Motivation and objective	Inference-based Model reduction	Shock trace prediction by RM	Summary and outlo

Shock trace prediction by reduced models for stochastic Burgers equation

Fei Lu

Department of Mathematics, Johns Hopkins

Join work with Nan Chen and Honghu Liu

July, 2022, SIAM AN

supports from JHU, NSF

Motivation and objective	Inference-based Model reduction	Shock trace prediction by RM	Summary and outlook

Can a reduced model predict random shocks?

 $\nu =$ 0.05, $K_0 =$ 4 stochastic force \rightarrow random shocks

Motivation	and	obj	ectiv	ve

Shock trace prediction by RM

Summary and outlook

Shock trace prediction by RM

Motivation	and	obje	ective
000			

Shock trace prediction by RM

Summary and outlook

Problem and motivation

Prediction with Uncertainty Quantification

x' = F(x) + U(x, y), y' = G(x, y),Data:{x(nh)} resolved scales subgrid-scales

(courtesy of Kevin Lin)

Motivatio	n and	obje	ctive
000			

Shock trace prediction by RM

Summary and outlook

Problem and motivation

Prediction with Uncertainty Quantification

x' = F(x) + U(x, y), y' = G(x, y),Data:{x(nh)} resolved scales subgrid-scales

Motivation: Data assimilation:

- ensemble forecasting
- can only afford to resolve x' = F(x)

(courtesy of Kevin Lin)

Objective 1: reduced model \approx the flow map: $x_{1:n-1} \rightarrow x_n$

- captures key statistical + dynamical properties
- ensemble simulations (with a larger time-step)
 Space-time reduction: spatial dimension ↓; time-step size ↑

Objective 2: Predict extreme events

Motivation and objective ○○●	Inference-based Model reduction	Shock trace prediction by RM	Summary and outlook $_{\circ\circ}$
Beview			

Closure modeling, model error UQ, subgrid parametrization

Direct constructions:

- nonlinear Galerkin [Fioas, Jolly, Kevrekidis, Titi...]
- moment closure [Levermore, Morokoff...]
- Polynomial chaos [Karniadarkis/Najm/Majda/Chorin... groups]
- Mori-Zwanzig formalism memory → non-Markov process [Chorin, Hald, Kupferman, Stinis, Li, Darve, E, Karniadarkis, Venturi, Duraisamy ...]

Data-driven RM

- PCA/POD, DMD, Kooperman [Holmes, Lumley, Marsden, Wilcox, Kutz, Rowley ...]
- ROM closure [Farhat, Carlberg, Iliescu, Wang...]
- stochastic models: SDEs/GLEs, time series models [Chorin/Majda/Gil groups]
- machine learning (...)

- What does a RM approximate?
- RM for random extreme events?

a statistical learning study of RM

Motivation and objective	Inference-based Model reduction ●○○	Shock trace prediction by RM	Summary and outlook
Flow map approximation			

$$x' = F(x) + U(x, y), y' = G(x, y).$$

Data $\{x(nh)\}_{n=1}^{N}$

Classical numerical schemes $\begin{pmatrix} x_n \\ y_n \end{pmatrix} = \mathbf{F} \begin{pmatrix} x_{n-1} \\ y_{n-1} \end{pmatrix}$

- trajectory-wise Approx.
- Closure flow map (Mori-Zwanzig):
 x_n = F_n(x_{1:n-1})

Motivation and objective	Inference-based Model reduction ●○○	Shock trace prediction by RM	Summary and outlook
Flow map approximation			

Classical numerical schemes
$$\begin{pmatrix}
x_n \\
y_n
\end{pmatrix} = \mathbf{F} \begin{pmatrix}
x_{n-1} \\
y_{n-1}
\end{pmatrix}$$

- trajectory-wise Approx.
- Closure flow map (Mori-Zwanzig):
 x_n = F_n(x_{1:n-1})

Data-driven methods: $F_n(x_{1:n-1}) \approx \widehat{F}_n(x_{n-n:n-1})$

Data $\{x(nh)\}_{n=1}^{N}$

- average the subgrid-scales approximate in distribution
- Learning: curse of dimensionality

x' = F(x) + U(x, y), y' = G(x, y).

- machine learning: great success
- parametric inference use the structure of the map

Motivation and objective	Inference-based Model reduction	Shock trace prediction by RM	Summary and outlook
	000		

NARMA: a numerical time series model

$$(X_n - X_{n-1})/h = R_h(X_{n-1}) + \sum_i c_i \phi_i(X_{n-p:n-1}, \xi_{n-p:n-1}) + \xi_i$$

• $R_h(X_{n-1})$ from a numerical scheme for $x' \approx F(x)$

• Φ_n depends on the past **Tasks:**

<u>Structure derivation</u>: terms and orders (p, r, s, q) in Φ_n ;

Parameter estimation: $a_i, b_{i,j}, c_j$, and σ . Conditional MLE

Motivation and objective	Inference-based Model redu
	00•

Shock trace prediction by RM

iction

Summary and outlook

Examples

Chaotic or stochastic systems

- the two-layer Lorenz96 [Chorin-Lu15]
- Kuramoto-Sivashisky [Lu-Lin-Chorin17]
- stochastic Burgers [Lu20]
 - $\nu = 0.05$, $K_0 = 4$ stochastic force
 - ▶ Full model: *N* = 128, *dt* = 0.005
 - Reduced model: K = 8, $\delta = 20 dt$

Motivation and objective	Inference-based Model reduction
	000

Shock trace prediction by RM

Summary and outlook

Examples

Chaotic or stochastic systems

- the two-layer Lorenz96 [Chorin-Lu15]
- Kuramoto-Sivashisky [Lu-Lin-Chorin17]
- stochastic Burgers [Lu20]
 - $\nu = 0.05$, $K_0 = 4$ stochastic force
 - ► Full model: *N* = 128, *dt* = 0.005
 - Reduced model: K = 8, $\delta = 20 dt$

The NARMA model can (for resolved var.)

- tolerate large time-steps
- reproduces statistics: ACF, PDF
- improves Data Assimilation [Lu-Tu-Chorin17]

Prediction of the random shocks?

Inference-based Model reduction

Shock trace prediction by RM ●○○○ Summary and outlook

Shock trace

Representing shocks

Representation of shocks

- Full: viscous shocks
- 2K- and K-modes: smooth

Distribution of max derivatives

Different scales

5 Full 2K-modes K-modes u (x,t) 0 -5 2 3 0 1 4 5 6 1.5 2 2.5 3 3.5 $Log(-min_x u_x(x))$

 \Rightarrow Shock representation requires high-modes.

Inference-based Model reduction

Shock trace prediction by RM

Summary and outlook

Shock trace

Shock trace by thresholding - FM

Trace of random shocks

- space-time locations
- resolution-adaptive thresholds
- empirical from FM data

Inference-based Model reduction

Shock trace prediction by RM

Summary and outlook

Shock trace prediction by NAR

Shock trace prediction with IC + force

NAR v.s. Truncated

Significant improvements

Inference-based Model reduction

Shock trace prediction by RM

Summary and outlook

Shock trace prediction by NAR

Shock trace prediction with IC + force

Inference-based Model reduction

Shock trace prediction by RM ○○○● Summary and outlook

Shock trace prediction by NAR

Data assimilation

NAR Truncated system Error of ensemble mean 0.7 0.6 0.6 NAR 0.4 0.4 Truncated 0.6 0.2 0 = 0.2 0 = 0.2 0.2 0.4 0.0 0.4 0.2 0.5 n 0.4 -0.2 0.3 -0.4 0.2 -0.6 0.1 -0.8 Observed -True Ensemble Ensemble Mean 0 10 0 5 10 ٥ 0 5 5 10 Time Time Time

Ensemble prediction

Inference-based Model reduction

Shock trace prediction by RM ○○○● Summary and outlook

Shock trace prediction by NAR

Data assimilation

Motivation and objective	Inference-based Model reduction	Shock trace prediction by RM	Summary and outlook
Summary			

Numerical + inferential model reduction

- non-intrusive time series (NARMA)
- \approx the flow map: $x_{1:n-1} \rightarrow x_n$
- space-time reduction

 \rightarrow Predicts shock trace: space-time locations (shock representation requires high modes)

Motivation	and	objective

Shock trace prediction by RM

Summary and outlook • 0

Space-time reduction

Open question: Optimal space-time reduction?

Space-time reduction

- dimension reduction r
- large time-stepping $\delta = Gap * \Delta t$
- Accuracy of RMs
 - 90 RM (r, δ)
 - RMSE on of 100 trajs on [0, 4]

Observations:

- As $r \uparrow$: accuracy \uparrow , tolerate $\delta \downarrow$
- Each r: "sweet spot" medium δ

Trade-off (r, δ) for an "optimal" RM?

References

Data-driven stochastic model reduction

- Chorin-Lu: Discrete approach to stochastic parametrization and dimension reduction in nonlinear dynamics. PNAS 112 (2015).
- Lu-Lin-Chorin: Comparison of continuous and discrete-time data-based modeling for hypoelliptic systems. CAMCoS, 11 (2016).
- Lu-Lin-Chorin: Data-based stochastic model reduction for the Kuramoto Sivashinsky equation. Physica D, 340 (2017).
- Lin-Lu: Data-driven model reduction, Wiener projections, and the Mori-Zwanzig formalism. JCP (2021).
- Lu: Data-driven model reduction for stochastic Burgers equations. Entropy 2020.
- Li-Lu-Ye: ISALT: Inference-based schemes adaptive to large time-stepping for locally Lipschitz ergodic systems, DCDS-S (2021).

Data assimilation

- Lu-Tu-Chorin: Accounting for model error from unresolved scales in EnKFs: improving the forecast model. MWR, 340 (2017).
- Nan Chen, Honghu Liu and F. Lu. Shock trace prediction by reduced models for a viscous stochastic Burgers equation. Chaos (2022).

Thank you!