Statistical learning and inverse problems from interacting particle systems

Fei Lu
Department of Mathematics, Johns Hopkins University

Jan. 9, 2022. CAM colloquium, PSU

What is the law of interaction?

Popkin. Nature(2016)

What is the law of interaction?

$$
K_{\phi}(x, y)=\nabla_{x}[\Phi(|x-y|)]=\phi(|x-y|) \frac{x-y}{|x-y|} .
$$

- Newton's law of gravity $\phi(r)=G \frac{m_{1} m_{2}}{r^{2}}$
- Lennard-Jones potential: $\Phi(r)=\frac{c_{1}}{r^{12}}-\frac{c_{2}}{r^{6}}$.

Popkin. Nature(2016)

$$
m_{i} \ddot{X}_{t}^{i}=-\gamma \dot{X}_{t}^{i}+\frac{1}{N} \sum_{j=1, j \neq i}^{N} K_{\phi}\left(X_{t}^{i}, X_{t}^{j}\right)
$$

What is the law of interaction?

Popkin. Nature(2016)

$$
m_{i} \ddot{X}_{t}^{i}=-\gamma \dot{X}_{t}^{i}+\frac{1}{N} \sum_{j=1, j \neq i}^{N} K_{\phi}\left(X_{t}^{i}, X_{t}^{j}\right),
$$

$K_{\phi}(x, y)=\nabla_{x}[\Phi(|x-y|)]=\phi(|x-y|) \frac{x-y}{|x-y|}$.

- Newton's law of gravity $\phi(r)=G \frac{m_{1} m_{2}}{r^{2}}$
- Lennard-Jones potential: $\Phi(r)=\frac{c_{1}}{r^{2}}-\frac{c_{2}}{r^{2}}$.
- flocking birds, bacteria/cells ?
- opinion/voter/multi-agent models, ...? ${ }^{\text {a }}$

Infer the interaction kernel from data?

[^0]
Part 0: statistical learning \& inverse problem

- Part 1: statistical learning - Finitely many particles
- Part 2: inverse problem — infinitely many particles
- Part 3: Regularization for learning kernels in operators

Learning the interaction kernel

$$
\begin{gathered}
d X_{t}^{i}=\frac{1}{N} \sum_{j=1}^{N} K_{\phi}\left(X_{t}^{j}, X_{t}^{i}\right) d t+\sqrt{2 \nu} d B_{t}^{i} \Leftrightarrow \dot{\boldsymbol{X}}_{t}=R_{\phi}\left(\boldsymbol{X}_{t}\right)+\sqrt{2 \nu} \dot{\boldsymbol{B}}_{t} \\
K_{\phi}(x, y)=\phi(|x-y|) \frac{x-y}{|x-y|}
\end{gathered}
$$

Finite N :

- Data: M trajectories of particles $\left\{\boldsymbol{X}_{t_{1}: t_{L}}^{(m)}\right\}_{m=1}^{M}$
- Statistical learning

Learning the interaction kernel

$$
\begin{gathered}
d X_{t}^{i}=\frac{1}{N} \sum_{j=1}^{N} K_{\phi}\left(X_{t}^{j}, X_{t}^{i}\right) d t+\sqrt{2 \nu} d B_{t}^{i} \quad \Leftrightarrow \dot{\boldsymbol{X}}_{t}=R_{\phi}\left(\boldsymbol{X}_{t}\right)+\sqrt{2 \nu} \dot{\boldsymbol{B}}_{t} \\
K_{\phi}(x, y)=\phi(|x-y|) \frac{x-y}{|x-y|}
\end{gathered}
$$

Finite N :

- Data: M trajectories of particles $\left\{\boldsymbol{X}_{t_{1}: t_{L}}^{(m)}\right\}_{m=1}^{M}$
- Statistical learning

Large $\mathbf{N}(\gg 1)$

- Data: density of particles

$$
\begin{aligned}
& \left\{u\left(x_{m}, t_{l}\right) \approx N^{-1} \sum_{i} \delta\left(X_{t_{l}}^{i}-x_{m}\right)\right\}_{m, l} \\
& \partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right]
\end{aligned}
$$

- Inverse problem for PDEs

Statistical learning \& inverse problem

- What's in common and what's different?
- What is new from
- classical learning $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{M} \Rightarrow y=\phi(x)$?
- operator learning $\left\{u_{k}, f_{k}\right\}_{k=1}^{M} \Rightarrow f=R[u]$?

Learning kernels in operators:

$$
\begin{aligned}
d X_{t}^{i}=\frac{1}{N} \sum_{j=1}^{N} K_{\phi}\left(X_{t}^{j}, X_{t}^{i}\right) d t+\sqrt{2 \nu} d B_{t}^{i} & \Leftrightarrow R_{\phi}\left(\boldsymbol{X}_{t}\right)=\dot{\boldsymbol{X}}_{t}-\sqrt{2 \nu} \dot{\boldsymbol{B}}_{t} \\
\partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right] & \Leftrightarrow R_{\phi}[u(\cdot, t)]=f(\cdot, t)
\end{aligned}
$$

Learning kernels in operators:

$$
\begin{aligned}
d X_{t}^{i}=\frac{1}{N} \sum_{j=1}^{N} K_{\phi}\left(X_{t}^{j}, X_{t}^{j}\right) d t+\sqrt{2 \nu} d B_{t}^{i} & \Leftrightarrow R_{\phi}\left(\boldsymbol{X}_{t}\right)=\dot{\boldsymbol{X}}_{t}-\sqrt{2 \nu} \dot{B}_{t} \\
\partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right] & \Leftrightarrow R_{\phi}[u(\cdot, t)]=f(\cdot, t)
\end{aligned}
$$

$$
\begin{array}{crr}
\text { Classical learning } & \text { Learning kernel } & \text { Operator learning } \\
\left\{\left(x_{i}, \phi\left(x_{i}\right)+\epsilon_{i}\right)\right\} & \left\{\left(u_{k}, R_{\phi}\left[u_{k}\right]+\eta_{k}\right)\right\} & \left\{\left(u_{k}, R\left[u_{k}\right]+\eta_{k}\right)\right\}
\end{array}
$$

Part 1: Finitely many particles

Statistical learning from sample trajectories

Finitely many particles

$$
\boldsymbol{R}_{\phi}\left(\boldsymbol{X}_{t}\right)=\dot{\boldsymbol{X}}_{t}-\sqrt{2 \nu} \dot{\boldsymbol{B}}_{t} \& \text { Data }\left\{\boldsymbol{X}_{t_{1} \cdot t_{L}}^{(m)}\right\}_{m=1}^{M}
$$

- Loss function (or log-likelihood for SDEs):

$$
\hat{\phi}_{n, M}=\underset{\phi \in \mathcal{H}_{n}}{\arg \min } \mathcal{E}_{M}(\phi)=\frac{1}{M} \sum_{m=1}^{M} \int_{0}^{T}\left|\dot{\boldsymbol{X}}_{t}^{m}-R_{\phi}\left(\boldsymbol{X}_{t}^{m}\right)\right|^{2} d t
$$

- Nonparametric Regression: $\mathcal{H}_{n}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}, \phi=\sum_{i} c_{i} \phi_{i}$

$$
\mathcal{E}_{M}(\phi)=c^{\top} A c-2 b^{\top} c \Rightarrow \widehat{\phi}_{n, M}=\sum_{i=1}^{n} \widehat{c}_{i} \phi_{i}, \quad \widehat{c}=A^{-1} b
$$

Finitely many particles

$$
R_{\phi}\left(\boldsymbol{X}_{t}\right)=\dot{\boldsymbol{X}}_{t}-\sqrt{2 \nu} \dot{\boldsymbol{B}}_{t} \& \text { Data }\left\{\boldsymbol{X}_{t_{1} \cdot t_{L}}^{(m)}\right\}_{m=1}^{M}
$$

- Loss function (or log-likelihood for SDEs):

$$
\hat{\phi}_{n, M}=\underset{\phi \in \mathcal{H}_{n}}{\arg \min } \mathcal{E}_{M}(\phi)=\frac{1}{M} \sum_{m=1}^{M} \int_{0}^{T}\left|\dot{\boldsymbol{X}}_{t}^{m}-R_{\phi}\left(\boldsymbol{X}_{t}^{m}\right)\right|^{2} d t
$$

- Nonparametric Regression: $\mathcal{H}_{n}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}, \phi=\sum_{i} c_{i} \phi_{i}$

$$
\mathcal{E}_{M}(\phi)=c^{\top} A c-2 b^{\top} c \Rightarrow \widehat{\phi}_{n, M}=\sum_{i=1}^{n} \widehat{c}_{i} \phi_{i}, \quad \widehat{c}=A^{-1} b
$$

- Choice of \mathcal{H}_{n} \& function space of learning?
- Well-posedness/ identifiability?
- Convergence and rate?

Classical learning in a nutshell

$\operatorname{Data}\left\{\left(x_{m}, y_{m}\right)\right\}_{m=1}^{M} \sim(X, Y) \Rightarrow$ find ϕ s.t. $Y=\phi(X)$

- Loss function: $\hat{\phi}_{n, M}=\underset{\phi \in \mathcal{H}_{n}}{\arg \min } \mathcal{E}_{M}(\phi)=\frac{1}{M} \sum_{m=1}^{M}\left|Y_{m}-\phi\left(X_{m}\right)\right|^{2}$.
- Regression: with $\psi=\sum_{i} c_{i} \phi_{i} \in \mathcal{H}_{n}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}$:

$$
\mathcal{E}_{M}(\psi)=c^{\top} A c-2 b^{\top} c \Rightarrow \widehat{\phi}_{n, M}=\sum_{i=1}^{n} \widehat{c}_{i} \phi_{i}, \quad \widehat{c}=A^{-1} b
$$

- - Choice of $\mathcal{H}_{n} \subset C^{s}$ in $L^{2}\left(\rho_{X}\right): n_{*}=(M / \log M)^{\frac{1}{2 s+d}}$

Underfitting

Balanced

Overfitting

- Well-posedness/ identifiability: $\phi_{\text {optimal }}=\mathbb{E}[Y \mid X=x]$
- minimax rate $\mathbb{E}\left[\left\|\widehat{\phi}_{n_{*}, M}-\phi_{\text {optimal }}\right\|_{L^{2}\left(\rho_{X}\right)}^{2}\right] \approx\left(\frac{\log M}{M}\right)^{\frac{s}{2 s+d}}$

Classical learning theory

Given: $\operatorname{Data}\left\{\left(x_{m}, y_{m}\right)\right\}_{m=1}^{M} \sim(X, Y)$ Goal: find ϕ s.t. $Y=\phi(X)$

Learning kernel
Given: $\operatorname{Data}\left\{\boldsymbol{X}_{[0, T]}^{(m)}\right\}_{m=1}^{M}$
Goal: find ϕ s.t. $\dot{\boldsymbol{X}}_{t}=\boldsymbol{R}_{\phi}\left(\boldsymbol{X}_{t}\right)$

$$
\mathcal{E}(\phi)=\mathbb{E}|Y-\phi(X)|^{2}=\left\|\phi-\phi_{\text {true }}\right\|_{L^{2}\left(\rho_{X}\right)}^{2} \mathcal{E}(\phi)=\mathbb{E}\left|\dot{\boldsymbol{X}}-R_{\phi}(\boldsymbol{X})\right|^{2} \neq\left\|\phi-\phi_{\text {true }}\right\|_{L^{2}(\rho)}^{2}
$$

Classical learning theory

Given: $\operatorname{Data}\left\{\left(x_{m}, y_{m}\right)\right\}_{m=1}^{M} \sim(X, Y)$
Goal: find ϕ s.t. $Y=\phi(X)$

Learning kernel
Given: $\operatorname{Data}\left\{\boldsymbol{X}_{[0, T]}^{(m)}\right\}_{m=1}^{M}$
Goal: find ϕ s.t. $\dot{\boldsymbol{X}}_{t}=\boldsymbol{R}_{\phi}\left(\boldsymbol{X}_{t}\right)$

$$
\mathcal{E}(\phi)=\mathbb{E}|Y-\phi(X)|^{2}=\left\|\phi-\phi_{\text {true }}\right\|_{L^{2}\left(\rho_{X}\right)}^{2} \mathcal{E}(\phi)=\mathbb{E}\left|\dot{\boldsymbol{X}}-R_{\phi}(\boldsymbol{X})\right|^{2} \neq\left\|\phi-\phi_{\text {true }}\right\|_{L^{2}(\rho)}^{2}
$$

- Function space: $L^{2}\left(\rho_{X}\right)$.
- Identifiability:

$$
\mathbb{E}[Y \mid X=x]=\underset{\phi \in L^{2}\left(\rho_{x}\right)}{\arg \min } \mathcal{E}(\phi) .
$$

- $A \approx \mathbb{E}\left[\phi_{i}(X) \phi_{j}(X)\right]=I_{n}$ by setting $\left\{\phi_{i}\right\}$ ONB in $L^{2}\left(\rho_{X}\right)$.
- Function space: $L^{2}(\rho)$. measure $\rho \sim\left|X^{i}-X^{j}\right|$
- Identifiability: $\arg \min \mathcal{E}(\phi)$??

$$
\phi \in L^{2}(\rho)
$$

- $A \approx \mathbb{E}\left[R_{\phi_{i}}(\boldsymbol{X}) R_{\phi_{j}}(\boldsymbol{X})\right] ? \geq \boldsymbol{c}_{\mathcal{H}} I_{n}$ Coercivity condition

Classical learning theory

Given: $\operatorname{Data}\left\{\left(x_{m}, y_{m}\right)\right\}_{m=1}^{M} \sim(X, Y)$
Goal: find ϕ s.t. $Y=\phi(X)$

Learning kernel
Given: $\operatorname{Data}\left\{\boldsymbol{X}_{[0, T]}^{(m)}\right\}_{m=1}^{M}$
Goal: find ϕ s.t. $\dot{\boldsymbol{X}}_{t}=\boldsymbol{R}_{\phi}\left(\boldsymbol{X}_{t}\right)$

$$
\mathcal{E}(\phi)=\mathbb{E}|Y-\phi(X)|^{2}=\left\|\phi-\phi_{\text {true }}\right\|_{L^{2}\left(\rho_{X}\right)}^{2} \mathcal{E}(\phi)=\mathbb{E}\left|\dot{\boldsymbol{X}}-R_{\phi}(\boldsymbol{X})\right|^{2} \neq\left\|\phi-\phi_{\text {true }}\right\|_{L^{2}(\rho)}^{2}
$$

- Function space: $L^{2}\left(\rho_{X}\right)$.
- Identifiability:

$$
\mathbb{E}[Y \mid X=x]=\underset{\phi \in L^{2}\left(\rho_{x}\right)}{\arg \min } \mathcal{E}(\phi) .
$$

- $A \approx \mathbb{E}\left[\phi_{i}(X) \phi_{j}(X)\right]=I_{n}$ by setting $\left\{\phi_{i}\right\}$ ONB in $L^{2}\left(\rho_{X}\right)$.
- Function space: $L^{2}(\rho)$. measure $\rho \sim\left|X^{i}-X^{j}\right|$
- Identifiability: $\arg \min \mathcal{E}(\phi)$?? $\phi \in L^{2}(\rho)$
- $A \approx \mathbb{E}\left[R_{\phi_{i}}(\boldsymbol{X}) R_{\phi_{j}}(\boldsymbol{X})\right] ? \geq \boldsymbol{c}_{\boldsymbol{c}_{\mathcal{H}}} I_{n}$ Coercivity condition

Error bounds for $\widehat{\phi}_{n_{M}}$: asymptotic/non-asymptotic (CLT/concentration)

$$
\mathcal{E}\left(\widehat{\phi}_{n_{M}}\right)-\mathcal{E}\left(\phi_{\mathcal{H}}\right) \geq c_{\mathcal{H}}\left\|\widehat{\phi}_{n_{M}}-\phi_{\mathcal{H}}\right\|^{2}
$$

 Let $\left\{\mathcal{H}_{n}\right\}$ compact convex in L^{∞} with dist $\left(\phi_{\text {true }}, \mathcal{H}_{n}\right) \sim n^{-s}$. Assume the coercivity condition on $\cup_{n} \mathcal{H}_{n}$. Set $n_{*}=(M / \log M)^{\frac{1}{2 s+1}}$. Then

$$
\mathbb{E}_{\mu_{0}}\left[\left\|\widehat{\phi}_{n_{*}, M}-\phi_{\text {true }}\right\|_{L^{2}(\rho)}\right] \leq C\left(\frac{\log M}{M}\right)^{\frac{s}{2 s+1}}
$$

Lennard-Jones kernel estimators:

Opinion dynamics kernel estimators:

Coercivity condition on \mathcal{H}

$$
\langle\langle\phi, \phi\rangle\rangle=\frac{1}{T} \int_{0}^{T} \mathbb{E}\left[R_{\phi}\left(\boldsymbol{X}_{t}\right) R_{\phi}\left(\boldsymbol{X}_{t}\right)\right] d t \geq c_{\mathcal{H}}\|\phi\|_{L^{2}(\rho)}^{2}, \quad \forall \phi \in \mathcal{H}
$$

- Partial results: $\mathcal{C}_{\mathcal{H}}=\frac{1}{N-2}$ for $\mathcal{H}=L^{2}(\rho)$
- Gaussian or $\Phi(r)=r^{2 \beta}$ stationary [LLмтz21spa,LL20]
- Harmonic analysis: strictly positive definite integral kernel

$$
\mathbb{E}\left[\phi(|X-Y|) \phi(|X-Z|) \frac{\langle X-Y, X-Z\rangle}{|X-Y||X-Z|}\right] \geq 0, \forall \phi \in L^{2}(\rho)
$$

- Open: non-stationary? A compact $\mathcal{H} \subset C(\operatorname{supp}(\rho))$?
- No coercivity on $L^{2}(\rho)$ when $N \rightarrow \infty$ since $c_{\mathcal{H}} \rightarrow 0$

Part 2: Infinitely many particles

Inverse problem for mean-field PDEs

Inverse problem for Mean-field PDE

Goal: Identify ϕ from discrete data $\left\{u\left(x_{m}, t_{l}\right)\right\}_{m, l=1}^{M, L}$ of

$$
\partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right], \quad x \in \mathbb{R}^{d}, t>0,
$$

where $K_{\phi}(x)=\nabla(\Phi(|x|))=\phi(|x|) \frac{x}{|x|}$.

Loss functional

$$
\partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right]
$$

Candidates:

- Discrepancy: $\mathcal{E}(\phi)=\left\|\partial_{t} u-\nu \Delta u-\nabla \cdot\left(u\left(K_{\phi} * u\right)\right)\right\|^{2}$
- derivatives approx. from discrete data
- Weak SINDY [Bortz etc21,22], denoising+smoothing [Kang+Liao etc22]
- Wasserstein-2: $\mathcal{E}(\phi)=W_{2}\left(u^{\phi}, u\right)$
costly: requires many PDE simulations in optimization
- A probabilistic loss functional

A probabilistic loss functional

$\mathcal{E}(\phi):=\frac{1}{T} \int_{0}^{T} \int_{\mathbb{R}^{d}}\left[\left|K_{\phi} * u\right|^{2} u-2 \nu u\left(\nabla \cdot K_{\phi} * u\right)+2 \partial_{t} u(\Phi * u)\right] d x d t$

- $=-\mathbb{E}[$ log-likelihood $]$: McKean-Vlasov process

$$
\left\{\begin{aligned}
d \bar{X}_{t} & =-K_{\phi_{\text {true }}} * u\left(\bar{X}_{t}, t\right) d t+\sqrt{2 \nu} d B_{t}, \\
\mathcal{L}\left(\bar{X}_{t}\right) & =u(\cdot, t),
\end{aligned}\right.
$$

- Derivative free
- Suitable for high dimension: $Z_{t}=\bar{X}_{t}-\bar{X}_{t}^{\prime}$

$$
\mathcal{E}(\phi)=\frac{1}{T} \int_{0}^{T}\left(\mathbb{E}\left|\mathbb{E}\left[K_{\phi}\left(Z_{t}\right) \mid \bar{X}_{t}\right]\right|^{2}-2 \nu \mathbb{E}\left[\nabla \cdot K_{\phi}\left(Z_{t}\right)\right]+\partial_{t} \mathbb{E} \Phi\left(Z_{t}\right)\right) d t
$$

Nonparametric regression $\phi=\sum_{i=1}^{n} c_{i} \phi_{i} \in \mathcal{H}_{n}$:

$$
\mathcal{E}_{M}(\phi)=c^{\top} A c-2 b^{\top} c \Rightarrow \widehat{\phi}_{n, M}=\sum_{i=1}^{n} \widehat{c}_{i} \phi_{i}, \quad \widehat{c}=A^{-1} b
$$

- Choice of $\mathcal{H}_{n} \&$ function space of learning?
- Exploration measure $\rho_{T} \leftarrow\left|\bar{X}_{t}-\bar{X}_{t}^{\prime}\right|$
- Inverse problem well-posedness/ identifiability?
- $\arg \min \mathcal{E}(\phi)$ $\phi \in L^{2}(\rho)$
- Convergence and rate? $\Delta x=M^{-1 / d} \rightarrow 0$

Identifiability

$$
\begin{aligned}
\mathcal{E}(\phi) & =\left\langle L_{\bar{G}} \phi, \phi\right\rangle-2\left\langle\phi^{D}, \phi\right\rangle+\text { const } . \\
\nabla \mathcal{E}(\phi) & =L_{G} \phi-\phi^{D}=0 \Rightarrow \widehat{\phi}=L_{G}^{-1} \phi^{D}
\end{aligned}
$$

- Identifiability: $A^{-1} b \leftrightarrow L_{\bar{G}}^{-1} \phi^{D}$
- $L_{\bar{G}}$: positive compact operator
- Function space of identifiability (FSOI): $\overline{\operatorname{span}\left\{\psi_{i}\right\}_{\lambda_{i}>0}}$
- Coercivity condition on \mathcal{H} (not $\left.L^{2}(\rho)\right)$

$$
c_{\mathcal{H}}=\inf _{\phi \in \mathcal{H},\|\phi\|_{L^{2}\left(\rho_{T}\right)}=1}\left\langle L_{\bar{G}} \phi, \phi\right\rangle>0
$$

Convergence rate

Theorem (Numerical error bound [Lang-Lu20)
Let $\mathcal{H}_{n}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}$ s.t. $\left\|\phi_{\mathcal{H}_{n}}-\phi\right\|_{L^{2}\left(\rho_{T}\right)} \lesssim n^{-s}$. Assume the coercivity condition on $\cup \mathcal{H}$. Then, with $n \approx(\Delta x)^{-\alpha /(s+1)}$, we have:

$$
\left\|\widehat{\phi}_{n, M}-\phi\right\|_{L^{2}\left(\rho_{T}\right)} \lesssim(\Delta x)^{\alpha s /(s+1)}
$$

- Δx^{α} comes from numerical integrator (e.g.,Riemann sum)
- In statistical learning: $\alpha=1 / 2$ (Monte Carlo, CLT)
- Trade-off: numerical error v.s. approximation error

Example: granular media $\phi(r)=3 r^{2}$

Data $u(x, t)$

Estimator

Wasserstein-2

Rate

- Near optimal rate ($\phi \in W^{1, \infty}$)
- Other examples: suboptimal when ϕ discontinuous, low rate for singular ϕ

Part 3: Learning kernels in operators

Regularization

Learning kernels in operators

Learn the kernel ϕ :

$$
R_{\phi}[u]=f
$$

from data:

$$
\mathcal{D}=\left\{\left(u_{k}, f_{k}\right)\right\}_{k=1}^{N}, \quad\left(u_{k}, f_{k}\right) \in \mathbb{X} \times \mathbb{Y}
$$

- R_{ϕ} linear/nonlinear in u, but linear in ϕ
- Examples:
- interaction kernel: $R_{\phi}[u]=\nabla \cdot\left[u\left(K_{\phi} * u\right)\right]=\partial_{t} u-\nu \Delta u$
- Toeplitz/Hankel matrix
- integral/nonlocal operators,...

III-posed inverse problem

$$
\begin{aligned}
\mathcal{E}(\phi) & =\left\|R_{\phi}[u]-f\right\|_{\mathbb{Y}}^{2} \\
\nabla \mathcal{E}(\phi) & =L_{G} \phi-\phi^{D}=0 \quad \Rightarrow \widehat{\phi}=L_{G}^{-1} \phi^{D}
\end{aligned}
$$

Regularization

$$
\mathcal{E}_{\lambda}(\phi)=\mathcal{E}(\phi)+\lambda\|\psi\|_{Q}^{2} \rightarrow \widehat{\phi}=\left(L_{G}+\lambda Q\right)^{-1} \phi^{D}
$$

- λ by the L-curve method ${ }_{[H a n s e n o o] ~}$
- Regularization norm $\|\cdot\|_{Q}$? $Q=I d, Q=R K H S$?

III-posed inverse problem

$$
\begin{aligned}
\mathcal{E}(\phi) & =\left\|R_{\phi}[u]-f\right\|_{\mathbb{Y}}^{2} \\
\nabla \mathcal{E}(\phi) & =L_{G} \phi-\phi^{D}=0 \quad \Rightarrow \widehat{\phi}=L_{G}^{-1} \phi^{D}
\end{aligned}
$$

Regularization

$$
\mathcal{E}_{\lambda}(\phi)=\mathcal{E}(\phi)+\lambda\|\psi\|_{Q}^{2} \rightarrow \widehat{\phi}=\left(L_{G}+\lambda Q\right)^{-1} \phi^{D}
$$

- λ by the L-curve method ${ }_{[H a n s e n o o] ~}$
- Regularization norm $\|\cdot\|_{Q}$? $Q=I d, Q=R K H S$?

Data Adaptive RKHS Tikhonov Regularization [Lu+Lang+An22]

- norm of RKHS $H_{G}=L_{G}^{1 / 2} L^{2}(\rho) \leftrightarrow Q=L_{G}^{-1}$
- L_{G} is data dependent
- Computation: $\widehat{\phi}=\left(L_{G}+\lambda L_{G}^{-1}\right)^{-1} \phi^{D}=\left(L_{G}^{2}+\lambda I\right)^{-1} L_{G} \phi^{D}$

DARTR: Data Adaptive RKHS Tikhonov Regularization

$$
R_{\phi}[u]=\nabla \cdot\left[u\left(K_{\phi} * u\right)\right]=f
$$

- Recover kernel from discrete noisy data
- Consistent convergence as mesh refines

Typical estimators, $\Delta x=0.05$

Small noise limit:

- $Q=l$: divergent estimator
- $Q=L_{G}^{-1}$: stable/convergent

Summary and future directions

Nonparametric regression for interaction kernels

- Finite N (ODEs/SDEs): statistical learning
- $N=\infty$ (Mean-field PDEs): inverse problem

Learning kernels in operators:

- Probabilistic loss functionals
- Identifiability: $\widehat{\phi}=L_{G}^{-1} \phi^{D}$
- Coercivity condition
- yes: convergence
- no: regularization - DARTR (ill-posed inverse problem)

Learning with nonlocal dependence: a new direction?

- Coercivity condition, spectrum decay
- Regularization for NN in function space?
- Convergence (minimax rate)

References (@ http://www.math.jhu.edu/~feilu)

- Q. Lang and F. Lu. Learning interaction kernels in mean-field equations of 1st-order systems of interacting particles. SISC22
- Q. Lang and F. Lu. Identifiability of interaction kernels in mean-field equations of interacting particles. arXiv2106.
- F.Lu, Q .An and Y. Yu. Nonparametric learning of kernels in nonlocal operators. arXiv2205
- Chada, Lang, Lu, Wang: A data-adaptive prior for Bayesian learning of kernels in operators. arXiv2212
- F.Lu, Q .Lang and Q. An. Data adaptive RKHS Tikhonov regularization for learning kernels in operators. MSML22
- F. Lu, M. Maggioni and S. Tang. Learning interaction kernels in stochastic systems of interacting particles from multiple trajectories. FoCM21.
- F. Lu, M. Maggioni and S. Tang: Learning interaction kernels in heterogeneous systems of agents from multiple trajectories. JMLR21
- Z. Li, F. Lu, M. Maggioni, S. Tang and C. Zhang: On the identifiability of interaction functions in systems of interacting particles. SPA21
- F. Lu, M Zhong, S Tang and M Maggioni. Nonparametric inference of interaction laws in systems of agents from trajectory data. PNAS19

[^0]: ${ }^{a}$ (1) Cucker+Smale: On the mathematics of emergence. 2007. (2) Vicsek+Zafeiris: Collective motion. 2012. (3) Mostch+Tadmor: Heterophilious Dynamics Enhances Consensus. 2014 ...

