Statistical learning and inverse problems from interacting particle systems

Fei Lu

Department of Mathematics, Johns Hopkins University

Nov. 10, 2022. Applied Math. and Stats., JHU

What is the law of interaction?

Bond length Lavis Structural Stru

Popkin. Nature(2016)

Voter model (wiki)

What is the law of interaction?

Bond length town the street of the street of

Popkin. Nature(2016)

$$m_i \ddot{x}_i(t) = -\dot{x}_i(t) + \frac{1}{N} \sum_{j=1, j \neq i}^{N} K_{\phi}(x_i, x_j),$$

Mean-field equations

$$K_{\phi}(x,y) = \nabla_x [\Phi(|x-y|)] = \phi(|x-y|) \frac{x-y}{|x-y|}.$$

- Newton's law of gravity $\phi(r) = G \frac{m_1 m_2}{r^2}$
- Lennard-Jones potential: $\Phi(r) = \frac{c_1}{r!^2} \frac{c_2}{r^6}$.

What is the law of interaction?

learning/inverse problems

Bond length tone traces

Popkin, Nature (2016)

$$m_i \ddot{x}_i(t) = -\dot{x}_i(t) + \frac{1}{N} \sum_{j=1, j \neq i}^{N} K_{\phi}(x_i, x_j),$$

$$K_{\phi}(x,y) = \nabla_x[\Phi(|x-y|)] = \phi(|x-y|)\frac{x-y}{|x-y|}.$$

- Newton's law of gravity $\phi(r) = G \frac{m_1 m_2}{r^2}$
- Lennard-Jones potential: $\Phi(r) = \frac{c_1}{r^{12}} \frac{c_2}{r^6}$.
- flocking birds, bacteria/cells ?
- opinion/voter/multi-agent models, ...? ^a

Infer the interaction kernel from data?

^a(1) Cucker+Smale: On the mathematics of emergence. 2007. (2) Vicsek+Zafeiris: Collective motion, 2012, (3) Mostch+Tadmor: Heterophilious Dvnamics Enhances Consensus 2014

Learn interaction kernel
$$K_{\phi}(x,y) = \phi(|x-y|) \frac{x-y}{|x-y|}$$

$$dX_t^i = rac{1}{N} \sum_{i=1}^N \mathcal{K}_\phi(X_t^i, X_t^i) dt + \sqrt{2
u} d\mathcal{B}_t^i \quad \Leftrightarrow \mathcal{R}_\phi(\boldsymbol{X}_t) = \dot{\boldsymbol{X}}_t - \sqrt{2
u} \dot{\boldsymbol{B}}_t$$

Finite N: a

- Data: M trajectories of particles: $\{X_{t,t}^{(m)}\}_{m=1}^{M}$
- Statistical learning
- ODEs/SDEs: Opinion Dynamics, Lennard-Jones, Prey-Predator; 1st/2nd order

Learn interaction kernel
$$K_{\phi}(x,y) = \phi(|x-y|) \frac{x-y}{|x-y|}$$

$$dX_t^i = rac{1}{N} \sum_{i=1}^N \mathcal{K}_\phi(X_t^j, X_t^i) dt + \sqrt{2
u} dB_t^i \quad \Leftrightarrow R_\phi(\boldsymbol{X}_t) = \dot{\boldsymbol{X}}_t - \sqrt{2
u} \dot{\boldsymbol{B}}_t$$

Finite N: a

- Data: M trajectories of particles : $\{X_{t,t}^{(m)}\}_{m=1}^{M}$
- Statistical learning
- ODEs/SDEs: Opinion Dynamics, Lennard-Jones, Prey-Predator; 1st/2nd order

Large N (>> 1)^b

• Data: density of particles $\{u(x_m, t_l) \approx N^{-1} \sum_i \delta(X_{t_i}^i - x_m)\}_{m,l}$

$$\partial_t u = \nu \Delta u + \nabla \cdot [u(K_{\phi} * u)]$$

Inverse problem for PDEs

[[]Maggioni, Lu, Tang, Zhong, Miller, Li, Zhang: PNAS19, SPA20,FOC22,JMLR21] b [Lang-Lu 20.21]

$$dX_t^i = rac{1}{N} \sum_{j=1}^N \mathcal{K}_{\phi}(X_t^j, X_t^i) dt + \sqrt{2\nu} d\mathcal{B}_t^i \quad \Leftrightarrow \mathcal{R}_{\phi}(\mathbf{X}_t) = \dot{\mathbf{X}}_t - \sqrt{2\nu} \dot{\mathbf{B}}_t$$
 $\partial_t u = \nu \Delta u + \nabla \cdot [u(\mathcal{K}_{\phi} * u)] \quad \Leftrightarrow \mathcal{R}_{\phi}[u(\cdot, t)] = f(\cdot, t)$

Mean-field equations

Learning kernels in operators: $R_{\phi}: \mathbb{X} \to \mathbb{Y}$

$$dX_t^i = rac{1}{N} \sum_{j=1}^N K_{\phi}(X_t^j, X_t^j) dt + \sqrt{2\nu} dB_t^i \quad \Leftrightarrow R_{\phi}(\mathbf{X}_t) = \dot{\mathbf{X}}_t - \sqrt{2\nu} \dot{\mathbf{B}}_t$$
 $\partial_t u = \nu \Delta u + \nabla \cdot [u(K_{\phi} * u)] \quad \Leftrightarrow R_{\phi}[u(\cdot, t)] = f(\cdot, t)$

Nonparametric learning:

Loss function? Identifiability? Convergence?

Finite many particles

learning/inverse problems

$$R_{\phi}(\boldsymbol{X}_{t}) = \boldsymbol{X}_{t} - \sqrt{2\nu} \boldsymbol{B}_{t} \text{ & Data} \Rightarrow \hat{\phi}_{n,M} = \underset{\psi \in \mathcal{H}_{n}}{\text{arg min }} \mathcal{E}_{M}(\psi)$$

- Loss function (log-likelihood, or MSE for ODEs): quadratic
- Regression: with $\psi = \sum_i c_i \phi_i \in \mathcal{H}_n = \operatorname{span}\{\phi_i\}_{i=1}^n$:

$$\mathcal{E}_{M}(\psi) = \boldsymbol{c}^{\top} \boldsymbol{A} \boldsymbol{c} - 2 \boldsymbol{b}^{\top} \boldsymbol{c} \quad \Rightarrow \quad \widehat{\phi}_{n,M} = \sum_{i=1}^{n} \widehat{c}_{i} \phi_{i}, \quad \widehat{\boldsymbol{c}} = \boldsymbol{A}^{-1} \boldsymbol{b}$$

Finite many particles

$$R_{\phi}(\boldsymbol{X}_t) = \dot{\boldsymbol{X}}_t - \sqrt{2\nu} \dot{\boldsymbol{B}}_t$$
 & Data $\Rightarrow \hat{\phi}_{n,M} = \operatorname*{arg\,min}_{\psi \in \mathcal{H}_n} \mathcal{E}_M(\psi)$

Mean-field equations

- Loss function (log-likelihood, or MSE for ODEs): quadratic
- Regression: with $\psi = \sum_i c_i \phi_i \in \mathcal{H}_n = \operatorname{span}\{\phi_i\}_{i=1}^n$:

$$\mathcal{E}_{M}(\psi) = c^{\top}Ac - 2b^{\top}c \quad \Rightarrow \quad \widehat{\phi}_{n,M} = \sum_{i=1}^{n} \widehat{c}_{i}\phi_{i}, \quad \widehat{c} = A^{-1}b$$

- Choice of \mathcal{H}_n & function space of learning?
- Well-posed/ identifiability?
 - Convergence and rate?

Classical learning theory

Goal: find f s.t. $Y = \phi(X)$

Given: Data
$$\{(x_m, y_m)\}_{m=1}^M \sim (X, Y)$$

Learning kernel

Given: Data $\{X_{[0,T]}^{(m)}\}_{m=1}^{M}$

Mean-field equations

Goal: find ϕ s.t. $\dot{\mathbf{X}}_t = R_{\phi}(\mathbf{X}_t)$

$$\mathcal{E}(\phi) = \mathbb{E}|\mathbf{Y} - \phi(\mathbf{X})|^2 = \|\phi - \phi_{\textit{true}}\|_{L^2(\rho_{\mathbf{X}})}^2 \quad \mathcal{E}(\phi) = \mathbb{E}|\dot{\mathbf{X}} - R_{\phi}(\mathbf{X})|^2 \neq \|\phi - \phi_{\textit{true}}\|_{L^2(\rho)}^2$$

Classical learning theory

Given: Data
$$\{(x_m,y_m)\}_{m=1}^M \sim (X,Y)$$

Goal: find
$$f$$
 s.t. $Y = \phi(X)$

$$\mathcal{E}(\phi) = \mathbb{E}|Y - \phi(X)|^2 = \|\phi - \phi_{true}\|_{L^2(\rho_X)}^2$$

- Function space: $L^2(\rho_X)$.
- Identifiability: $\mathbb{E}[Y|X=x] = \arg\min \mathcal{E}(\phi).$ $\phi \in L^2(\rho_X)$
- $A \approx \mathbb{E}[\phi_i(X)\phi_i(X)] = I_n$ by setting $\{\phi_i\}$ ONB in $L^2(\rho_X)$.

Learning kernel

Given: Data $\{X_{[0,T]}^{(m)}\}_{m=1}^{M}$

Mean-field equations

Goal: find ϕ s.t. $\mathbf{X}_t = R_{\phi}(\mathbf{X}_t)$

$$\mathcal{E}(\phi) = \mathbb{E}|\dot{\mathbf{X}} - R_{\phi}(\mathbf{X})|^2 \neq \|\phi - \phi_{true}\|_{L^2(\rho)}^2$$

- Function space: $L^2(\rho)$. measure $\rho \sim |X^i - X^j|$
- Identifiability: arg min ε(φ)?? $\phi \in L^2(\rho)$
- $A \approx \mathbb{E}[R_{\phi_i}(\boldsymbol{X})R_{\phi_i}(\boldsymbol{X})] \neq I_n$?? Coercivity condition

Classical learning theory

Given: Data
$$\{(x_m, y_m)\}_{m=1}^M \sim (X, Y)$$

Goal: find f s.t. $Y = \phi(X)$

Given: Data $\{X_{[0,T]}^{(m)}\}_{m=1}^{M}$

Mean-field equations

Goal: find ϕ s.t. $\mathbf{X}_t = R_{\phi}(\mathbf{X}_t)$

$$\mathcal{E}(\phi) = \mathbb{E}|\textbf{\textit{Y}} - \phi(\textbf{\textit{X}})|^2 = \|\phi - \phi_{\textit{true}}\|_{L^2(\rho_\textbf{\textit{X}})}^2 \quad \mathcal{E}(\phi) = \mathbb{E}|\dot{\textbf{\textit{X}}} - \textbf{\textit{R}}_\phi(\textbf{\textit{X}})|^2 \neq \|\phi - \phi_{\textit{true}}\|_{L^2(\rho)}^2$$

- Function space: $L^2(\rho_X)$.
- Identifiability: $\mathbb{E}[Y|X=x] = \arg\min \mathcal{E}(\phi).$ $\phi \in L^2(\rho_X)$
- $A \approx \mathbb{E}[\phi_i(X)\phi_i(X)] = I_n$ by setting $\{\phi_i\}$ ONB in $L^2(\rho_X)$.

- Function space: $L^2(\rho)$. measure $\rho \sim |X^i - X^j|$
- Identifiability: arg min $\mathcal{E}(\phi)$?? $\phi \in L^2(\rho)$
- $A \approx \mathbb{E}[R_{\phi_i}(\boldsymbol{X})R_{\phi_i}(\boldsymbol{X})] \neq I_n$?? Coercivity condition

Error bounds for $\widehat{\phi}_{n_M}$: asymptotic/non-asymptotic (CLT/concentration)

$$\mathcal{E}(\widehat{\phi}_{\mathsf{n}_{\mathsf{M}}}) - \mathcal{E}(\phi_{\mathcal{H}}) \geq c_{\mathcal{H}} \|\widehat{\phi}_{\mathsf{n}_{\mathsf{M}}} - \phi_{\mathcal{H}}\|^{2}$$

Theorem (LZTM19,LMT22)

Let $\{\mathcal{H}_n\}$ compact convex in L^{∞} with $\operatorname{dist}(\phi_{true},\mathcal{H}_n) \sim n^{-s}$. Assume the coercivity condition on $\bigcup_n \mathcal{H}_n$. Set $n_* = (M/\log M)^{\frac{1}{2s+1}}$. Then

Mean-field equations

$$\mathbb{E}_{\mu_0}[\|\widehat{\phi}_{M,\mathcal{H}_{n_*}} - \phi_{\textit{true}}\|_{L^2(\rho)}] \leq C \left(\frac{\log M}{M}\right)^{\frac{S}{2S+1}}.$$

• $\dim(\mathcal{H}_n)$ adaptive to s ($\phi_{true} \in C^s$) and M:

Concentration inequalities for r.v. or martingale

Mean-field equations

Opinion dynamics kernel estimators:

Coercivity condition on ${\cal H}$

$$\langle\!\langle \phi, \phi \rangle\!\rangle = rac{1}{T} \int_0^T \mathbb{E}[R_\phi(\boldsymbol{X}_t) R_\phi(\boldsymbol{X}_t)] dt \geq c_\mathcal{H} \|\phi\|_{L^2(
ho)}^2, \quad orall \phi \in \mathcal{H}$$

- Partial results: $c_{\mathcal{H}} = \frac{1}{N-2}$ for $\mathcal{H} = L^2(\rho)$
 - Gaussian or $\Phi(r) = r^{2\beta}$ stationary [LLMTZ21spa,LL20]
 - Harmonic analysis: strictly positive definite integral kernel

$$\mathbb{E}[\phi(|X-Y|)\phi(|X-Z|)\frac{\langle X-Y,X-Z\rangle}{|X-Y||X-Z|}] \geq 0, \forall \phi \in L^2(\rho)$$

Mean-field equations

- Open: non-stationary? A compact $\mathcal{H} \subset C(\text{supp}(\rho))$?
- No coercivity on $L^2(\rho)$ when $N \to \infty$ since $c_H \to 0$

Inverse problem for Mean-field PDE

learning/inverse problems

Goal: Identify ϕ from discrete data $\{u(x_m, t_l)\}_{m,l=1}^{M,L}$ of

$$\partial_t u = \nu \Delta u + \nabla \cdot [u(\mathbf{K}_{\phi} * u)], \quad \mathbf{x} \in \mathbb{R}^d, t > 0,$$

where
$$K_{\phi}(x) = \nabla(\Phi(|x|)) = \phi(|x|) \frac{x}{|x|}$$
.

Loss functional

$$\partial_t u = \nu \Delta u + \nabla \cdot [u(K_{\phi} * u)]$$

Mean-field equations

00000000

Candidates:

- Discrepancy: $\mathcal{E}(\psi) = \|\partial_t u \nu \Delta u \nabla \cdot (u(K_{\psi} * u))\|^2$
- Free energy: $\mathcal{E}(\psi) = C + |\int_{\mathbb{D}^d} u[(\Psi \Phi) * u] dx|^2$
- Wasserstein-2: $\mathcal{E}(\psi) = W_2(u^{\psi}, u)$ costly: requires many PDE simulations in optimization
- A probabilistic loss functional

$$\mathcal{E}(\psi) := \frac{1}{T} \int_0^T \int_{\mathbb{R}^d} \left[\left| K_{\psi} * u \right|^2 u - 2\nu u (\nabla \cdot K_{\psi} * u) + 2\partial_t u (\Psi * u) \right] dx dt$$

 $\bullet = -\mathbb{E}[\text{log-likelihood}]: McKean-Vlasov process$

$$\left\{egin{aligned} d\overline{X}_t = & -K_{\phi_{ ext{true}}} * u(\overline{X}_t, t) dt + \sqrt{2
u} dB_t, \ \mathcal{L}(\overline{X}_t) = u(\cdot, t), \end{aligned}
ight.$$

Derivative free

learning/inverse problems

• Suitable for high dimension: $Z_t = \overline{X}_t - \overline{X}'_t$

$$\mathcal{E}(\psi) = \frac{1}{T} \int_0^T \left(\mathbb{E} |\mathbb{E}[K_{\psi}(Z_t)|\overline{X}_t]|^2 - 2\nu \mathbb{E}[\nabla \cdot K_{\psi}(Z_t)] + \partial_t \mathbb{E}\Psi(Z_t) \right) dt$$

Nonparametric regression

$$\mathcal{E}(\psi) := \frac{1}{T} \int_0^T \int_{\mathbb{R}^d} \left[\left| K_{\psi} * u \right|^2 u - 2\nu u (\nabla \cdot K_{\psi} * u) + 2\partial_t u (\Psi * u) \right] dx dt$$
$$= \langle\!\langle \psi, \psi \rangle\!\rangle - 2\langle \psi, \phi^D \rangle_{L^2(\rho_T)}$$

Mean-field equations

LS-regression $\psi = \sum_{i=1}^{n} c_i \phi_i \in \mathcal{H}_n$:

$$\mathcal{E}_{M}(\psi) = c^{\top}Ac - 2b^{\top}c \quad \Rightarrow \quad \widehat{\phi}_{n,M} = \sum_{i=1}^{n} \widehat{c}_{i}\phi_{i}, \quad \widehat{c} = A^{-1}b$$

- Choice of \mathcal{H}_n & function space of learning?
 - ▶ Exploration measure $\rho_T \leftarrow |\overline{X}_t \overline{X}_t'|$
- Inverse problem well-posed/ identifiability?
- Convergence and rate? $\Delta x = M^{-1/d} \rightarrow 0$

000000000

Identifiability

$$A_{ij} = \langle\!\langle \phi_i, \phi_j \rangle\!\rangle = \int_{\mathbb{R}^+} \int_{\mathbb{R}^+} \phi_i(r) \psi_j(s) \overline{G}_T(r, s) \rho_T(dr) \rho_T(ds)$$
$$= \langle L_{\overline{G}_T} \phi_i, \phi_j \rangle_{L^2(\rho_T)}$$

Identifiability

$$egin{aligned} m{A}_{ij} &= \langle\!\langle \phi_i, \phi_j \rangle\!\rangle = \int_{\mathbb{R}^+} \int_{\mathbb{R}^+} \phi_i(r) \psi_j(s) \overline{G}_{\mathcal{T}}(r,s)
ho_{\mathcal{T}}(dr)
ho_{\mathcal{T}}(ds) \ &= \langle m{L}_{\overline{G}_{\mathcal{T}}} \phi_i, \phi_j
angle_{L^2(
ho_{\mathcal{T}})} \end{aligned}$$

- Positive compact operator L_G
 - normal matrix $A \sim L_{\overline{G}_T} \mid_{\mathcal{H}}$ in $L^2(\rho_T)$

$$c_{\mathcal{H},\mathcal{T}} = \inf_{\psi \in \mathcal{H}, \|\psi\|_{L^2(\rho_{\mathcal{T}})} = 1} \langle\!\langle \psi, \psi \rangle\!\rangle > 0$$
 (Coercivity condition)

Mean-field equations

000000000

- Identifiability: $A^{-1}b \leftrightarrow L_{\overline{G}}^{-1}\phi^{D}$
 - Function space of identifiability (FSOI): $span\{\psi_i\}_{\lambda_i>0}$
 - ► Closure of RKHS $H_{\overline{G}} = L_{\overline{G}}^{1/2}(L^2(\rho_T))$ [LangLu21]

$$\mathbb{H} = L^2(\rho_T)$$

Theorem (Numerical error bound [Lang-Lu20])

Let $\mathcal{H}_n = \text{span}\{\phi_i\}_{i=1}^n$ s.t. $\|\phi_{\mathcal{H}_n} - \phi\|_{\mathbb{H}} \lesssim n^{-s}$. Assume the coercivity condition on $\cup \mathcal{H}_n$. Then, with dimension $n \approx (\Delta x)^{-\alpha/(s+1)}$, we have:

Mean-field equations

$$\|\widehat{\phi}_{nM} - \phi\|_{\mathbb{H}} \lesssim (\Delta x)^{\alpha s/(s+1)}$$

- Δx^{α} comes from numerical integrator (e.g., Riemann sum)
 - $\alpha = 1/2$ in Monte Carlo in statistic learning
- Trade-off: numerical error v.s. approximation error

• near optimal rate ($\phi \in W^{1,\infty}$)

Example 2: Opinion dynamics $\phi(r)$ piecewise linear

Mean-field equations

000000000

• sub-optimal rate ($\phi \notin W^{1,\infty}$)

Example 3: repulsion-attraction $\phi(r) = r - r^{-1.5}$ (singular)

Mean-field equations

000000000

low rate: theory does not apply

Ongoing projects and open problems:

- Coercivity condition
- General systems:
 - Aggression equations (inviscid MFE)
 - non-radial kernels
 - Systems on graph
- Other types of data:
 - Partial data: observability and randomization
 - Multiple MFE solutions

Learning kernels in operators: regularization

Learn the kernel ϕ :

$$R_{\phi}[u] = f$$

Mean-field equations

from data:

$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \quad (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

- R_{ϕ} linear/nonlinear in u, but linear in ϕ
- Examples:
 - ▶ interaction kernel: $R_{\phi}[u] = \nabla \cdot [u(K_{\phi} * u)] = \partial_t u \nu \Delta u$
 - Toeplitz/Hankel matrix
 - integral/nonlocal operators,...

III-posed inverse problem

$$\begin{split} \mathcal{E}(\psi) &= \|R_{\psi}[u] - f\|_{\mathbb{Y}}^2 = \langle L_G \psi, \psi \rangle_{L^2(\rho)} - 2 \langle \phi^D, \psi \rangle_{L^2(\rho)} + C \\ \nabla \mathcal{E}(\psi) &= L_G \psi - \phi^D = 0 \quad \rightarrow \widehat{\phi} = L_G^{-1} \phi^D \\ \phi^D &= L_G \phi_{true} + \phi_{noise}^D + \phi_{model\ error}^D + \phi_{numerical\ error}^D \end{split}$$

$$\begin{split} \mathcal{E}(\psi) &= \|R_{\psi}[u] - f\|_{\mathbb{Y}}^2 = \langle L_G \psi, \psi \rangle_{L^2(\rho)} - 2 \langle \phi^D, \psi \rangle_{L^2(\rho)} + \mathcal{C} \\ \nabla \mathcal{E}(\psi) &= L_G \psi - \phi^D = 0 \quad \rightarrow \widehat{\phi} = L_G^{-1} \phi^D \\ \phi^D &= L_G \phi_{true} + \phi_{noise}^D + \phi_{model\ error}^D + \phi_{numerical\ error}^D \end{split}$$

Mean-field equations

Regularization

$$\mathcal{E}_{\lambda}(\psi) = \mathcal{E}(\psi) + \lambda \|\psi\|_{Q}^{2} \to \widehat{\phi} = (L_{G} + \lambda Q)^{-1} \phi^{D}$$

- λ by the L-curve method [Hansen00]
- Regularization norm $\|\cdot\|_Q$?

$$\mathcal{E}(\psi) = \|R_{\psi}[u] - f\|_{\mathbb{Y}}^2 = \langle L_G \psi, \psi \rangle_{L^2(\rho)} - 2\langle \phi^D, \psi \rangle_{L^2(\rho)} + C$$

$$\nabla \mathcal{E}(\psi) = L_G \psi - \phi^D = 0 \quad \Rightarrow \widehat{\phi} = L_G^{-1} \phi^D$$

$$\phi^D = L_G \phi_{true} + \phi_{poise}^D + \phi_{model error}^D + \phi_{pumerical error}^D$$

Mean-field equations

Regularization

$$\mathcal{E}_{\lambda}(\psi) = \mathcal{E}(\psi) + \lambda \|\psi\|_{Q}^{2} \to \widehat{\phi} = (L_{G} + \lambda Q)^{-1} \phi^{D}$$

- λ by the L-curve method [Hansen00]
- Regularization norm $\|\cdot\|_{\Omega}$?

ANSWER: norm of RKHS $H_G = L_G^{1/2} L^2(\rho) \leftrightarrow Q = L_G^{-1}$ [Lu+Lang+An22]

DARTR: Data Adaptive RKHS Tikhonov Regularization

DARTR: Data Adaptive RKHS Tikhonov Regularization

$$R_{\phi}[u] = \nabla \cdot [u(K_{\phi} * u)] = f$$

Mean-field equations

- Recover kernel from discrete noisy data
- Consistent convergence as mesh refines

Open questions and ongoing projects:

- Regularized estimator: convergence and rate?
- Regularization for NN in function space
- Data-adaptive priors for Bayesian inverse problems
- Applications: deconvolution, homogenization,...

Summary and future directions

Nonparametric regression for interaction kernels

- Finite N (ODEs/SDEs): statistical learning
- $N = \infty$ (Mean-field PDEs): inverse problem

Learning kernels in operators:

- Probabilistic loss functionals
- Identifiability
- Coercivity condition
 - yes: convergence
 - no: DARTR

Learning with nonlocal dependence: a new direction?

- Coercivity condition
- Regularization
- Convergence (minimax rate)

- Q. Lang and F. Lu. Learning interaction kernels in mean-field equations of 1st-order systems of interacting particles, SISC22
- Q. Lang and F. Lu. Identifiability of interaction kernels in mean-field equations of interacting particles. arXiv2106.

Mean-field equations

- F.Lu, Q. An and Y. Yu. Nonparametric learning of kernels in nonlocal operators. 2201
- F.Lu. Q Lang and Q. An. Data adaptive RKHS Tikhonov regularization for learning kernels in operators, arXiv2203
- F. Lu, M. Maggioni and S. Tang, Learning interaction kernels in stochastic systems of interacting particles from multiple trajectories. FoCM21.
- F. Lu, M. Maggioni and S. Tang: Learning interaction kernels in heterogeneous systems of agents from multiple trajectories, JMLR21
- Z. Li, F. Lu, M. Maggioni, S. Tang and C. Zhang: On the identifiability of interaction functions in systems of interacting particles. SPA21
- F. Lu, M Zhong, S Tang and M Maggioni, Nonparametric inference of interaction laws in systems of agents from trajectory data, PNAS19