Statistical learning and inverse problems from interacting particle systems

Fei Lu
Department of Mathematics, Johns Hopkins University

Nov. 10, 2022.
Applied Math. and Stats., JHU

What is the law of interaction?

Popkin. Nature(2016)

What is the law of interaction?

$$
m_{i} \ddot{x}_{i}(t)=-\dot{x}_{i}(t)+\frac{1}{N} \sum_{j=1, j \neq i}^{N} K_{\phi}\left(x_{i}, x_{j}\right),
$$

$$
K_{\phi}(x, y)=\nabla_{\chi}[\Phi(|x-y|)]=\phi(|x-y|) \frac{x-y}{|x-y|} .
$$

- Newton's law of gravity $\phi(r)=G \frac{m_{1} m_{2}}{r^{2}}$
- Lennard-Jones potential: $\Phi(r)=\frac{c_{1}}{r^{2}}-\frac{C_{2}}{r^{6}}$.

Popkin. Nature(2016)

What is the law of interaction?

$$
\begin{array}{r}
m_{i} \ddot{x}_{i}(t)=-\dot{x}_{i}(t)+\frac{1}{N} \sum_{j=1, j \neq i}^{N} K_{\phi}\left(x_{i}, x_{j}\right), \\
K_{\phi}(x, y)=\nabla_{x}[\phi(|x-y|)]=\phi(|x-y|) \frac{x-y}{|x-y|} .
\end{array}
$$

- Newton's law of gravity $\phi(r)=G \frac{m_{1} m_{2}}{r^{2}}$
- Lennard-Jones potential: $\Phi(r)=\frac{c_{1}}{r^{2}}-\frac{C_{2}}{r^{6}}$.
- flocking birds, bacteria/cells ?
- opinion/voter/multi-agent models, ...? ${ }^{\text {a }}$

Infer the interaction kernel from data?

[^0]
Learn interaction kernel $K_{\phi}(x, y)=\phi(|x-y|) \frac{x-y}{|x-y|}$

$$
d X_{t}^{i}=\frac{1}{N} \sum_{j=1}^{N} K_{\phi}\left(X_{t}^{j}, X_{t}^{i}\right) d t+\sqrt{2 \nu} d B_{t}^{i} \quad \Leftrightarrow R_{\phi}\left(\boldsymbol{X}_{t}\right)=\dot{\boldsymbol{X}}_{t}-\sqrt{2 \nu} \dot{\boldsymbol{B}}_{t}
$$

Finite N : ${ }^{a}$

- Data: M trajectories of particles : $\left\{\boldsymbol{X}_{t_{1}: t_{L}}^{(m)}\right\}_{m=1}^{M}$
- Statistical learning
- ODEs/SDEs: Opinion Dynamics, Lennard-Jones, Prey-Predator; 1st/2nd order

Learn interaction kernel $K_{\phi}(x, y)=\phi(|x-y|) \frac{x-y}{|x-y|}$
$d X_{t}^{i}=\frac{1}{N} \sum_{j=1}^{N} K_{\phi}\left(X_{t}^{j}, X_{t}^{i}\right) d t+\sqrt{2 \nu} d B_{t}^{i} \quad \Leftrightarrow R_{\phi}\left(\boldsymbol{X}_{t}\right)=\dot{\boldsymbol{X}}_{t}-\sqrt{2 \nu} \dot{\boldsymbol{B}}_{t}$
Finite N : ${ }^{a}$

- Data: M trajectories of particles : $\left\{\boldsymbol{X}_{t_{1}: t_{L}}^{(m)}\right\}_{m=1}^{M}$
- Statistical learning
- ODEs/SDEs: Opinion Dynamics, Lennard-Jones, Prey-Predator; 1st/2nd order

Large $\mathbf{N}(\gg 1)^{b}$

- Data: density of particles $\left\{u\left(x_{m}, t_{l}\right) \approx N^{-1} \sum_{i} \delta\left(X_{t_{l}}^{i}-x_{m}\right)\right\}_{m, l}$

$$
\partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right]
$$

- Inverse problem for PDEs

[^1]Learning kernels in operators: $R_{\phi}: \mathbb{X} \rightarrow \mathbb{Y}$

$$
\begin{aligned}
d X_{t}^{i}=\frac{1}{N} \sum_{j=1}^{N} K_{\phi}\left(X_{t}^{j}, X_{t}^{i}\right) d t+\sqrt{2 \nu} d B_{t}^{i} & \Leftrightarrow R_{\phi}\left(\boldsymbol{X}_{t}\right)=\dot{\boldsymbol{X}}_{t}-\sqrt{2 \nu} \dot{\boldsymbol{B}}_{t} \\
\partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right] & \Leftrightarrow R_{\phi}[u(\cdot, t)]=f(\cdot, t)
\end{aligned}
$$

Learning kernels in operators: $R_{\phi}: \mathbb{X} \rightarrow \mathbb{Y}$

$$
\begin{aligned}
d X_{t}^{i}=\frac{1}{N} \sum_{j=1}^{N} K_{\phi}\left(X_{t}^{j}, X_{t}^{i}\right) d t+\sqrt{2 \nu} d B_{t}^{i} & \Leftrightarrow R_{\phi}\left(\boldsymbol{X}_{t}\right)=\dot{\boldsymbol{X}}_{t}-\sqrt{2 \nu} \dot{\boldsymbol{B}}_{t} \\
\partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right] & \Leftrightarrow R_{\phi}[u(\cdot, t)]=f(\cdot, t)
\end{aligned}
$$

Classical learning

$$
\left\{\left(x_{i}, \phi\left(x_{i}\right)+\epsilon_{i}\right)\right\}
$$

Nonparametric learning:
Loss function? Identifiability? Convergence?

Finite many particles

$$
R_{\phi}\left(\boldsymbol{X}_{t}\right)=\dot{\boldsymbol{X}}_{t}-\sqrt{2 \nu} \dot{\boldsymbol{B}}_{t} \quad \& \text { Data } \quad \Rightarrow \hat{\phi}_{n, M}=\underset{\psi \in \mathcal{H}_{n}}{\arg \min } \mathcal{E}_{M}(\psi)
$$

- Loss function (log-likelihood, or MSE for ODEs): quadratic
- Regression: with $\psi=\sum_{i} c_{i} \phi_{i} \in \mathcal{H}_{n}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}$:

$$
\mathcal{E}_{M}(\psi)=c^{\top} A c-2 b^{\top} c \Rightarrow \widehat{\phi}_{n, M}=\sum_{i=1}^{n} \widehat{c}_{i} \phi_{i}, \quad \widehat{c}=A^{-1} b
$$

Finite many particles

$$
R_{\phi}\left(\boldsymbol{X}_{t}\right)=\dot{\boldsymbol{X}}_{t}-\sqrt{2 \nu} \dot{\boldsymbol{B}}_{t} \quad \& \text { Data } \Rightarrow \hat{\phi}_{n, M}=\underset{\psi \in \mathcal{H}_{n}}{\arg \min } \mathcal{E}_{M}(\psi)
$$

- Loss function (log-likelihood, or MSE for ODEs): quadratic
- Regression: with $\psi=\sum_{i} c_{i} \phi_{i} \in \mathcal{H}_{n}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}$:

$$
\mathcal{E}_{M}(\psi)=c^{\top} A c-2 b^{\top} c \Rightarrow \widehat{\phi}_{n, M}=\sum_{i=1}^{n} \widehat{c}_{i} \phi_{i}, \quad \widehat{c}=A^{-1} b
$$

- Choice of \mathcal{H}_{n} \& function space of learning?
- Well-posed/ identifiability?
- Convergence and rate?

Classical learning theory

Given: $\operatorname{Data}\left\{\left(x_{m}, y_{m}\right)\right\}_{m=1}^{M} \sim(X, Y)$ Goal: find f s.t. $Y=\phi(X)$

Learning kernel

Given: $\operatorname{Data}\left\{\boldsymbol{X}_{[0, T]}^{(m)}\right\}_{m=1}^{M}$
Goal: find ϕ s.t. $\dot{\boldsymbol{X}}_{t}=R_{\phi}\left(\boldsymbol{X}_{t}\right)$

$$
\mathcal{E}(\phi)=\mathbb{E}|Y-\phi(X)|^{2}=\left\|\phi-\phi_{\text {true }}\right\|_{L^{2}\left(\rho_{\chi}\right)}^{2} \mathcal{E}(\phi)=\mathbb{E}\left|\dot{\boldsymbol{X}}-\boldsymbol{R}_{\phi}(\boldsymbol{X})\right|^{2} \neq\left\|\phi-\phi_{\text {true }}\right\|_{L^{2}(\rho)}^{2}
$$

Classical learning theory

Given: $\operatorname{Data}\left\{\left(x_{m}, y_{m}\right)\right\}_{m=1}^{M} \sim(X, Y)$ Goal: find f s.t. $Y=\phi(X)$

Learning kernel

Given: $\operatorname{Data}\left\{\boldsymbol{X}_{[0, T]}^{(m)}\right\}_{m=1}^{M}$
Goal: find ϕ s.t. $\dot{\boldsymbol{X}}_{t}=\boldsymbol{R}_{\phi}\left(\boldsymbol{X}_{t}\right)$

$$
\mathcal{E}(\phi)=\mathbb{E}|Y-\phi(X)|^{2}=\left\|\phi-\phi_{\text {true }}\right\|_{L^{2}\left(\rho_{X}\right)}^{2} \mathcal{E}(\phi)=\mathbb{E}\left|\dot{\boldsymbol{X}}-R_{\phi}(\boldsymbol{X})\right|^{2} \neq\left\|\phi-\phi_{\text {true }}\right\|_{L^{2}(\rho)}^{2}
$$

- Function space: $L^{2}\left(\rho_{X}\right)$.
- Identifiability:
$\mathbb{E}[Y \mid X=x]=\underset{\phi \in L^{2}\left(\rho_{X}\right)}{\arg \min } \mathcal{E}(\phi)$.
- $A \approx \mathbb{E}\left[\phi_{i}(X) \phi_{j}(X)\right]=I_{n}$ by setting $\left\{\phi_{i}\right\}$ ONB in $L^{2}\left(\rho_{X}\right)$.
- Function space: $L^{2}(\rho)$. measure $\rho \sim\left|X^{i}-X^{j}\right|$
- Identifiability: $\arg \min \mathcal{E}(\phi)$??

$$
\phi \in L^{2}(\rho)
$$

- $A \approx \mathbb{E}\left[R_{\phi_{i}}(\boldsymbol{X}) R_{\phi_{i}}(\boldsymbol{X})\right] \neq I_{n}$?? Coercivity condition

Classical learning theory

Given: $\operatorname{Data}\left\{\left(x_{m}, y_{m}\right)\right\}_{m=1}^{M} \sim(X, Y)$ Goal: find f s.t. $Y=\phi(X)$

Learning kernel

Given: $\operatorname{Data}\left\{\boldsymbol{X}_{[0, T]}^{(m)}\right\}_{m=1}^{M}$
Goal: find ϕ s.t. $\dot{\boldsymbol{X}}_{t}=\boldsymbol{R}_{\phi}\left(\boldsymbol{X}_{t}\right)$

$$
\mathcal{E}(\phi)=\mathbb{E}|Y-\phi(X)|^{2}=\left\|\phi-\phi_{\text {true }}\right\|_{L^{2}\left(\rho_{X}\right)}^{2} \mathcal{E}(\phi)=\mathbb{E}\left|\dot{\boldsymbol{X}}-R_{\phi}(\boldsymbol{X})\right|^{2} \neq\left\|\phi-\phi_{\text {true }}\right\|_{L^{2}(\rho)}^{2}
$$

- Function space: $L^{2}\left(\rho_{X}\right)$.
- Identifiability:

$$
\mathbb{E}[Y \mid X=x]=\underset{\phi \in L^{2}\left(\rho_{x}\right)}{\arg \min } \mathcal{E}(\phi) .
$$

- $A \approx \mathbb{E}\left[\phi_{i}(X) \phi_{j}(X)\right]=I_{n}$ by setting $\left\{\phi_{i}\right\}$ ONB in $L^{2}\left(\rho_{X}\right)$.
- Function space: $L^{2}(\rho)$. measure $\rho \sim\left|X^{i}-X^{j}\right|$
- Identifiability: $\arg \min \mathcal{E}(\phi)$?? $\phi \in L^{2}(\rho)$
- $A \approx \mathbb{E}\left[R_{\phi_{i}}(\boldsymbol{X}) R_{\phi_{i}}(\boldsymbol{X})\right] \neq I_{n}$?? Coercivity condition

Error bounds for $\widehat{\phi}_{n_{M}}$: asymptotic/non-asymptotic (CLT/concentration)

$$
\mathcal{E}\left(\widehat{\phi}_{n_{M}}\right)-\mathcal{E}\left(\phi_{\mathcal{H}}\right) \geq c_{\mathcal{H}}\left\|\widehat{\phi}_{n_{M}}-\phi_{\mathcal{H}}\right\|^{2}
$$

Theorem (LZTM19,LMT22)

Let $\left\{\mathcal{H}_{n}\right\}$ compact convex in L^{∞} with $\operatorname{dist}\left(\phi_{\text {true }}, \mathcal{H}_{n}\right) \sim n^{-s}$. Assume the coercivity condition on $\cup_{n} \mathcal{H}_{n}$. Set $n_{*}=(M / \log M)^{\frac{1}{2 s+1}}$. Then

$$
\mathbb{E}_{\mu_{0}}\left[\left\|\widehat{\phi}_{M, \mathcal{H}_{n_{*}}}-\phi_{\text {true }}\right\|_{L^{2}(\rho)}\right] \leq C\left(\frac{\log M}{M}\right)^{\frac{s}{2 s+1}}
$$

- $\operatorname{dim}\left(\mathcal{H}_{n}\right)$ adaptive to $s\left(\phi_{\text {true }} \in C^{s}\right)$ and M :

Underfitting

Balanced

Overfitting

- Concentration inequalities for r.v. or martingale

Lennard-Jones kernel estimators:

Opinion dynamics kernel estimators:

Coercivity condition on \mathcal{H}

$$
\langle\langle\phi, \phi\rangle\rangle=\frac{1}{T} \int_{0}^{T} \mathbb{E}\left[R_{\phi}\left(\boldsymbol{X}_{t}\right) R_{\phi}\left(\boldsymbol{X}_{t}\right)\right] d t \geq c_{\mathcal{H}}\|\phi\|_{L^{2}(\rho)}^{2}, \quad \forall \phi \in \mathcal{H}
$$

- Partial results: $c_{\mathcal{H}}=\frac{1}{N-2}$ for $\mathcal{H}=L^{2}(\rho)$
- Gaussian or $\Phi(r)=r^{2 \beta}$ stationary [LLмтz21spa,LL20]
- Harmonic analysis: strictly positive definite integral kernel

$$
\mathbb{E}\left[\phi(|X-Y|) \phi(|X-Z|) \frac{\langle X-Y, X-Z\rangle}{|X-Y||X-Z|}\right] \geq 0, \forall \phi \in L^{2}(\rho)
$$

- Open: non-stationary? A compact $\mathcal{H} \subset C(\operatorname{supp}(\rho))$?
- No coercivity on $L^{2}(\rho)$ when $N \rightarrow \infty$ since $c_{\mathcal{H}} \rightarrow 0$

Inverse problem for Mean-field PDE

Goal: Identify ϕ from discrete data $\left\{u\left(x_{m}, t_{l}\right)\right\}_{m, l=1}^{M, L}$ of

$$
\partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right], \quad x \in \mathbb{R}^{d}, t>0,
$$

where $K_{\phi}(x)=\nabla(\Phi(|x|))=\phi(|x|) \frac{x}{|x|}$.

Loss functional

$$
\partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right]
$$

Candidates:

- Discrepancy: $\mathcal{E}(\psi)=\left\|\partial_{t} u-\nu \Delta u-\nabla \cdot\left(u\left(K_{\psi} * u\right)\right)\right\|^{2}$
- Free energy: $\mathcal{E}(\psi)=C+\left|\int_{\mathbb{R}^{d}} u[(\Psi-\Phi) * u] d x\right|^{2}$
- Wasserstein-2: $\mathcal{E}(\psi)=W_{2}\left(u^{\psi}, u\right)$
costly: requires many PDE simulations in optimization
- A probabilistic loss functional

A probabilistic loss functional

$\mathcal{E}(\psi):=\frac{1}{T} \int_{0}^{T} \int_{\mathbb{R}^{d}}\left[\left|K_{\psi} * u\right|^{2} u-2 \nu u\left(\nabla \cdot K_{\psi} * u\right)+2 \partial_{\mathrm{t}} u(\Psi * u)\right] d x d t$

- $=-\mathbb{E}[$ log-likelihood $]$: McKean-Vlasov process

$$
\left\{\begin{aligned}
d \bar{X}_{t} & =-K_{\phi_{\text {true }}} * u\left(\bar{X}_{t}, t\right) d t+\sqrt{2 \nu} d B_{t} \\
\mathcal{L}\left(\bar{X}_{t}\right) & =u(\cdot, t)
\end{aligned}\right.
$$

- Derivative free
- Suitable for high dimension: $Z_{t}=\bar{X}_{t}-\bar{X}_{t}^{\prime}$

$$
\mathcal{E}(\psi)=\frac{1}{T} \int_{0}^{T}\left(\mathbb{E}\left|\mathbb{E}\left[K_{\psi}\left(Z_{t}\right) \mid \bar{X}_{t}\right]\right|^{2}-2 \nu \mathbb{E}\left[\nabla \cdot K_{\psi}\left(Z_{t}\right)\right]+\partial_{t} \mathbb{E} \Psi\left(Z_{t}\right)\right) d t
$$

Nonparametric regression

$$
\begin{aligned}
\mathcal{E}(\psi) & :=\frac{1}{T} \int_{0}^{T} \int_{\mathbb{R}^{d}}\left[\left|K_{\psi} * u\right|^{2} u-2 \nu u\left(\nabla \cdot K_{\psi} * u\right)+2 \partial_{t} u(\Psi * u)\right] d x d t \\
& =\langle\psi, \psi\rangle-2\left\langle\psi, \phi^{D}\right\rangle_{L^{2}\left(\rho_{T}\right)}
\end{aligned}
$$

LS-regression $\psi=\sum_{i=1}^{n} c_{i} \phi_{i} \in \mathcal{H}_{n}$:

$$
\mathcal{E}_{M}(\psi)=c^{\top} A c-2 b^{\top} c \Rightarrow \widehat{\phi}_{n, M}=\sum_{i=1}^{n} \widehat{c}_{i} \phi_{i}, \quad \widehat{c}=A^{-1} b
$$

- Choice of \mathcal{H}_{n} \& function space of learning?
- Exploration measure $\rho_{T} \leftarrow\left|\bar{X}_{t}-\bar{X}_{t}^{\prime}\right|$
- Inverse problem well-posed/ identifiability?
- Convergence and rate? $\Delta x=M^{-1 / d} \rightarrow 0$

Identifiability

$$
\begin{aligned}
A_{i j} & =\left\langle\left\langle\phi_{i}, \phi_{j}\right\rangle\right\rangle=\int_{\mathbb{R}^{+}} \int_{\mathbb{R}^{+}} \phi_{i}(r) \psi_{j}(s) \bar{G}_{T}(r, s) \rho_{T}(d r) \rho_{T}(d s) \\
& =\left\langle L_{\bar{G}_{T}} \phi_{i}, \phi_{j}\right\rangle_{L^{2}\left(\rho_{T}\right)}
\end{aligned}
$$

Identifiability

$$
\begin{aligned}
A_{i j} & \left.=\left\langle\phi_{i}, \phi_{j}\right\rangle\right\rangle=\int_{\mathbb{R}^{+}} \int_{\mathbb{R}^{+}} \phi_{i}(r) \psi_{j}(s) \bar{G}_{T}(r, s) \rho_{T}(d r) \rho_{T}(d s) \\
& =\left\langle L_{\bar{G}_{T}} \phi_{i}, \phi_{j}\right\rangle_{L^{2}\left(\rho_{T}\right)}
\end{aligned}
$$

- Positive compact operator $L_{\bar{G}_{T}}$
- normal matrix $\left.A \sim L_{\bar{G}_{T}}\right|_{\mathcal{H}}$ in $L^{2}\left(\rho_{T}\right)$

$$
\left.c_{\mathcal{H}, T}=\inf _{\psi \in \mathcal{H},\|\psi\| L_{[(\rho) T)}=1}=1 \psi, \psi\right\rangle>0 \quad \text { (Coercivity condition) }
$$

- Identifiability: $A^{-1} b \leftrightarrow L_{G_{T}}^{-1} \phi^{D}$
- Function space of identifiability (FSOI): $\overline{\operatorname{span}\left\{\psi_{i}\right\}_{\lambda_{i}>0}}$
- Closure of RKHS $H_{\bar{G}}=L_{G_{T}}^{1 / 2}\left(L^{2}\left(\rho_{T}\right)\right)$ LangLL21]

Convergence rate

$\mathbb{H}=L^{2}\left(\rho_{T}\right)$

Theorem (Numerical error bound [Lano-Luzol)

Let $\mathcal{H}_{n}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}$ s.t. $\left\|\phi_{\mathcal{H}_{n}}-\phi\right\|_{\mathbb{H}} \lesssim n^{-s}$. Assume the coercivity condition on $\cup \mathcal{H}_{n}$. Then, with dimension $n \approx(\Delta x)^{-\alpha /(s+1)}$, we have:

$$
\left\|\widehat{\phi}_{n, M}-\phi\right\|_{\mathbb{H}} \lesssim(\Delta x)^{\alpha s /(s+1)}
$$

- Δx^{α} comes from numerical integrator (e.g.,Riemann sum)
- $\alpha=1 / 2$ in Monte Carlo in statistic learning
- Trade-off: numerical error v.s. approximation error

Example 1: granular media $\phi(r)=3 r^{2}$

Data $u(x, t) \quad$ Estimator Wasserstein-2

Rate

- near optimal rate ($\phi \in W^{1, \infty}$)

Example 2: Opinion dynamics $\phi(r)$ piecewise linear

- sub-optimal rate ($\phi \notin W^{1, \infty}$)

Example 3: repulsion-attraction $\phi(r)=r-r^{-1.5}$ (singular)

- low rate: theory does not apply

Ongoing projects and open problems:

- Coercivity condition
- General systems:
- Aggression equations (inviscid MFE)
- non-radial kernels
- Systems on graph
- Other types of data:
- Partial data: observability and randomization
- Multiple MFE solutions

Learning kernels in operators: regularization

Learn the kernel ϕ :

$$
R_{\phi}[u]=f
$$

from data:

$$
\mathcal{D}=\left\{\left(u_{k}, f_{k}\right)\right\}_{k=1}^{N}, \quad\left(u_{k}, f_{k}\right) \in \mathbb{X} \times \mathbb{Y}
$$

- R_{ϕ} linear/nonlinear in u, but linear in ϕ
- Examples:
- interaction kernel: $R_{\phi}[u]=\nabla \cdot\left[u\left(K_{\phi} * u\right)\right]=\partial_{t} u-\nu \Delta u$
- Toeplitz/Hankel matrix
- integral/nonlocal operators,...

III-posed inverse problem

$$
\begin{aligned}
\mathcal{E}(\psi) & =\left\|R_{\psi}[u]-f\right\|_{\mathbb{Y}}^{2}=\left\langle L_{G} \psi, \psi\right\rangle_{L^{2}(\rho)}-2\left\langle\phi^{D}, \psi\right\rangle_{L^{2}(\rho)}+C \\
\nabla \mathcal{E}(\psi) & =L_{G} \psi-\phi^{D}=0 \quad \rightarrow \phi=L_{G}^{-1} \phi^{D} \\
\phi^{D} & =L_{G} \phi_{\text {true }}+\phi_{\text {noise }}^{D}+\phi_{\text {model error }}^{D}+\phi_{\text {numerical error }}^{D}
\end{aligned}
$$

III-posed inverse problem

$$
\begin{aligned}
\mathcal{E}(\psi) & =\left\|R_{\psi}[u]-f\right\|_{\mathbb{Y}}^{2}=\left\langle L_{G} \psi, \psi\right\rangle_{L^{2}(\rho)}-2\left\langle\phi^{D}, \psi\right\rangle_{L^{2}(\rho)}+C \\
\nabla \mathcal{E}(\psi) & =L_{G} \psi-\phi^{D}=0 \quad \rightarrow \widehat{\phi}=L_{G}^{-1} \phi^{D} \\
\phi^{D} & =L_{G} \phi_{\text {true }}+\phi_{\text {noise }}^{D}+\phi_{\text {model error }}^{D}+\phi_{\text {numerical error }}^{D}
\end{aligned}
$$

Regularization

$$
\mathcal{E}_{\lambda}(\psi)=\mathcal{E}(\psi)+\lambda\|\psi\|_{Q}^{2} \rightarrow \widehat{\phi}=\left(L_{G}+\lambda Q\right)^{-1} \phi^{D}
$$

- λ by the L-curve method [Hansenoo]
- Regularization norm $\|\cdot\|_{Q}$?

III-posed inverse problem

$$
\begin{aligned}
\mathcal{E}(\psi) & =\left\|R_{\psi}[u]-f\right\|_{\mathbb{Y}}^{2}=\left\langle L_{G} \psi, \psi\right\rangle_{L^{2}(\rho)}-2\left\langle\phi^{D}, \psi\right\rangle_{L^{2}(\rho)}+C \\
\nabla \mathcal{E}(\psi) & =L_{G} \psi-\phi^{D}=0 \quad \rightarrow \widehat{\phi}=L_{G}^{-1} \phi^{D} \\
\phi^{D} & =L_{G} \phi_{\text {true }}+\phi_{\text {noise }}^{D}+\phi_{\text {model error }}^{D}+\phi_{\text {numerical error }}^{D}
\end{aligned}
$$

Regularization

$$
\mathcal{E}_{\lambda}(\psi)=\mathcal{E}(\psi)+\lambda\|\psi\|_{Q}^{2} \rightarrow \widehat{\phi}=\left(L_{G}+\lambda Q\right)^{-1} \phi^{D}
$$

- λ by the L-curve method ${ }_{[H a n s e n o o] ~}$
- Regularization norm $\|\cdot\|_{Q}$?

ANSWER: norm of RKHS $H_{G}=L_{G}^{1 / 2} L^{2}(\rho) \leftrightarrow Q=L_{G}^{-1}$ [Lu+Lang+An22]

- DARTR: Data Adaptive RKHS Tikhonov Regularization

DARTR: Data Adaptive RKHS Tikhonov Regularization

$$
R_{\phi}[u]=\nabla \cdot\left[u\left(K_{\phi} * u\right)\right]=f
$$

- Recover kernel from discrete noisy data
- Consistent convergence as mesh refines

Typical estimators, $\Delta x=0.05$

Open questions and ongoing projects:

- Regularized estimator: convergence and rate?
- Regularization for NN in function space
- Data-adaptive priors for Bayesian inverse problems
- Applications: deconvolution, homogenization,...

Summary and future directions

Nonparametric regression for interaction kernels

- Finite N (ODEs/SDEs): statistical learning
- $N=\infty$ (Mean-field PDEs): inverse problem

Learning kernels in operators:

- Probabilistic loss functionals
- Identifiability
- Coercivity condition
- yes: convergence
- no: DARTR

Learning with nonlocal dependence: a new direction?

- Coercivity condition
- Regularization
- Convergence (minimax rate)

References (@http://www.math.jhu.edu/~feilu)

- Q. Lang and F. Lu. Learning interaction kernels in mean-field equations of 1 st-order systems of interacting particles. SISC22
- Q. Lang and F. Lu. Identifiability of interaction kernels in mean-field equations of interacting particles. arXiv2106.
- F.Lu, Q .An and Y. Yu. Nonparametric learning of kernels in nonlocal operators. 2201
- F.Lu, Q .Lang and Q. An. Data adaptive RKHS Tikhonov regularization for learning kernels in operators. arXiv2203
- F. Lu, M. Maggioni and S. Tang. Learning interaction kernels in stochastic systems of interacting particles from multiple trajectories. FoCM21.
- F. Lu, M. Maggioni and S. Tang: Learning interaction kernels in heterogeneous systems of agents from multiple trajectories. JMLR21
- Z. Li, F. Lu, M. Maggioni, S. Tang and C. Zhang: On the identifiability of interaction functions in systems of interacting particles. SPA21
- F. Lu, M Zhong, S Tang and M Maggioni. Nonparametric inference of interaction laws in systems of agents from trajectory data. PNAS19

[^0]: ${ }^{a}$ (1) Cucker+Smale: On the mathematics of emergence. 2007. (2) Vicsek+Zafeiris: Collective motion. 2012. (3) Mostch+Tadmor: Heterophilious Dynamics Enhances Consensus. 2014 ...

[^1]: $a_{\text {[Maggioni, Lu, Tang, Zhong, Miller, Li, Zhang: PNAS19, SPA20,FOC22,JMLR21] }}{ }^{b}$ [Lang-Lu 20,21]

