference-based Model reduction	From nonlinear Galerkin to inference	Summary and outlook
Flow map approximation			
		x' = F(x) + U(x, y), y' Data {x(nh)}_{n=1}^{N}	= G(x, y).

Two Examples of **Flow map:** $x_{1:n-1} \rightarrow x_n$

Flow map approximation

$$x' = F(x) + U(x, y), y' = G(x, y).$$

Data $\{x(nh)\}_{n=1}^{N}$

Two Examples of **Flow map:** $x_{1:n-1} \rightarrow x_n$

Example 1 (deterministic):

$$x' = \lambda x; \Rightarrow x(h) = x(0)e^{\lambda h}, \quad \forall h > 0$$

Numerical (Euler):

 $x_n = x_{n-1} + h\lambda x_{n-1}$, stability: $|1 + h\lambda| < 1$

Data {x(h), x(2h)}, infer $x_n = \theta x_{n-1}$:

$$\theta = x(h)^{-1}x(2h) = e^{\lambda h} \quad \Rightarrow \quad x_n = e^{\lambda h}x_{n-1}, \quad \forall h > 0$$

Flow map approximation

x' = F(x) + U(x, y), y' = G(x, y).Data $\{x(nh)\}_{n=1}^{N}$

1.

Flow map: $x_{1:n-1} \rightarrow x_n$

Example 2 (stochastic, Ornstein-Uhlenbeck):

$$dx_t = \lambda x_t dt + dW_t; \Rightarrow x(h) = x(0)e^{\lambda h} + \int_0^n e^{\lambda s} dW_s$$

Numerical solution (Euler-Maruyama)

 $x_n = x_{n-1} + h\lambda x_{n-1} + N(0, h),$ stability: $|1 + h\lambda| < 1$

Data $\{x(nh)\}_n$, infer $x_n = \theta x_{n-1} + N(0, \sigma)$:

$$\begin{split} \theta &= \mathbb{E}[x(h)^2]^{-1} \mathbb{E}[x(2h)x(h)] = e^{\lambda h} \\ \sigma &= \mathbb{E}[|x_n - \theta x_{n-1}|^2] = (1 - e^{2\lambda h})/(2\lambda) \Rightarrow \quad x_n = e^{\lambda h} x_{n-1} + N(0, \sigma), \\ \forall h > 0 \end{split}$$

Motivation and objective	Inference-based Model reduction	From nonlinear Galerkin to inference	Summary and outlook
	00000		

Flow map approximation

$$x' = F(x) + U(x, y), y' = G(x, y).$$

Data $\{x(nh)\}_{n=1}^{N}$

Classical numerical schemes $\begin{pmatrix}
x_n \\
y_n
\end{pmatrix} = \mathbf{F} \begin{pmatrix}
x_{n-1} \\
y_{n-1}
\end{pmatrix}$

- trajectory-wise Approx.
- fine resolution
- Closure flow map (Mori-Zwanzig):
 x_n = F_n(x_{1:n-1})

Motivation and objective	Inference-based Model reduction	From nonlinear Galerkin to inference	Summary and outlook
	00000		

Flow map approximation

Classical numerical schemes
$$\begin{pmatrix}
x_n \\
y_n
\end{pmatrix} = \mathbf{F} \begin{pmatrix}
x_{n-1} \\
y_{n-1}
\end{pmatrix}$$

- trajectory-wise Approx.
- fine resolution
- Closure flow map (Mori-Zwanzig):
 x_n = F_n(x_{1:n-1})

x' = F(x) + U(x, y), y' = G(x, y).Data $\{x(nh)\}_{n=1}^{N}$

Data-driven methods: $F_n(x_{1:n-1}) \approx \widehat{F}_n(x_{n-p:n-1})$

- average the subgrid-scales approximate in distribution
- Learning: curse of dimensionality
 - machine learning: great success
 - parametric inference use the structure of the map

Motivation and objective

Inference-based Model reduction

From nonlinear Galerkin to inference Summary and outlook

NARMA: a numerical time series model

$$(X_n - X_{n-1})/h = R_h(X_{n-1}) + \sum_i c_i \phi_i(X_{n-p:n-1}, \xi_{n-p:n-1}) + \xi_i$$

NARMA(p, q) [Chorin-Lu (15)]

$$(X_{n} - X_{n-1})/h = R_{h}(X_{n-1}) + Z_{n},$$

$$Z_{n} = \Phi_{n} + \xi_{n},$$

$$\Phi_{n} = \underbrace{\sum_{j=1}^{p} a_{j}X_{n-j}}_{\text{Auto-Regression}} \sum_{i=1}^{s} b_{i,j}P_{i}(X_{n-j}) + \underbrace{\sum_{j=1}^{q} c_{j}\xi_{n-j}}_{\text{Moving Average}}$$

• $R_h(X_{n-1})$ from a numerical scheme for $x' \approx F(x)$

Φ_n depends on the past

• NARMAX in system identification $Z_n = \Phi(Z, X) + \xi_n$, **Tasks:**

<u>Structure derivation</u>: terms and orders (p, r, s, q) in Φ_n ; Parameter estimation: $a_i, b_{i,j}, c_j$, and σ . Conditional MLE Motivation and objective Inference-based Model reduction From nonlinear Galerkin to inference Summary and outlook

Example: a chaotic system

Example: the two-layer Lorenz 96 model

A NARMA model for the X variables

- no scale-separation
- Ansatz: polynomials with time lag 2

Motivation and objective Inference-based Model reduction From nonlinear Galerkin to inference Summary and outlook

Example: a chaotic system

Example: the two-layer Lorenz 96 model

- A NARMA model for the X variables
 - no scale-separation
 - Ansatz: polynomials with time lag 2

The NARMA model can

- tolerate large time-step
- reproduces statistics: ACF, PDF [Chorin-Lu15]
- improves Data Assimilation [Lu-Tu-Chorin17]

From nonlinear Galerkin to inference

Motivation and objective	Inference-based Model reduction	From nonlinear Galerkin to inference	Summary and outlook
		••••	

Kuramoto-Sivashinsky Equation

- Kuramoto-Sivashinsky: $v_t = -v_{xx} \nu v_{xxxx} vv_x$
- Burgers: $v_t = \nu v_{xx} vv_x + f(x, t),$

Goal: a closed model for $(\hat{v}_{1:K})$, $K \ll N$.

$$\begin{aligned} \frac{d}{dt}\widehat{v}_{k} &= -q_{k}^{\nu}\widehat{v}_{k} + \frac{ik}{2}\sum_{|l| \leq K, |k-l| \leq K}\widehat{v}_{l}\widehat{v}_{k-l} + \widehat{f}_{k}(t), \\ &+ \frac{ik}{2}\sum_{|l| > K \text{ or } |k-l| > K}\widehat{v}_{l}\widehat{v}_{k-l} \end{aligned}$$

View $(\widehat{v}_{1:K}) \sim x$, $(\widehat{v}_{k>K}) \sim y$: x' = F(x) + U(x,y), y' = G(x,y).

TODO: represent the effects of high modes to the low modes

 Motivation and objective
 Inference-based Model reduction
 From nonline

 0000
 00000
 0●000000
 0●000000

From nonlinear Galerkin to inference Summary and outlook

Kuramoto-Sivashinsky Equation

Derivation of a parametric form (KSE): $v_t = -v_{xx} - \nu v_{xxxx} - vv_x$

Let v = u + w. In operator form: $v_t = Av + B(v)$,

$$\frac{du}{dt} = PAu + PB(u) + [PB(u+w) - PB(u)]$$
$$\frac{dw}{dt} = QAw + QB(u+w)$$

Nonlinear Galerkin: approximate inertial manifold (IM)¹

•
$$\frac{dw}{dt} \approx 0 \Rightarrow w \approx A^{-1}QB(u+w) \Rightarrow w \approx \psi(u)$$

- Need: spectral gap condition ;
- $\dim(u) >> K (u \leftrightarrow \widehat{v}_{1:K})$:

¹Foias, Constantin, Temam, Sell, Jolly, Kevrekidis, Titi et al (88-94)

From nonlinear Galerkin to inference Summary and outlook

Kuramoto-Sivashinsky Equation

Derivation of a parametric form (KSE): $v_t = -v_{xx} - \nu v_{xxxx} - vv_x$

Let v = u + w. In operator form: $v_t = Av + B(v)$,

$$\frac{du}{dt} = PAu + PB(u) + [PB(u+w) - PB(u)]$$
$$\frac{dw}{dt} = QAw + QB(u+w)$$

Nonlinear Galerkin: approximate inertial manifold (IM)¹

•
$$\frac{dw}{dt} \approx 0 \Rightarrow w \approx A^{-1}QB(u+w) \Rightarrow w \approx \psi(u)$$

- dim(u) >> K ($u \leftrightarrow \hat{v}_{1:K}$): parametrization with time delay (Lu-Lin17)

A time series (NARMA) model of the form

$$u_k^n = R^{\delta}(u_k^{n-1}) + \Phi_k^n + g_k^n,$$

KEY: high-modes = functions of low modes

¹Foias, Constantin, Temam, Sell, Jolly, Kevrekidis, Titi et al (88-94)

 Motivation and objective
 Inference-based Model reduction

 0000
 00000

From nonlinear Galerkin to inference Summary and outlook

Kuramoto-Sivashinsky Equation

Test setting: $\nu = 3.43$ N = 128, dt = 0.001Reduced model: K = 5, $\delta = 100dt$

- 3 unstable modes
- 2 stable modes

From nonlinear Galerkin to inference Summary and outlook

Kuramoto-Sivashinsky Equation

Test setting: $\nu = 3.43$ N = 128, dt = 0.001Reduced model: K = 5, $\delta = 100dt$

- 3 unstable modes
- 2 stable modes

Long-term statistics:

reproduce PDF /ACF

Prediction: Forecast time:

- truncated sys.: $T \approx 5$
- NARMA: *T* ≈ **50** (≈ 2 Lyapunov time)

Motivation and objective	Inference-based Model reduction	From nonlinear Galerkin to inference	Summary and outlook
		0000000	

Stochastic Burgers equation

Derivation of parametric form: stochastic Burgers

$$\mathbf{v}_t = \nu \mathbf{v}_{\mathbf{x}\mathbf{x}} - \mathbf{v}\mathbf{v}_{\mathbf{x}} + f(\mathbf{x}, t)$$

Let v = u + w. In operator form:

$$\frac{du}{dt} = PAu + PB(u) + Pf + [PB(u + w) - PB(u)]$$
$$\frac{dw}{dt} = QAw + QB(u + w) + Qf$$

no spectral gap

w(t) is not function of u(t), but a functional of its path

Motivation and objective	Inference-based Model reduction	From nonlinear Galerkin to inference	Summary and outlook
		0000000	

Stochastic Burgers equation

Derivation of parametric form: stochastic Burgers

$$\mathbf{v}_t = \nu \mathbf{v}_{\mathbf{x}\mathbf{x}} - \mathbf{v}\mathbf{v}_{\mathbf{x}} + f(\mathbf{x}, t)$$

Let v = u + w. In operator form:

$$\frac{du}{dt} = PAu + PB(u) + Pf + [PB(u+w) - PB(u)]$$
$$\frac{dw}{dt} = QAw + QB(u+w) + Qf$$

no spectral gap

w(t) is not function of u(t), but a functional of its path

Integration instead:

$$w(t) = e^{-QAt}w(0) + \int_0^t e^{-QA(t-s)}[QB(u(s) + w(s))]ds$$
$$w^n \approx c_0 QB(u^n) + c_1 QB(u^{n-1}) + \dots + c_p QB(u^{n-p})$$

Linear in parameter: $PB(u + w) - PB(u) \approx \sum_{j=0}^{p} c_j P[(u^n QB(u^{n-j}))_x] + noise$ $u_k^n = R^{\delta}(u_k^{n-1}) + f_k^n + g_k^n + \Phi_k^n,$

KEY: high-modes = functionals of paths of low modes

From nonlinear Galerkin to inference Summary and outlook

Stochastic Burgers equation

Numerical tests:

$$\nu =$$
 0.05, $K_0 =$ 4 \rightarrow random shocks

- Full model: *N* = 128, *dt* = 0.005
- Reduced model: K = 8, $\delta = 20 dt$

Inference-based Model reduction From nonlinear Galerkin to inference Summary and outlook 00000000

Stochastic Burgers equation

Shock trace prediction:

Binary shock trace based on a threshold for u_x

Inference-based Model reduction

From nonlinear Galerkin to inference Summary and outlook

Stochastic Burgers equation

Cross-ACF of energy (4th moments!)

Motivation and objective

Inference-based Model reduction

From nonlinear Galerkin to inference Summary and outlook

Space-time reduction

Open questions in space-time reduction

$$(X_n - X_{n-1})/h = R_h(X_{n-1}) + \sum_i c_i \phi_i(X_{n-p:n-1}, \xi_{n-p:n-1}) + \xi_i$$

Observed from numerical tests:

- Memory length: best at medium
- Space reduction: arbitrary K = 2

Time reduction: stability
 h limited by *R_h*: medium
 CFL (truncated-G) = CFL(FM).

Optimal space-time reduction?

Motivation and objective	Inference-based Model reduction	From nonlinear Galerkin to inference	Summary and outlook

Summary

$$x' = f(x) + U(x,y), y' = g(x,y).$$
Data $\{x(nh)\}_{n=1}^{N}$
Inference
$$X' = f(X)$$
Discretization
$$X_{n+1} = X_n + R_h(X_n) + Z_n$$
for prediction

Numerical + inferential model reduction

- non-intrusive time series (NARMA)
- flow map approximation

$$x_n = \mathcal{F}_n(x_{[0,t_{n-1}]})$$

$$\approx \widehat{\mathcal{F}}_n(x_{1:n-1}) = \sum_k c_k \Phi_{n-p:n-1}^k$$

ightarrow space-time reduction

Data-driven modeling of dynamics

- Large time stepping for stiff ODEs/SDEs:
 - Approx. the discrete-time flow map
 - Parametric inference: improves but limited (Li-Lu-Ye21)
 - Dependent on the parametric form
 - Nyström: (0.50, 0.40), not the Störmer-Verlet (0.5, 0.5)
 - Machine learning: promising
- Space-time reduction for PDEs/SPDEs
 - Data-based coordinates
 - Optimal space-time reduction
 - Optimal memory length

Data-driven modeling of dynamics

- Large time stepping for stiff ODEs/SDEs:
 - Approx. the discrete-time flow map
 - Parametric inference: improves but limited (Li-Lu-Ye21)
 - Dependent on the parametric form
 - Nyström: (0.50, 0.40), not the Störmer-Verlet (0.5, 0.5)
 - Machine learning: promising
- Space-time reduction for PDEs/SPDEs
 - Data-based coordinates
 - Optimal space-time reduction
 - Optimal memory length

Probabilistic/statistical numerical integrators adaptive to

- time-step
- space-basis
- parameter distribution

References

Data-driven stochastic model reduction

- Chorin-Lu: Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics. PNAS 112 (2015).
- Lu-Lin-Chorin: Comparison of continuous and discrete-time data-based modeling for hypoelliptic systems. CAMCoS, 11 (2016).
- Lu-Lin-Chorin: Data-based stochastic model reduction for the Kuramoto Sivashinsky equation. Physica D, 340 (2017).
- Lin-Lu: Data-driven model reduction, Wiener projections, and the Mori-Zwanzig formalism. JCP (2021).
- Lu: Data-driven model reduction for stochastic Burgers equations. Entropy 2020.
- Li-Lu-Ye: ISALT: Inference-based schemes adaptive to large time-stepping for locally Lipschitz ergodic systems, DCDS-S (2021).

Data assimilation

- Lu-Tu-Chorin: Accounting for model error from unresolved scales in EnKFs: improving the forecast model. MWR, 340 (2017).
- Nan Chen, Honghu Liu and F. Lu. Shock trace prediction by reduced models for a viscous stochastic Burgers equation. Chaos (2022).

Thank you!