Statistical learning and inverse problems from interacting particle systems

Fei Lu

Department of Mathematics, Johns Hopkins University

June 15, 2023
Tianyuan Mathematical Center Conference: Random Dynamical System
Wuhan University

U N I VERSIT Y

What is the law of interaction?

Popkin. Nature(2016)

$$
\ddot{X}_{t}^{i}=\frac{1}{N} \sum_{j=1, j \neq i}^{N} m_{j} K_{\phi}\left(X_{t}^{j}-X_{t}^{i}\right),
$$

$$
K_{\phi}(x-y)=\nabla_{x}[\Phi(|x-y|)]=\phi(|x-y|) \frac{x-y}{|x-y|} .
$$

- Newton's law of gravity $\phi(r)=\frac{q_{1}}{r^{2}}$
- Lennard-Jones potential: $\Phi(r)=\frac{c_{1}}{r^{2}}-\frac{c_{2}}{r^{6}}$.
- flocking birds, migrating cells?
- opinion dynamics ...? ${ }^{a}$

Infer the interaction kernel from data?

${ }^{a}$ (1) Cucker+Smale: On the mathematics of emergence. 2007. (2) Vicsek+Zafeiris: Collective motion. 2012. (3) Motsch+Tadmor: Heterophilious Dynamics Enhances Consensus. 2014 ...

Learning the interaction kernel ϕ

$$
d X_{t}^{i}=\frac{1}{N} \sum_{j=1}^{N} K_{\phi}\left(X_{t}^{j}-X_{t}^{i}\right) d t+\sqrt{2 \nu} d B_{t}^{i} \quad \Leftrightarrow \dot{\boldsymbol{X}}_{t}=R_{\phi}\left(\boldsymbol{X}_{t}\right)+\sqrt{2 \nu} \dot{\boldsymbol{B}}_{t}
$$

Finite N :

- Data: M trajectories of particles $\left\{\boldsymbol{X}_{t_{1}: t_{L}}^{(m)}\right\}_{m=1}^{M}$
- Statistical learning

Large $\mathbf{N}(\gg 1)$

- Data: density of particles

$$
\begin{aligned}
& \left\{u\left(x_{m}, t_{l}\right) \approx N^{-1} \sum_{i} \delta\left(X_{t_{i}}^{i}-x_{m}\right)\right\}_{m, l} \\
& \partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right]
\end{aligned}
$$

- Inverse problem for a PDE

Goal: algorithm, identifiability, convergence

Part 1: Finitely many particles

Statistical learning from M sample trajectories
$d X_{t}^{i}=\frac{1}{N} \sum_{j=1}^{N} K_{\phi}\left(X_{t}^{j}-X_{t}^{i}\right) d t+\sqrt{2 \nu} d B_{t}^{i} \quad \Leftrightarrow \dot{\boldsymbol{X}}_{t}=R_{\phi}\left(\boldsymbol{X}_{t}\right)+\sqrt{2 \nu} \dot{\boldsymbol{B}}_{t}$

- Data: M trajectories of particles $\left\{\boldsymbol{X}_{t_{1}, t_{L}}^{(m)}\right\}_{m=1}^{M}$
- Goal: estimate ϕ

Finitely many particles

$$
\boldsymbol{R}_{\phi}\left(\boldsymbol{X}_{t}\right)=\dot{\boldsymbol{X}}_{t}-\sqrt{2 \nu} \dot{\boldsymbol{B}}_{t} \& \operatorname{Data}\left\{\boldsymbol{X}_{t_{1}, t_{L}}^{(m)}\right\}_{m=1}^{m}
$$

- Loss function (or log-likelihood for SDEs):

$$
\hat{\phi}_{n, M}=\underset{\phi \in \mathcal{H}_{n}}{\arg \min } \mathcal{E}_{M}(\phi)=\frac{1}{M} \sum_{m=1}^{M} \int_{0}^{T}\left|\dot{\boldsymbol{X}}_{t}^{m}-R_{\phi}\left(\boldsymbol{X}_{t}^{m}\right)\right|^{2} d t
$$

- Nonparametric Regression: $\mathcal{H}_{n}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}, \phi=\sum_{i} c_{i} \phi_{i}$

$$
\mathcal{E}_{M}(\phi)=c^{\top} A c-2 b^{\top} c \Rightarrow \widehat{\phi}_{n, M}=\sum_{1 \leq i \leq n} \widehat{c}_{i} \phi_{i}, \quad \widehat{c}=A^{-1} b
$$

Finitely many particles

$$
\boldsymbol{R}_{\phi}\left(\boldsymbol{X}_{t}\right)=\dot{\boldsymbol{X}}_{t}-\sqrt{2 \nu} \dot{\boldsymbol{B}}_{t} \& \operatorname{Data}\left\{\boldsymbol{X}_{t_{1}, \dot{L}}^{(m)}\right\}_{m=1}^{m}
$$

- Loss function (or log-likelihood for SDEs):

$$
\hat{\phi}_{n, M}=\underset{\phi \in \mathcal{H}_{n}}{\arg \min } \mathcal{E}_{M}(\phi)=\frac{1}{M} \sum_{m=1}^{M} \int_{0}^{T}\left|\dot{\boldsymbol{X}}_{t}^{m}-R_{\phi}\left(\boldsymbol{X}_{t}^{m}\right)\right|^{2} d t
$$

- Nonparametric Regression: $\mathcal{H}_{n}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}, \phi=\sum_{i} c_{i} \phi_{i}$

$$
\mathcal{E}_{M}(\phi)=c^{\top} A c-2 b^{\top} c \Rightarrow \widehat{\phi}_{n, M}=\sum_{1 \leq i \leq n} \widehat{c}_{i} \phi_{i}, \quad \widehat{c}=A^{-1} b
$$

- Choice of \mathcal{H}_{n} ? function space?
- Identifiability/Well-posedness?
- Convergence and rate?

Classical learning in a nutshell

$\operatorname{Data}\left\{\left(x_{m}, y_{m}\right)\right\}_{m=1}^{M} \sim(X, Y) \Rightarrow$ find ϕ s.t. $Y=\phi(X)$

- Loss function: $\hat{\phi}_{n, M}=\arg \min \mathcal{E}_{M}(\phi)=\frac{1}{M} \sum_{m=1}^{M}\left|Y_{m}-\phi\left(X_{m}\right)\right|^{2}$. $\phi \in \mathcal{H}_{n}$
- Regression: with $\psi=\sum_{i} c_{i} \phi_{i} \in \mathcal{H}_{n}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}$:

$$
\mathcal{E}_{M}(\psi)=c^{\top} A c-2 b^{\top} c \Rightarrow \widehat{\phi}_{n, M}=\sum_{1 \leq i \leq n} \widehat{c}_{i} \phi_{i}, \quad \widehat{c}=A^{-1} b
$$

- - Choice of $\mathcal{H}_{n} \subset C^{s}$ in $L^{2}\left(\rho_{X}\right): n_{*}=(M / \log M)^{\frac{1}{2 s+d}}$

Underfitting

Balanced

Overfitting

- Well-posed: $\phi_{\text {optimal }}=\mathbb{E}[Y \mid X=x]=\arg \min \mathcal{E}(\phi)$

$$
\phi \in L^{2}\left(\rho_{X}\right)
$$

- Minimax rate $\mathbb{E}\left[\left\|\widehat{\phi}_{n_{*}, M}-\phi_{\text {optimal }}\right\|_{L^{2}\left(\rho_{X}\right)}^{2}\right] \approx\left(\frac{\log M}{M}\right)^{\frac{s}{2 s+d}}$

Learning kernel

Given: $\operatorname{Data}\left\{\boldsymbol{X}_{[0, T]}^{(m)}\right\}_{m=1}^{M}$

$$
\begin{aligned}
& \text { Goal: Estimate } \phi \text { s.t. } \dot{\boldsymbol{X}}_{t} \approx R_{\phi}\left(\boldsymbol{X}_{t}\right)=\left[\frac{1}{N} \sum_{j=1}^{N} K_{\phi}\left(X_{t}^{j}, X_{t}^{i}\right)\right] \\
& \qquad \mathcal{E}(\phi)=\mathbb{E}\left|\dot{\boldsymbol{X}}-R_{\phi}(\boldsymbol{X})\right|^{2} \neq\left\|\phi-\phi_{\text {true }}\right\|_{L^{2}(\rho)}^{2}
\end{aligned}
$$

- Choice of \mathcal{H}_{n} : similar Function space: $L^{2}(\rho)$, exploration measure $\rho \sim\left|X^{i}-X^{j}\right|$
- Identifiability: unique minimizer $\arg \min \mathcal{E}(\phi)$??

$$
\phi \in L_{\rho}^{2}
$$

$A \approx\left(\mathbb{E}\left[R_{\phi_{i}}(\boldsymbol{X}) R_{\phi_{j}}(\boldsymbol{X})\right]\right)_{i, j} ? \geq ?_{c_{\mathcal{H}}} I_{n} \Leftarrow$ Coercivity condition \downarrow

- Convergence rate:

Let $\left\{\mathcal{H}_{n}\right\}$ compact convex in L^{∞} with $\operatorname{dist}\left(\phi_{\text {true }}, \mathcal{H}_{n}\right) \sim n^{-s}$. Assume the coercivity condition on $\cup_{n} \mathcal{H}_{n}$. Set $n_{*}=(M / \log M)^{\frac{1}{2 s+1}}$. Then

$$
\mathbb{E}_{\mu_{0}}\left[\left\|\widehat{\phi}_{n_{*}, M}-\phi_{\text {true }}\right\|_{L_{\rho}^{2}}\right] \leq C\left(\frac{\log M}{M}\right)^{\frac{s}{2 s+1}}
$$

- $\operatorname{dim}\left(\mathcal{H}_{n}\right)$ adaptive to $s\left(\phi_{\text {true }} \in C^{s}\right)$ and M
- Concentration inequalities for r.v. or martingale
- Ongoing: lower bound

Lennard-Jones kernel estimators:

Opinion dynamics kernel estimators:

Coercivity condition on \mathcal{H}

$$
\frac{1}{T} \int_{0}^{T} \mathbb{E}\left[R_{\phi}\left(\boldsymbol{X}_{t}\right) R_{\phi}\left(\boldsymbol{X}_{t}\right)\right] d t \geq c_{\mathcal{H}}\|\phi\|_{L_{\rho}^{2}}^{2}, \quad \forall \phi \in \mathcal{H}
$$

- Partial results: $\boldsymbol{C}_{\mathcal{H}}=\frac{1}{N-2}$ for $\mathcal{H}=L_{\rho}^{2}$
- Gaussian or $\Phi(r)=r^{2 \beta}$ stationary process [LLмtz21 spa,LL20]
- Harmonic analysis: strictly positive definite integral kernel

$$
\mathbb{E}\left[\phi(|X-Y|) \phi(|X-Z|) \frac{\langle X-Y, X-Z\rangle}{|X-Y||X-Z|}\right] \geq 0, \forall \phi \in L_{\rho}^{2}
$$

- Open: non-stationary? A compact $\mathcal{H} \subset C(\operatorname{supp}(\rho))$?
- No coercivity on L_{ρ}^{2} when $N \rightarrow \infty$ since $c_{\mathcal{H}} \rightarrow 0$

Part 2: Infinitely many particles

Inverse problem for mean-field PDEs

Goal: Identify ϕ from discrete data $\left\{u\left(x_{m}, t_{l}\right)\right\}_{m, l=1}^{M, L}$ of

$$
\partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right], \quad x \in \mathbb{R}^{d}, t>0,
$$

where $K_{\phi}(x)=\nabla(\Phi(|x|))=\phi(|x|) \frac{x}{|x|}$.

Loss functional

$$
\partial_{t} u=\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right]
$$

Candidates:

- Discrepancy: $\mathcal{E}(\phi)=\left\|\partial_{t} u-\nu \Delta u-\nabla \cdot\left(u\left(K_{\phi} * u\right)\right)\right\|^{2}$
- discrete data \rightarrow error in derivative approx.
- denoising+smoothing [Kang+Liao etc22]
- Wasserstein-2: $\mathcal{E}(\phi)=W_{2}\left(u^{\phi}, u\right)$
costly: requires many PDE simulations in optimization
- Weak SINDY ${ }_{[B o r t z ~ e t c 21,22]: ~ p a r a m e t r i c ~}^{\text {- }}$
- A probabilistic loss functional \downarrow

A probabilistic loss functional

$$
\mathcal{E}(\phi):=\frac{1}{T} \int_{0}^{T} \int_{\mathbb{R}^{d}}\left[\left|K_{\phi} * u\right|^{2} u-2 \nu u\left(\nabla \cdot K_{\phi} * u\right)+2 \partial_{t} u(\Phi * u)\right] d x d t
$$

- $=-\mathbb{E}[$ log-likelihood $]$: McKean-Vlasov SDE

$$
\left\{\begin{aligned}
d \bar{X}_{t} & =-K_{\phi_{\text {true }}} * u\left(\bar{X}_{t}, t\right) d t+\sqrt{2 \nu} d B_{t}, \\
\mathcal{L}\left(\bar{X}_{t}\right) & =u(\cdot, t),
\end{aligned}\right.
$$

- Derivative free
- Suitable for high dimension $Z_{t}=\bar{X}_{t}-\bar{X}_{t}^{\prime}$

$$
\mathcal{E}(\phi)=\frac{1}{T} \int_{0}^{T}\left(\mathbb{E}\left|\mathbb{E}\left[K_{\phi}\left(Z_{t}\right) \mid \bar{X}_{t}\right]\right|^{2}-2 \nu \mathbb{E}\left[\nabla \cdot K_{\phi}\left(Z_{t}\right)\right]+\partial_{t} \mathbb{E} \Phi\left(Z_{t}\right)\right) d t
$$

Nonparametric regression $\phi=\sum_{i=1}^{n} c_{i} \phi_{i} \in \mathcal{H}_{n}$:

$$
\mathcal{E}_{M}(\phi)=c^{\top} A c-2 b^{\top} c \Rightarrow \widehat{\phi}_{n, M}=\sum_{i=1}^{n} \widehat{c}_{i} \phi_{i}, \quad \widehat{c}=A^{-1} b
$$

- Choice of $\mathcal{H}_{n} \&$ function space of learning?
- Exploration measure $\rho \leftarrow\left|\bar{X}_{t}-\bar{X}_{t}^{\prime}\right|$
- Inverse problem: identifiability/well-posedness?
- uniqueness of minimizer arg $\min \mathcal{E}(\phi)$
- Convergence and rate? $\Delta x=M^{-1 / d} \rightarrow 0$

Identifiability

$$
\begin{aligned}
\mathcal{E}(\phi) & =\left\langle L_{\bar{G}} \phi, \phi\right\rangle_{L_{\rho}^{2}}-2\left\langle\phi^{D}, \phi\right\rangle+\text { const } . \\
\nabla \mathcal{E}(\phi) & =L_{G} \phi-\phi^{D}=0 \quad \Rightarrow \widehat{\phi}=L_{G}^{-1} \phi^{D}
\end{aligned}
$$

- Identifiability: $A^{-1} b \leftrightarrow L_{\bar{G}}^{-1} \phi^{D}$
- $L_{\bar{G}}$: positive compact operator
- Coercivity condition on $\mathcal{H}\left(\operatorname{not} L_{\rho}^{2}\right)$

$$
c_{\mathcal{H}}=\inf _{\phi \in \mathcal{H},\|\phi\|_{L_{\rho}^{2}}=1}\left\langle L_{\bar{G}} \phi, \phi\right\rangle>0
$$

Convergence rate

Theorem (Numerical error bound [Lang-Lu20])

Let $\mathcal{H}_{n}=\operatorname{span}\left\{\phi_{i}\right\}_{i=1}^{n}$ s.t. $\left\|\phi_{\mathcal{H}_{n}}-\phi\right\|_{L_{\rho}^{2}} \lesssim n^{-s}$. Assume the coercivity condition on $\cup \mathcal{H}{ }_{n}$. Then, with $n \approx(\Delta x)^{-\alpha /(s+1)}$, we have:

$$
\left\|\widehat{\phi}_{n, M}-\phi\right\|_{L_{\rho}^{2}} \lesssim(\Delta x)^{\alpha s /(s+1)}
$$

- Δx^{α} comes from numerical integrator (e.g.,Riemann sum)
- In statistical learning: $\alpha=1 / 2$ (Monte Carlo, CLT)
- Trade-off: numerical error v.s. approximation error

Example: granular media $\phi(r)=3 r^{2}$

Data $u(x, t)$

Estimator

Wasserstein-2

Rate

- Optimal rate $\left(\phi \in W^{1, \infty}\right)$
- Other examples: suboptimal rate when ϕ discontinuous, low rate when ϕ singular

Summary and future directions

Nonparametric/Variational learning of interaction kernels

- Finite N (ODEs/SDEs): statistical learning
- $N=\infty$ (Mean-field PDEs): inverse problem

Learning kernels in operators:

- Identifiability: a coercivity condition
- Algorithms with performance guarantees

Learning kernel in operators:

$$
\begin{aligned}
d X_{t}^{i} & =\frac{1}{N} \sum_{j=1}^{N} K_{\phi}\left(X_{t}^{j}, X_{t}^{i}\right) d t+\sqrt{2 \nu} d B_{t}^{i} & & \Leftrightarrow R_{\phi}\left(\boldsymbol{X}_{t}\right)=\dot{\boldsymbol{X}}_{t}-\sqrt{2 \nu} \dot{\boldsymbol{B}}_{t} \\
\partial_{t} u & =\nu \Delta u+\nabla \cdot\left[u\left(K_{\phi} * u\right)\right] & & \Leftrightarrow R_{\phi}[u(\cdot, t)]=f(\cdot, t)
\end{aligned}
$$

Classical learning Learning kernel

$$
\left\{\left(x_{i}, \phi\left(x_{i}\right)+\epsilon_{i}\right)\right\} \quad\left\{\left(u_{k}, R_{\phi}\left[u_{k}\right]+\eta_{k}\right)\right\}
$$

Regularization $\widehat{\phi}=(I+\lambda \varrho)^{-1} \phi^{D} \quad \widehat{\phi}=\left(L_{G}+\lambda L_{G}^{-1}\right)^{-1} \phi^{D}$

- Coercivity condition (with it \checkmark without it \Downarrow)
- Space-aware Regularization
- Convergence (minimax rate)

