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learning/inverse problems Finitely many particles Mean-field equations

What is the law of interaction ?

Ẍ i
t =

1
N

N∑
j=1,j 6=i

mjKφ(X j
t − X i

t ),

Kφ(x − y) = ∇x [Φ(|x − y |)] = φ(|x − y |) x−y
|x−y| .

Newton’s law of gravity φ(r) = c1
r2

Lennard-Jones potential: Φ(r) = c1
r12 − c2

r6 .

flocking birds, migrating cells?

opinion dynamics ...? a

Infer the interaction kernel from data?
a(1) Cucker+Smale: On the mathematics of emergence. 2007. (2) Vic-

sek+Zafeiris: Collective motion. 2012. (3) Motsch+Tadmor: Heterophilious Dy-
namics Enhances Consensus. 2014 ...
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Learning the interaction kernel φ

dX i
t =

1
N

N∑
j=1

Kφ(X j
t − X i

t )dt +
√

2νdBi
t ⇔ Ẋ t = Rφ(X t ) +

√
2νḂt

Finite N:

Data: M trajectories of particles {X (m)
t1:tL}M

m=1

Statistical learning

Learning governing laws in interacting particle systems
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Figure 10: (PS) X(t) and X̂(t) obtained with � and �̂ learned from M = 16 trajectories
respectively: for an initial condition in the training data (Top) and an initial condition
randomly chosen (Middle). The black dot at t = 1 divides the “training” interval [0, 1] from
the “prediction” interval [1, 20]. Bottom: X(t) and X̂(t) obtained with � and �̂ learned
from M = 16 trajectories respectively, for dynamics with larger Nnew = 4N , over a set of
initial conditions. We achieve small errors in all cases, in particular we predict successfully
the flocking time and direction. The means of trajectory errors can be found in Figure 11.

Figure 9 indicates that the estimators match the true interaction kernels extremely well
except for a small bias at locations near 0. We impute this error near 0 to two reasons:
(i) the strong short-range repulsion between agents force the pairwise distances to stay
bounded away from r = 0, yielding a ⇢L

T that is nearly singular near 0, so that there are
only a few samples to learn the interaction kernels near 0. We see that as M increases, the
error near 0 is getting smaller, and we expect it to converge to 0. (ii) Information of �(0) is
lost due to the structure of the equations, as we mentioned earlier in the previous example,
which may cause the error in the finite di↵erence approximation of velocities to a↵ect the
reconstruction of values near 0.

Figure 10 shows that with a rather small M , the learned interaction kernels not only
produce an accurate approximation of the transient behaviour of the agents over the training
time interval [t1, tL], but also of the flocking behaviour over the large time interval [tL, tf ]
including the time of formation and the direction of a flocking, which is perhaps beyond
expectations.

Figure 11(a) shows that the mean trajectory errors over 10 learning trials decay with M
at a rate 0.32 on the training time interval [0, 1], matching the convergence rate of smoothed
kernels, even in the case of a new system with 4N agents. This agrees with Theorem 7 on

33

Large N (>> 1)
Data: density of particles
{u(xm, tl ) ≈ N−1∑

i δ(X i
tl − xm)}m,l

∂tu = ν∆u +∇ · [u(Kφ ∗ u)]

Inverse problem for a PDE

Goal: algorithm, identifiability, convergence
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Part 1: Finitely many particles

Statistical learning from M sample trajectories

dX i
t =

1
N

N∑
j=1

Kφ(X j
t − X i

t )dt +
√

2νdBi
t ⇔ Ẋ t = Rφ(X t ) +

√
2νḂt

Data: M trajectories of particles {X (m)
t1:tL}

M
m=1

Goal: estimate φ
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Finitely many particles

Rφ(X t ) = Ẋ t −
√

2νḂt & Data {X (m)
t1:tL}

M
m=1

Loss function (or log-likelihood for SDEs):

φ̂n,M = arg min
φ∈Hn

EM(φ) =
1
M

M∑
m=1

∫ T

0
|Ẋ m

t − Rφ(X m
t )|2dt

Nonparametric Regression: Hn = span{φi}ni=1, φ =
∑

i ciφi

EM(φ) = c>Ac − 2b>c ⇒ φ̂n,M =
∑

1≤i≤n

ĉiφi , ĉ = A−1b

I Choice of Hn ? function space?
I Identifiability/Well-posedness?
I Convergence and rate?
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Finitely many particles

Rφ(X t ) = Ẋ t −
√

2νḂt & Data {X (m)
t1:tL}

M
m=1

Loss function (or log-likelihood for SDEs):

φ̂n,M = arg min
φ∈Hn

EM(φ) =
1
M

M∑
m=1

∫ T

0
|Ẋ m

t − Rφ(X m
t )|2dt

Nonparametric Regression: Hn = span{φi}ni=1, φ =
∑

i ciφi

EM(φ) = c>Ac − 2b>c ⇒ φ̂n,M =
∑

1≤i≤n

ĉiφi , ĉ = A−1b

I Choice of Hn ? function space?
I Identifiability/Well-posedness?
I Convergence and rate?
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Classical learning in a nutshell

Data{(xm, ym)}Mm=1 ∼ (X ,Y )⇒ find φ s.t. Y = φ(X )

Loss function: φ̂n,M = arg min
φ∈Hn

EM(φ) = 1
M

∑M
m=1 |Ym − φ(Xm)|2.

Regression: with ψ =
∑

i ciφi ∈ Hn = span{φi}ni=1:

EM(ψ) = c>Ac − 2b>c ⇒ φ̂n,M =
∑

1≤i≤n

ĉiφi , ĉ = A−1b

I Choice of Hn ⊂ Cs in L2(ρX ): n∗ = (M/log M)
1

2s+d

Colloquium, Virginia Tech

Approximation Theory
Suppose � is s- Hölder.

{Hn}n ⇢ L1[0, R]

dim(Hn)  c0n

inf
'2Hn

k'� �k1  c1n
�s

Question
Given Xtraj,M , how to pick up Hn⇤ ?

Sui Tang — Learning dynamics in high dimensional dynamical systems 22/34

I Well-posed: φoptimal = E[Y |X = x ] = arg min
φ∈L2(ρX )

E(φ)

I Minimax rate E[‖φ̂n∗,M − φoptimal‖2
L2(ρX )] ≈

(
log M

M

) s
2s+d
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Learning kernel

Given: Data{X (m)
[0,T ]}M

m=1

Goal: Estimate φ s.t. Ẋ t ≈ Rφ(X t ) = [
1
N

N∑
j=1

Kφ(X j
t ,X

i
t )]

E(φ) = E|Ẋ − Rφ(X )|2 6=‖φ− φtrue‖2
L2(ρ)

Choice of Hn: similar
Function space: L2(ρ), exploration measure ρ ∼ |X i − X j |
Identifiability: unique minimizer arg min

φ∈L2
ρ

E(φ)??

A ≈
(
E[Rφi (X )Rφj (X )]

)
i,j ? ≥?cHIn ⇐ Coercivity condition ↓

Convergence rate:
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Theorem (Convergence with minimax rate [LZTM19,LMT21,LMT22])
Let {Hn} compact convex in L∞ with dist(φtrue,Hn) ∼ n−s. Assume
the coercivity condition on ∪nHn. Set n∗ = (M/log M)

1
2s+1 . Then

Eµ0 [‖φ̂n∗,M − φtrue‖L2
ρ
] ≤ C

(
log M

M

) s
2s+1

.

dim(Hn) adaptive to s (φtrue ∈ Cs ) and M

Concentration inequalities for r.v. or martingale

Ongoing: lower bound
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Lennard-Jones kernel estimators:
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r (pairwise distances)
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Opinion dynamics kernel estimators:
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Coercivity condition on H
1
T

∫ T

0
E[Rφ(X t )Rφ(X t )]dt ≥ cH‖φ‖2

L2
ρ
, ∀φ ∈ H

Partial results: cH = 1
N−2 for H = L2

ρ

I Gaussian or Φ(r) = r2β stationary process [LLMTZ21spa,LL20]

I Harmonic analysis: strictly positive definite integral kernel

E[φ(|X − Y |)φ(|X − Z |) 〈X − Y ,X − Z 〉
|X − Y ||X − Z | ] ≥ 0,∀φ ∈ L2

ρ

Open: non-stationary? A compact H ⊂ C(supp(ρ))?

No coercivity on L2
ρ when N →∞ since cH → 0
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Part 2: Infinitely many particles

Inverse problem for mean-field PDEs

Goal: Identify φ from discrete data {u(xm, tl )}M,L
m,l=1 of

∂tu = ν∆u +∇ · [u(Kφ ∗ u)], x ∈ Rd , t > 0,

where Kφ(x) = ∇(Φ(|x |)) = φ(|x |) x
|x| .
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Loss functional

∂tu = ν∆u +∇ · [u(Kφ ∗ u)]

Candidates:

Discrepancy: E(φ) = ‖∂tu − ν∆u −∇.(u(Kφ ∗ u))‖2
I discrete data→ error in derivative approx.
I denoising+smoothing [Kang+Liao etc22]

Wasserstein-2: E(φ) = W2(uφ,u)
costly: requires many PDE simulations in optimization

Weak SINDY [Bortz etc21,22]: parametric
A probabilistic loss functional ↓
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A probabilistic loss functional

E(φ) :=
1
T

∫ T

0

∫
Rd

[∣∣Kφ ∗ u
∣∣2u − 2νu(∇ · Kφ ∗ u) + 2∂tu(Φ ∗ u)

]
dx dt

= −E[ log-likelihood ]: McKean–Vlasov SDE{
dX t =− Kφtrue ∗ u(X t , t)dt +

√
2νdBt ,

L(X t ) = u(·, t),

Derivative free
Suitable for high dimension Zt = X t − X

′
t

E(φ) =
1
T

∫ T

0

(
E|E[Kφ(Zt )|X t ]|2 − 2νE[∇ · Kφ(Zt )] + ∂tEΦ(Zt )

)
dt
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Nonparametric regression φ =
∑n

i=1 ciφi ∈ Hn:

EM(φ) = c>Ac − 2b>c ⇒ φ̂n,M =
n∑

i=1

ĉiφi , ĉ = A−1b

Choice of Hn & function space of learning?
I Exploration measure ρ← |X t − X

′
t |

Inverse problem: identifiability/well-posedness?
I uniqueness of minimizer arg min

φ∈H
E(φ)

Convergence and rate? ∆x = M−1/d → 0
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Identifiability
E(φ) = 〈LGφ, φ〉L2

ρ
− 2〈φD, φ〉+ const .

∇E(φ) = LGφ− φD = 0 ⇒ φ̂ = L−1
G φD

Identifiability: A−1b ↔ L−1
G
φD

I LG: positive compact operator

Coercivity condition on H (not L2
ρ)

cH = inf
φ∈H,‖φ‖L2

ρ
=1
〈LGφ, φ〉 > 0
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Convergence rate

Theorem (Numerical error bound [Lang-Lu20])

Let Hn = span{φi}ni=1 s.t. ‖φHn − φ‖L2
ρ
/ n−s . Assume the

coercivity condition on ∪Hn. Then, with n ≈ (∆x)−α/(s+1), we
have:

‖φ̂n,M − φ‖L2
ρ
/ (∆x)αs/(s+1)

∆xα comes from numerical integrator (e.g.,Riemann sum)
I In statistical learning: α = 1/2 (Monte Carlo, CLT)

Trade-off: numerical error v.s. approximation error
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Example: granular media φ(r) = 3r2
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Test point

Slope = 1.67

Optimal = 1.50

Data u(x , t) Estimator Wasserstein-2 Rate

Optimal rate (φ ∈W 1,∞)
Other examples:
suboptimal rate when φ discontinuous,
low rate when φ singular
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Summary and future directions

Nonparametric/Variational learning of interaction kernels
Finite N (ODEs/SDEs): statistical learning
N =∞ (Mean-field PDEs): inverse problem

Learning kernels in operators:
Identifiability: a coercivity condition
Algorithms with performance guarantees
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Learning kernel in operators:

dX i
t =

1
N

N∑
j=1

Kφ(X j
t ,X

i
t )dt +

√
2νdBi

t ⇔Rφ(X t ) = Ẋ t −
√

2νḂt

∂t u = ν∆u +∇ · [u(Kφ ∗ u)] ⇔Rφ[u(·, t)] = f (·, t)

Coercivity condition (with it without it ⇓)
Space-aware Regularization
Convergence (minimax rate)
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