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Problem and motivation

Prediction with Uncertainty Quantification

x ′= F (x) + U(x , y), resolved scales
y ′ = G(x , y), subgrid-scales

Data:{x(nh)} partial observation

Model reduction by data-driven modeling

 2

Why? 
- Param. est. 
- Data assimilation 
- UQ 
- dynamical mechanisms 
- …

Goal: xn+1 = f(xn) + · · ·orẋ= f(x) + · · ·
- Statistics: time correlations, marginals, … 
- Forecast (if possible)
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Ẋt = F(Xt) , Xt 2 RD

Observe
xn = ⇡Xn�t + ⌫n

⇡ : RD! Rd , d⌧ D

xn

φ

t

Many approaches 
- Slow-fast; equation-free… 
- Linear models: AR(MA), …  
- Moment closures 
- Reduced order modeling: POD [Lumley, Holmes…]; 

DMD [Schmid…]; SINDy [Kutz, Brunton]; LSPG [Carlberg…]; … 
- Koopman / transfer operator [Mezic, Froyland…] 
- Mori-Zwanzig [Chorin; Stinis; Karniadakis, Venturi; Li; Levermore…] 

- Machine learning [Kevrekidis; Maggioni; Ott; Sauer…] 
- …

- High-dim 
- Chaotic / stochastic fit

(courtesy of Kevin Lin)

Motivation: Data assimilation:
ensemble forecasting
can only afford to resolve x ′ = F (x)
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Problem and motivation

Problem: ensemble prediction of x(t)

x ′= F (x) + U(x , y), resolved scales
y ′ = G(x , y), subgrid-scales

Data:{x(nh)}

Model reduction by data-driven modeling

 2

Why? 
- Param. est. 
- Data assimilation 
- UQ 
- dynamical mechanisms 
- …

Goal: xn+1 = f(xn) + · · ·orẋ= f(x) + · · ·
- Statistics: time correlations, marginals, … 
- Forecast (if possible)

=)
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t

Ẋt = F(Xt) , Xt 2 RD

Observe
xn = ⇡Xn�t + ⌫n

⇡ : RD! Rd , d⌧ D

xn

φ

t

Many approaches 
- Slow-fast; equation-free… 
- Linear models: AR(MA), …  
- Moment closures 
- Reduced order modeling: POD [Lumley, Holmes…]; 

DMD [Schmid…]; SINDy [Kutz, Brunton]; LSPG [Carlberg…]; … 
- Koopman / transfer operator [Mezic, Froyland…] 
- Mori-Zwanzig [Chorin; Stinis; Karniadakis, Venturi; Li; Levermore…] 

- Machine learning [Kevrekidis; Maggioni; Ott; Sauer…] 
- …

- High-dim 
- Chaotic / stochastic fit

courtesy of Kevin Lin

Objective: model the flow map: x1:n−1 → xn

captures key statistical + dynamical properties
ensemble simulations (with a large time-step)

Space-time reduction: spatial dimension ↓; time-step size ↑
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Review

Closure modeling, model error UQ, subgrid parametrization

Direct constructions:

nonlinear Galerkin [Fioas, Jolly,

Kevrekidis, Titi...]

moment closure [Levermore, Morokoff...]

Mori-Zwanzig formalism
memory→ non-Markov process
[Chorin, Hald, Kupferman, Stinis, Li, Darve, E,

Karniadarkis, Venturi, Duraisamy ...]

Data-driven RM

� PCA/POD, DMD, Kooperman [Holmes,

Lumley, Marsden, Wilcox, Kutz, Rowley ...]

� ROM closure [Farhat, Carlberg, Iliescu, Wang...]

� stochastic models: SDEs/GLEs,
time series models [Chorin/Majda/Gil groups]

� machine learning (... )

� Why and when a data-driven ROM work?
� What does a ROM approximate?

a statistical learning perspective of model reduction
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Review

Data-driven Model reduction
Computational reduction:

space: dimension reduction
time: large time stepping
space-time

Data (time series):
full observation: dominating coordinates/basis
partial observation

Goal: time series model for quantities of interest
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Flow map approximation

x ′ = F (x) + U(x , y), y ′ = G(x , y).

Data {x(nh)}Nn=1

Two Examples of Flow map: x1:n−1 → xn

Example 1 (deterministic):

x ′ = λx ; ⇒ x(h) = x(0)eλh, ∀h > 0

Numerical (Euler):

xn = xn−1 + hλxn−1, stability: |1 + hλ| < 1

Data {x(h), x(2h)}, infer xn = θxn−1:

θ = x(h)−1x(2h) = eλh ⇒ xn = eλhxn−1, ∀h > 0
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Flow map approximation

x ′ = F (x) + U(x , y), y ′ = G(x , y).

Data {x(nh)}Nn=1

Flow map: x1:n−1 → xn

Example 2 (stochastic, Ornstein-Uhlenbeck):

dxt = λxtdt + dWt ; ⇒ x(h) = x(0)eλh +

∫ h

0
eλsdWs

Numerical solution (Euler-Maruyama)
xn = xn−1 + hλxn−1 + N(0,h), stability: |1 + hλ| < 1

Data {x(nh)}n, infer xn = θxn−1 + N(0, σ):

θ = E[x(h)2]−1E[x(2h)x(h)] = eλh

σ = E[|xn − θxn−1|2] = (1− e2λh)/(2λ)
⇒ xn = eλhxn−1 + N(0, σ),

∀h > 0
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Flow map approximation

x ′ = F (x) + U(x , y), y ′ = G(x , y).

Data {x(nh)}Nn=1

Classical numerical schemes(
xn
yn

)
= F

(
xn−1
yn−1

)
trajectory-wise Approx.

fine resolution

Closure flow map
(Mori-Zwanzig):
xn = Fn(x1:n−1)

Data-driven methods:
Fn(x1:n−1) ≈ F̂n(xn−p:n−1)

average the subgrid-scales
approximate in distribution

Learning: curse of dimensionality
I machine learning: great success
I parametric inference

use the structure of the map

12 / 32



Motivation and objective Inference-based Model reduction From nonlinear Galerkin to inference Summary and outlook

Flow map approximation

x ′ = F (x) + U(x , y), y ′ = G(x , y).

Data {x(nh)}Nn=1

Classical numerical schemes(
xn
yn

)
= F

(
xn−1
yn−1

)
trajectory-wise Approx.

fine resolution

Closure flow map
(Mori-Zwanzig):
xn = Fn(x1:n−1)

Data-driven methods:
Fn(x1:n−1) ≈ F̂n(xn−p:n−1)

average the subgrid-scales
approximate in distribution

Learning: curse of dimensionality
I machine learning: great success
I parametric inference

use the structure of the map

13 / 32



Motivation and objective Inference-based Model reduction From nonlinear Galerkin to inference Summary and outlook

NARMA: a numerical time series model

(Xn − Xn−1)/h = Rh(Xn−1) +
∑

i

ciφi (xn−p:n−1, ξn−p:n−1) + ξi

NARMA(p,q) [Chorin-Lu (15)]

(Xn − Xn−1)/h = Rh(Xn−1) + Zn,

Zn = Φn + ξn,

Φn =

p∑
j=1

ajXn−j +
r∑

j=1

s∑
i=1

bi,jPi (Xn−j )︸ ︷︷ ︸
Auto-Regression

+

q∑
j=1

cjξn−j︸ ︷︷ ︸
Moving Average

Rh(Xn−1) from a numerical scheme for x ′ ≈ F (x)

Φn depends on the past

NARMAX in system identification Zn = Φ(Z ,X ) + ξn,
Tasks:
Structure derivation: terms and orders (p, r , s,q) in Φn;
Parameter estimation: aj ,bi,j , cj , and σ. Conditional MLE
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Example: a chaotic system

Example: the two-layer Lorenz 96 model

A NARMA model for the X variables

no scale-separation

Ansatz: polynomials with time lag 2

The NARMA model can

tolerate large time-step

reproduces statistics: ACF, PDF
[Chorin-Lu15]

improves Data Assimilation [Lu-Tu-Chorin17]
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Kuramoto-Sivashinsky Equation

Kuramoto-Sivashinsky: vt = −vxx − νvxxxx − vvx

Burgers: vt = νvxx − vvx + f (x , t),

Goal: a closed model for (v̂1:K ), K << N.

d
dt

v̂k = −qνk v̂k +
ik
2

∑
|l|≤K ,|k−l|≤K

v̂l v̂k−l + f̂k (t),

+
ik
2

∑
|l|>K or |k−l|>K

v̂l v̂k−l

View (v̂1:K ) ∼ x , (v̂k>K ) ∼ y : x ′ = F (x) + U(x , y), y ′ = G(x , y).

TODO: represent the effects of high modes to the low modes
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Kuramoto-Sivashinsky Equation

Derivation of a parametric form (KSE): vt = −vxx − νvxxxx − vvx
Let v = u + w . In operator form: vt = Av + B(v),

du
dt

= PAu + PB(u) + [PB(u + w)− PB(u)]

dw
dt

= QAw + QB(u + w)

Nonlinear Galerkin: approximate inertial manifold (IM)1

dw
dt ≈ 0⇒ w ≈ A−1QB(u + w)⇒ w ≈ ψ(u)

Need: spectral gap condition ;

dim(u) >> K (u ↔ v̂1:K ):

parametrization with time delay (Lu-Lin17)

A time series (NARMA) model of the form

un
k = Rδ(un−1

k ) + Φn
k + gn

k ,

KEY: high-modes = functions of low modes

1Foias, Constantin, Temam, Sell, Jolly, Kevrekidis, Titi et al (88-94)
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Kuramoto-Sivashinsky Equation

Test setting: ν = 3.43
N = 128, dt = 0.001
Reduced model: K = 5,δ = 100dt

3 unstable modes

2 stable modes

Long-term statistics:

reproduce PDF /ACF

Prediction: Forecast time:

truncated sys.: T ≈ 5

NARMA: T ≈ 50
(≈ 2 Lyapunov time)
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Stochastic Burgers equation

Derivation of parametric form: stochastic Burgers
vt = νvxx − vvx + f (x , t)

Let v = u + w . In operator form:

du
dt

= PAu + PB(u) + Pf + [PB(u + w)− PB(u)]

dw
dt

= QAw + QB(u + w) + Qf

no spectral gap
w(t) is not function of u(t), but a functional of its path

Integration instead:

w(t) = e−QAt w(0) +

∫ t

0
e−QA(t−s)[QB(u(s) + w(s))]ds

wn ≈ c0QB(un) + c1QB(un−1) + · · ·+ cpQB(un−p)

Linear in parameter: PB(u + w)− PB(u) ≈
∑p

j=0 cj P[(unQB(un−j ))x ] + noise

un
k = Rδ(un−1

k ) + f n
k + gn

k + Φn
k ,

KEY: high-modes = functionals of paths of low modes
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Stochastic Burgers equation

Numerical tests:
ν = 0.05, K0 = 4→ random shocks

Full model: N = 128,dt = 0.005

Reduced model: K = 8, δ = 20dt
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Energy spectrum
N Temporal correlation
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Stochastic Burgers equation

Shock trace prediction:

FM: K modes
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Stochastic Burgers equation
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Space-time reduction

Open questions in space-time reduction

(Xn − Xn−1)/h = Rh(Xn−1) +
∑

i

ciφi (xn−p:n−1, ξn−p:n−1) + ξi

Observed from numerical tests:

Memory length: best at medium

Space reduction: arbitrary K = 2
1 2
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Summary

x ′ = f(x) + U(x,y), y ′= g(x,y).
Data {x(nh)}Nn=1

“X ′ = f (X ) + Z (t , ω)”

Inference

“Xn+1 = Xn + Rh(Xn) + Zn ”
for prediction

Discretization

Inference

Numerical + inferential model reduction

non-intrusive time series (NARMA)

flow map approximation

xn = Fn(x[0,tn−1])

≈ F̂n(x1:n−1) =
∑

k

ck Φk
n−p:n−1

→ space-time reduction
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Data-driven modeling of dynamics

Large time stepping for stiff ODEs/SDEs:
I Approx. the discrete-time flow map
I Parametric inference: improves but limited (Li-Lu-Ye21)

Dependent on the parametric form
Nyström: (0.50, 0.40), not the Störmer-Verlet (0.5, 0.5)

I Machine learning: promising
Space-time reduction for PDEs/SPDEs

I Data-based coordinates
I Optimal space-time reduction
I Optimal memory length

Probabilistic/statistical numerical integrators adaptive to
time-step
space-basis
parameter distribution
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Nyström: (0.50, 0.40), not the Störmer-Verlet (0.5, 0.5)

I Machine learning: promising
Space-time reduction for PDEs/SPDEs

I Data-based coordinates
I Optimal space-time reduction
I Optimal memory length

Probabilistic/statistical numerical integrators adaptive to
time-step
space-basis
parameter distribution
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