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learning/inverse problems Loss functional Regression and identifiability Regularization

What is the law of interaction ?

Ẍ i
t =

1
N

N∑
j=1,j 6=i

mjKφ(X j
t − X i

t ),

Kφ(x − y) = ∇x [Φ(|x − y |)] = φ(|x − y |) x−y
|x−y| .

Newton’s law of gravity φ(r) = c1
r2

Lennard-Jones potential: Φ(r) = c1
r12 − c2

r6 .

flocking birds, migrating cells?

opinion dynamics ...? a

Infer the interaction kernel from data?
a(1) Cucker+Smale: On the mathematics of emergence. 2007. (2) Vic-

sek+Zafeiris: Collective motion. 2012. (3) Motsch+Tadmor: Heterophilious Dy-
namics Enhances Consensus. 2014 ...
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Learning the interaction kernel φ

dX i
t =

1
N

N∑
j=1

Kφ(X j
t − X i

t )dt +
√

2νdBi
t ⇔ Ẋ t = Rφ(X t ) +

√
2νḂt

Finite N: (“... 4 years ago ...”)

Data: M trajectories of particles {X (m)
t1:tL}

M
m=1

Statistical learning

Learning governing laws in interacting particle systems
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Figure 10: (PS) X(t) and X̂(t) obtained with � and �̂ learned from M = 16 trajectories
respectively: for an initial condition in the training data (Top) and an initial condition
randomly chosen (Middle). The black dot at t = 1 divides the “training” interval [0, 1] from
the “prediction” interval [1, 20]. Bottom: X(t) and X̂(t) obtained with � and �̂ learned
from M = 16 trajectories respectively, for dynamics with larger Nnew = 4N , over a set of
initial conditions. We achieve small errors in all cases, in particular we predict successfully
the flocking time and direction. The means of trajectory errors can be found in Figure 11.

Figure 9 indicates that the estimators match the true interaction kernels extremely well
except for a small bias at locations near 0. We impute this error near 0 to two reasons:
(i) the strong short-range repulsion between agents force the pairwise distances to stay
bounded away from r = 0, yielding a ⇢L

T that is nearly singular near 0, so that there are
only a few samples to learn the interaction kernels near 0. We see that as M increases, the
error near 0 is getting smaller, and we expect it to converge to 0. (ii) Information of �(0) is
lost due to the structure of the equations, as we mentioned earlier in the previous example,
which may cause the error in the finite di↵erence approximation of velocities to a↵ect the
reconstruction of values near 0.

Figure 10 shows that with a rather small M , the learned interaction kernels not only
produce an accurate approximation of the transient behaviour of the agents over the training
time interval [t1, tL], but also of the flocking behaviour over the large time interval [tL, tf ]
including the time of formation and the direction of a flocking, which is perhaps beyond
expectations.

Figure 11(a) shows that the mean trajectory errors over 10 learning trials decay with M
at a rate 0.32 on the training time interval [0, 1], matching the convergence rate of smoothed
kernels, even in the case of a new system with 4N agents. This agrees with Theorem 7 on

33

Large N (>> 1)
Data: density of particles
{u(xm, tl ) ≈ N−1∑

i δ(X i
tl − xm)}m,l

∂tu = ν∆u +∇ · [u(Kφ ∗ u)]

Inverse problem for a PDE

Goal: algorithm, identifiability, convergence
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Inverse problem for Mean-field PDE

Goal: Identify from data φ in

∂tu = ν∆u +∇ · [u(Kφ ∗ u)], x ∈ Rd , t > 0,

where Kφ(x) = ∇(Φ(|x |)) = φ(|x |) x
|x | .

Two types of data:
I low-D: discrete data {u(xm, tl )}M,L

m,l=1 with mesh {xm}
I high-D: particle samples {uN(x , tl ) ≈ M−1∑M

i=1 δ(X i
tl − x)}

Two types of equations: ν > 0 or ν = 0.

How? General & computationally efficient?

Variational /regression: loss functional
Identifiability, Ill-posed: regularization
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Loss functional

∂tu = ν∆u +∇ · [u(Kφ ∗ u)]

Candidates:

Discrepancy: E(φ) = ‖∂tu − ν∆u −∇.(u(Kφ ∗ u))‖2
I derivatives approx. from discrete data
I Weak SINDY [Bortz etc21,22], denoising+smoothing [Kang+Liao etc22]

Free energy: E(φ) = C + |
∫
Rd u[(Φ− Φtrue) ∗ u]dx |2

limitted information from the 1st moment
Wasserstein-2: E(φ) = W2(uφ,u)
costly: requires many PDE simulations in optimization

A probabilistic loss function ↓
A self-test loss function: simple, general
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A probabilistic loss functional

E(φ) :=
1
T

∫ T

0

∫
Rd

[∣∣Kφ ∗ u
∣∣2u − 2νu(∇ · Kφ ∗ u) + 2∂tu(Φ ∗ u)

]
dx dt

= −E[ log-likelihood ]: McKean–Vlasov process{
dX t =− Kφtrue ∗ u(X t , t)dt +

√
2νdBt ,

L(X t ) = u(·, t),

Derivative free
Suitable for high dimension: Zt = X t − X

′
t

E(φ) =
1
T

∫ T

0

(
E|E[Kφ(Zt )|X t ]|2 − 2νE[∇ · Kφ(Zt )] + ∂tEΦ(Zt )

)
dt
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A self-test loss function

Weak form of the equation

〈∂tu, v〉 = ν〈∆u, v〉+ 〈∇ · [u(Kφ ∗ u)], v〉
= ν〈u,∆v〉 − 〈u(Kφ ∗ u),∇v〉, ∀v ∈ C∞...

Take v = Φ ∗ u s.t. ∇Φ(|x |) = Kφ(x) = φ(|x |) x
|x | ,

〈∂tu,Φ ∗ u〉 = ν〈u,∆Φ ∗ u〉 − 〈u(Kφ ∗ u),Kφ ∗ u〉

We regain the loss function

E(φ) =

∫ T

0
[〈∂tu,Φ ∗ u〉 − ν〈u,∆Φ ∗ u〉+ 〈u(Kφ ∗ u),Kφ ∗ u〉]dt

regardless of ν = 0 or > 0
Applicable to other PDEs: self-test (a better name?)
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Nonparametric regression φ =
∑n

i=1 ciφi ∈ Hn:

EM(φ) = c>Ac − 2b>c ⇒ φ̂n,M =
n∑

i=1

ĉiφi , ĉ = A−1b

Choice of Hn & function space of learning?
I Exploration measure ρT ← |X t − X

′
t |

Inverse problem well-posedness/ identifiability?
I arg min

φ∈L2(ρ)

E(φ)

Convergence and rate? ∆x = M−1/d → 0
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Identifiability

E(φ) = 〈LGφ, φ〉 − 2〈φD, φ〉+ const .

∇E(φ) = LGφ− φD = 0 ⇒ φ̂ = L−1
G φD

Identifiability: A−1b ↔ L−1
G
φD

I LG: positive compact operator

I Function space of identifiability (FSOI): span{ψi}λi>0

Coercivity condition on H (not L2(ρ))

cH = inf
φ∈H,‖φ‖L2(ρT )

=1
〈LGφ, φ〉 > 0
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Convergence rate

Theorem (Error bound [Lang-Lu22sisc])

Let Hn = span{φi}ni=1 s.t. ‖φHn − φ‖L2(ρT )
/ n−s . Assume the

coercivity condition on ∪Hn. Then, with n ≈ (∆x)−α/(s+1), we
have:

‖φ̂n,M − φ‖L2(ρT )
/ (∆x)αs/(s+1)

∆xα comes from numerical integrator (e.g.,Riemann sum)
I In statistical learning: α = 1/2 (Monte Carlo, CLT)

Trade-off: numerical error v.s. approximation error
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Example: granular media φ(r) = 3r2

0 0.5 1

Time t

0

0.005

0.01

0.015

0.02

0.025

W
a

s
s
e

rs
te

in
 d

is
ta

n
c
e

Original initial

New initial

10
-1

10
0

 x

10
-1

10
0

Test point

Slope = 1.67

Optimal = 1.50

Data u(x , t) Estimator Wasserstein-2 Rate

Near optimal rate (φ ∈W 1,∞)
Other examples:

I suboptimal when φ discontinuous,
I low rate for singular φ
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Learning kernels in operators

Learn the kernel φ:
Rφ[u] = f

from data:
D = {(uk , fk )}Nk=1, (uk , fk ) ∈ X× Y

Rφ linear/nonlinear in u, but linear in φ

Examples:

I interaction kernel: Rφ[u] = ∇ · [u(Kφ ∗ u)] = ∂tu − ν∆u
I Toeplitz/Hankel matrix
I integral/nonlocal operators,...

14 / 27



learning/inverse problems Loss functional Regression and identifiability Regularization

Ill-posed inverse problem

E(φ) = ‖Rφ[u]− f‖2Y = 〈LGφ, φ〉L2(ρ) − 2〈φD, φ〉L2(ρ) + C

∇E(φ) = LGφ− φD = 0 ⇒ φ̂ = L−1
G φD

Regularization
Eλ(φ) = E(φ) + λ‖φ‖2Q → φ̂ = (LG + λQ)−1φD

λ by the L-curve method [Hansen00]

Regularization norm ‖ · ‖Q? Q = Id , Q = RKHS? [many, Zhou13...]

Data Adaptive RKHS Tikhonov Regularization [Lu+Lang+An22]

norm of RKHS HG = L1/2
G L2(ρ)↔ Q = L−1

G

LG is data dependent
Computation: φ̂ = (LG + λL−1

G )−1φD = (L2
G + λI)−1LGφ

D
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Regularization norms in computational practice:

Table: Three regularizers using the norms of l2, L2
ρ and RKHS.

Regularizer name C Regularized estimator
l2 I φl2

λ = (A + λI)−1b
L2 B φL2

λ = (A + λB)−1b
RKHS Crkhs φ

HG
λ = (A + λCrkhs)−1b
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DARTR: Data Adaptive RKHS Tikhonov Regularization

Rφ[u] = ∇ · [u(Kφ ∗ u)] = f

Recover kernel from discrete noisy data
Consistent convergence as mesh refines
Recover nonlocal kernel in homogenization [Lu+An+Yue22]

Convergence of Estimators, nsr = 0.1 & 1  Convergence Rates

MF Operator

Typical estimators,   Δx = 0.05
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Why DARTR is better?
When / v.s. other norms?

Convergence rate?

Empirical: more robust L-curve
Bayesian perspective: an adaptive prior [Chada+Lang+Lu+Xiong22]

Fredholm equation: explicit RKHS [Lu+Ou23]

Small noise analysis: fractional RKHSs [Lang+Lu23]

Convergence rate: open, possible
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More robust L-curve:
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Bayesian: small noise limit of maximum of posterior
Q = I: divergent estimator
Q = L−1

G : stable/convergent
Discretization
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DARTR for Fredholm equation

y(t) =

∫ 1

0
K (t , s)φ(s)ds + σẆ (t), t ∈ {ti}mi=1 ⊂ [0,1].

G(s, s′) :=

∫ 1

0
K (t , s)K (t , s′)µm(dt), ∀(s, s′).

RKHS with G as reproducing kernel: HG = L−1/2
G (L2

ρ)

G adaptive to data and the equation

Nashed-Wahba74,..., Wahba77:

I RKHS regularization, not G
I Convergence of CV estimator
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Small noise analysis for RKHS regularization

φ̂s
λ = (LG + λL−s

G )−1φD

s = 0: L2
ρ regularization

s > 0: fractional RKHS (s = 1: RKHS )

‖φ̂s
λ − φ∗‖2L2

ρ
=
∑

i

(λi + λλ−s
i )−2(σλ

1/2
i ξi − λci)

2 +
∑

j

d2
j ,
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Summary and future directions

Inverse problems for mean-field PDE of interacting particles
Construction of loss functions
Nonparametric regression: identifiability
Regularization: adaptive RKHSs
Learning kernels in operators
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Learning with nonlocal dependence:

statistical learning + inverse problem

Coercivity condition/ spectrum decay
Convergence (minimax rate)
High-D φ:

I Iterative methods?
I Regularization for NN in function space?
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