Inverse problems for mean-field equations of interacting particles

Fei Lu

Department of Mathematics, Johns Hopkins University

Joint with Quanjun Lang, Qingci An, Yue Yu, Yvonne Ou

July 15, 2023. Institute of Computational Mathematics and Scientific/Engineering Computing, CAS

Loss functional

Regression and identifiability

N /

Regularization

What is the law of interaction ?

Popkin. Nature(2016)

$$\ddot{X}_t^i = \frac{1}{N} \sum_{j=1, j \neq i}^N m_j \mathcal{K}_{\phi}(X_t^j - X_t^i),$$

$$\mathcal{K}_{\phi}(x-y) =
abla_x[\Phi(|x-y|)] = \phi(|x-y|)rac{x-y}{|x-y|}.$$

- Newton's law of gravity $\phi(r) = \frac{c_1}{r^2}$
- Lennard-Jones potential: $\Phi(r) = \frac{c_1}{r^{12}} \frac{c_2}{r^6}$.
- flocking birds, migrating cells?
- opinion dynamics ...? ^a

Infer the interaction kernel from data?

^a(1) Cucker+Smale: On the mathematics of emergence. 2007. (2) Vicsek+Zafeiris: Collective motion. 2012. (3) Motsch+Tadmor: Heterophilious Dynamics Enhances Consensus. 2014 ...

learning/inverse	problems
000	

Regression and identifiability

Regularization

Learning the interaction kernel ϕ

$$dX_t^i = rac{1}{N}\sum_{j=1}^N K_\phi(X_t^j - X_t^i) dt + \sqrt{2
u} dB_t^i \quad \Leftrightarrow \dot{oldsymbol{X}}_t = R_\phi(oldsymbol{X}_t) + \sqrt{2
u} \dot{oldsymbol{B}}_t$$

Finite N: ("... 4 years ago ...")

- Data: M trajectories of particles $\{\boldsymbol{X}_{t_1:t_1}^{(m)}\}_{m=1}^M$
- Statistical learning

learning/inverse	problems
000	

Regression and identifiability

Regularization

Learning the interaction kernel ϕ

$$dX_t^i = \frac{1}{N}\sum_{j=1}^N K_{\phi}(X_t^j - X_t^i)dt + \sqrt{2\nu}dB_t^i \quad \Leftrightarrow \dot{\boldsymbol{X}}_t = R_{\phi}(\boldsymbol{X}_t) + \sqrt{2\nu}\dot{\boldsymbol{B}}_t$$

Finite N: ("... 4 years ago ...")

- Data: M trajectories of particles $\{X_{t_1:t_1}^{(m)}\}_{m=1}^M$
- Statistical learning

Large N (>> 1)

- Data: density of particles $\{u(x_m, t_l) \approx N^{-1} \sum_i \delta(X_{t_l}^i - x_m)\}_{m,l}$ $\partial_t u = \nu \Delta u + \nabla \cdot [u(K_{\phi} * u)]$
- Inverse problem for a PDE

Goal: algorithm, identifiability, convergence

learning/inve	rse prot	olems
000		

Regression and identifiability

Regularization

Inverse problem for Mean-field PDE

Goal: Identify from data ϕ in

$$\partial_t u = \nu \Delta u + \nabla \cdot [u(K_{\phi} * u)], \quad x \in \mathbb{R}^d, t > 0,$$

where $\mathcal{K}_{\phi}(x) = \nabla(\Phi(|x|)) = \phi(|x|) \frac{x}{|x|}$.

- Two types of data:
 - <u>low-D</u>: discrete data $\{u(x_m, t_l)\}_{m,l=1}^{M,L}$ with mesh $\{x_m\}$
 - high-D: particle samples $\{u_N(x, t_l) \approx M^{-1} \sum_{i=1}^M \delta(X_{t_i}^i x)\}$
- Two types of equations: $\nu > 0$ or $\nu = 0$.

How? General & computationally efficient?

learning/inverse	problems
000	

Regression and identifiability

Regularization

Inverse problem for Mean-field PDE

Goal: Identify from data ϕ in

$$\partial_t u = \nu \Delta u + \nabla \cdot [u(K_{\phi} * u)], \quad x \in \mathbb{R}^d, t > 0,$$

where $\mathcal{K}_{\phi}(x) = \nabla(\Phi(|x|)) = \phi(|x|) \frac{x}{|x|}$.

- Two types of data:
 - <u>low-D</u>: discrete data $\{u(x_m, t_l)\}_{m,l=1}^{M,L}$ with mesh $\{x_m\}$
 - high-D: particle samples $\{u_N(x, t_l) \approx M^{-1} \sum_{i=1}^M \delta(X_{t_l}^i x)\}$
- Two types of equations: $\nu > 0$ or $\nu = 0$.

How? General & computationally efficient?

- Variational /regression: loss functional
- Identifiability, Ill-posed: regularization

learning/inverse	problems

Regression and identifiability

Regularization

Loss functional

$$\partial_t u = \nu \Delta u + \nabla \cdot [u(K_{\phi} * u)]$$

Candidates:

- Discrepancy: $\mathcal{E}(\phi) = \|\partial_t u \nu \Delta u \nabla . (u(K_{\phi} * u))\|^2$
 - derivatives approx. from discrete data
 - ► Weak SINDY [Bortz etc21,22], denoising+smoothing [Kang+Liao etc22]
- Free energy: $\mathcal{E}(\phi) = C + |\int_{\mathbb{R}^d} u[(\Phi \Phi_{true}) * u]dx|^2$

limitted information from the 1st moment

• Wasserstein-2: $\mathcal{E}(\phi) = W_2(u^{\phi}, u)$

costly: requires many PDE simulations in optimization

- A probabilistic loss function \downarrow
- A self-test loss function: simple, general

Loss functional

Regression and identifiability

Regularization

A probabilistic loss functional

$$\mathcal{E}(\phi) := \frac{1}{T} \int_0^T \int_{\mathbb{R}^d} \left[\left| \mathcal{K}_{\phi} * u \right|^2 u - 2\nu u (\nabla \cdot \mathcal{K}_{\phi} * u) + 2\partial_t u (\Phi * u) \right] dx dt$$

• = $-\mathbb{E}[\text{ log-likelihood }]$: McKean–Vlasov process

$$\left\{egin{array}{l} d\overline{X}_t = - \ K_{\phi_{true}} st u(\overline{X}_t,t) dt + \sqrt{2
u} dB_t, \ \mathcal{L}(\overline{X}_t) = u(\cdot,t), \end{array}
ight.$$

- Derivative free
- Suitable for high dimension: $Z_t = \overline{X}_t \overline{X}'_t$

$$\mathcal{E}(\phi) = \frac{1}{T} \int_0^T \left(\mathbb{E} |\mathbb{E}[K_{\phi}(Z_t) | \overline{X}_t]|^2 - 2\nu \mathbb{E}[\nabla \cdot K_{\phi}(Z_t)] + \partial_t \mathbb{E} \Phi(Z_t) \right) dt$$

learning/inverse problems	Loss functional ○○●	Regression and identifiability	Regularization
A 16			

A self-test loss function

Weak form of the equation

$$egin{aligned} &\langle \partial_t u, oldsymbol{v}
angle &=
u \langle \Delta u, oldsymbol{v}
angle + \langle
abla \cdot [u(oldsymbol{K}_\phi * u)], oldsymbol{v}
angle \ &=
u \langle u, \Delta oldsymbol{v}
angle - \langle u(oldsymbol{K}_\phi * u),
abla oldsymbol{v}
angle, \quad orall oldsymbol{v} \in oldsymbol{C}^\infty... \end{aligned}$$

Take $v = \Phi * u$ s.t. $\nabla \Phi(|x|) = K_{\phi}(x) = \phi(|x|) \frac{x}{|x|}$,

$$\langle \partial_t u, \Phi * u \rangle = \nu \langle u, \Delta \Phi * u \rangle - \langle u(K_{\phi} * u), K_{\phi} * u \rangle$$

We regain the loss function

$$\mathbb{E}(\phi) = \int_0^T [\langle \partial_t u, \Phi * u \rangle - \nu \langle u, \Delta \Phi * u \rangle + \langle u(\mathcal{K}_{\phi} * u), \mathcal{K}_{\phi} * u \rangle] dt$$

• regardless of $\nu = 0$ or > 0

Applicable to other PDEs: self-test (a better name?)

Nonparametric regression $\phi = \sum_{i=1}^{n} c_i \phi_i \in \mathcal{H}_n$:

$$\mathcal{E}_{M}(\phi) = \boldsymbol{c}^{\top} \boldsymbol{A} \boldsymbol{c} - 2\boldsymbol{b}^{\top} \boldsymbol{c} \Rightarrow \widehat{\phi}_{n,M} = \sum_{i=1}^{''} \widehat{c}_{i} \phi_{i}, \quad \widehat{\boldsymbol{c}} = \boldsymbol{A}^{-1} \boldsymbol{b}$$

- Choice of \mathcal{H}_n & function space of learning?
 - Exploration measure $\rho_T \leftarrow |\overline{X}_t \overline{X}'_t|$
- Inverse problem well-posedness/ identifiability?
 - $\underset{\phi \in L^2(\rho)}{\operatorname{arg\,min}} \mathcal{E}(\phi)$
- Convergence and rate? $\Delta x = M^{-1/d} \rightarrow 0$

learning/inverse	problems

Regression and identifiability ○●○○

Regularization

Identifiability

$$\mathcal{E}(\phi) = \langle L_{\overline{G}}\phi, \phi \rangle - 2\langle \phi^{D}, \phi \rangle + const.$$

$$\nabla \mathcal{E}(\phi) = L_{G}\phi - \phi^{D} = 0 \quad \Rightarrow \widehat{\phi} = L_{G}^{-1}\phi^{D}$$

• Identifiability:
$$A^{-1}b \leftrightarrow L_{\overline{G}}^{-1}\phi^{D}$$

• Function space of identifiability (FSOI): $\overline{\text{span}\{\psi_i\}_{\lambda_i>0}}$

• Coercivity condition on \mathcal{H} (not $L^2(\rho)$)

$$c_{\mathcal{H}} = \inf_{\phi \in \mathcal{H}, \|\phi\|_{L^{2}(\rho_{T})} = 1} \langle L_{\overline{G}}\phi, \phi \rangle > 0$$

Convergence rate

Theorem (Error bound [Lang-Lu22sisc])

Let $\mathcal{H}_n = \operatorname{span}\{\phi_i\}_{i=1}^n s.t. \|\phi_{\mathcal{H}_n} - \phi\|_{L^2(\rho_T)} \leq n^{-s}$. Assume the coercivity condition on $\cup \mathcal{H}_n$. Then, with $n \approx (\Delta x)^{-\alpha/(s+1)}$, we have:

$$\|\widehat{\phi}_{n,M} - \phi\|_{L^2(\rho_T)} \lessapprox (\Delta x)^{\alpha s/(s+1)}$$

- Δx^{α} comes from numerical integrator (e.g., Riemann sum)
 - In statistical learning: $\alpha = 1/2$ (Monte Carlo, CLT)
- Trade-off: numerical error v.s. approximation error

Loss functional

Regression and identifiability ○○○● Regularization

- Near optimal rate ($\phi \in W^{1,\infty}$)
- Other examples:
 - suboptimal when ϕ discontinuous,
 - low rate for singular ϕ

Loss functional

Regression and identifiability

Regularization ●○○○○○○○○○

Learning kernels in operators

Learn the kernel ϕ :

$$R_{\phi}[u] = f$$

from data:

$$\mathcal{D} = \{(u_k, f_k)\}_{k=1}^N, \ (u_k, f_k) \in \mathbb{X} \times \mathbb{Y}$$

- R_{ϕ} linear/nonlinear in u, but linear in ϕ
- Examples:
 - ► interaction kernel: $R_{\phi}[u] = \nabla \cdot [u(K_{\phi} * u)] = \partial_t u \nu \Delta u$
 - Toeplitz/Hankel matrix
 - integral/nonlocal operators,...

Loss functional

Regression and identifiability

Regularization

Ill-posed inverse problem

$$\begin{split} \mathcal{E}(\phi) &= \| \mathcal{R}_{\phi}[u] - f \|_{\mathbb{Y}}^2 = \langle L_G \phi, \phi \rangle_{L^2(\rho)} - 2 \langle \phi^D, \phi \rangle_{L^2(\rho)} + C \\ \nabla \mathcal{E}(\phi) &= L_G \phi - \phi^D = 0 \quad \Rightarrow \widehat{\phi} = L_G^{-1} \phi^D \end{split}$$

Loss functional

Regression and identifiability

Regularization ○●○○○○○○○○○

III-posed inverse problem

$$\begin{split} \mathcal{E}(\phi) &= \| \boldsymbol{R}_{\phi}[\boldsymbol{u}] - \boldsymbol{f} \|_{\mathbb{Y}}^{2} = \langle \boldsymbol{L}_{\boldsymbol{G}}\phi, \phi \rangle_{L^{2}(\rho)} - 2\langle \phi^{D}, \phi \rangle_{L^{2}(\rho)} + \boldsymbol{C} \\ \nabla \mathcal{E}(\phi) &= \boldsymbol{L}_{\boldsymbol{G}}\phi - \phi^{D} = \boldsymbol{0} \quad \Rightarrow \widehat{\phi} = \boldsymbol{L}_{\boldsymbol{G}}^{-1}\phi^{D} \end{split}$$

Regularization

$$\mathcal{E}_{\lambda}(\phi) = \mathcal{E}(\phi) + \lambda \|\phi\|_{Q}^{2} \to \widehat{\phi} = (L_{G} + \lambda Q)^{-1} \phi^{L}$$

- λ by the L-curve method [Hansen00]
- Regularization norm $\|\cdot\|_Q$? Q = Id, Q = RKHS? [many, Zhou13...]

III-posed inverse problem

$$\mathcal{E}(\phi) = \|\mathbf{R}_{\phi}[u] - f\|_{\mathbb{Y}}^{2} = \langle L_{G}\phi, \phi \rangle_{L^{2}(\rho)} - 2\langle \phi^{D}, \phi \rangle_{L^{2}(\rho)} + C$$

$$\nabla \mathcal{E}(\phi) = L_{G}\phi - \phi^{D} = 0 \quad \Rightarrow \widehat{\phi} = L_{G}^{-1}\phi^{D}$$

Regularization

$$\mathcal{E}_{\lambda}(\phi) = \mathcal{E}(\phi) + \lambda \|\phi\|_{Q}^{2} \to \widehat{\phi} = (L_{G} + \lambda Q)^{-1} \phi^{L}$$

- λ by the L-curve method [Hansen00]
- Regularization norm $\|\cdot\|_Q$? Q = Id, Q = RKHS? [many, Zhou13...]

Data Adaptive RKHS Tikhonov Regularization [Lu+Lang+An22]

- norm of RKHS $H_G = L_G^{1/2} L^2(\rho) \leftrightarrow Q = L_G^{-1}$
- L_G is data dependent
- Computation: $\hat{\phi} = (L_G + \lambda L_G^{-1})^{-1} \phi^D = (L_G^2 + \lambda I)^{-1} L_G \phi^D$

Regularization norms in computational practice:

Table: Three regularizers using the norms of l^2 , L^2_{ρ} and RKHS.

Regularizer name	С	Regularized estimator
12	I	$\phi_\lambda^{\prime^2} = (\mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{b}$
L2	В	$\phi_\lambda^{L^2} = (\mathbf{A} + \lambda \mathbf{B})^{-1} \mathbf{b}$
RKHS	C _{rkhs}	$\phi_{\lambda}^{H_{G}} = (\mathbf{A} + \lambda \mathbf{C}_{\textit{rkhs}})^{-1} \mathbf{b}$

DARTR: Data Adaptive RKHS Tikhonov Regularization

$$R_{\phi}[u] = \nabla \cdot [u(K_{\phi} * u)] = f$$

- Recover kernel from discrete noisy data
- Consistent convergence as mesh refines
- Recover nonlocal kernel in homogenization [Lu+An+Yue22]

Loss functional

Regression and identifiability

Regularization

Why DARTR is better? When / v.s. other norms? Convergence rate?

Why DARTR is better? When / v.s. other norms? Convergence rate?

- Empirical: more robust L-curve
- Bayesian perspective: an adaptive prior [Chada+Lang+Lu+Xiong22]
- Fredholm equation: explicit RKHS [Lu+Ou23]
- Small noise analysis: fractional RKHSs [Lang+Lu23]
- Convergence rate: open, possible

More robust L-curve:

learning/inverse	problems

Regression and identifiability

Bayesian: small noise limit of maximum of posterior

- Q = I: divergent estimator
- $Q = L_G^{-1}$: stable/convergent

learning/inverse	problems

Regression and identifiability

DARTR for Fredholm equation

$$\mathbf{y}(t) = \int_0^1 K(t, \mathbf{s}) \phi(\mathbf{s}) d\mathbf{s} + \sigma \dot{W}(t), \ t \in \{t_i\}_{i=1}^m \subset [0, 1].$$

$$G(\boldsymbol{s}, \boldsymbol{s}') := \int_0^1 K(t, \boldsymbol{s}) K(t, \boldsymbol{s}') \mu_m(dt), \quad \forall (\boldsymbol{s}, \boldsymbol{s}').$$

- RKHS with G as reproducing kernel: $H_G = L_G^{-1/2}(L_\rho^2)$
- G adaptive to data and the equation
- Nashed-Wahba74,..., Wahba77:
 - RKHS regularization, not G
 - Convergence of CV estimator

Loss functional

Regression and identifiability

Regularization ○○○○○○○●○○

Small noise analysis for RKHS regularization

$$\widehat{\phi}_{\lambda}^{s} = (L_{G} + \lambda L_{G}^{-s})^{-1} \phi^{D}$$

•
$$s = 0$$
: L_{ρ}^2 regularization
• $s > 0$: fractional RKHS ($s = 1$: RKHS)
 $\|\hat{\phi}_{\lambda}^s - \phi_*\|_{L_{\rho}^2}^2 = \sum_i (\lambda_i + \lambda \lambda_i^{-s})^{-2} (\sigma \lambda_i^{1/2} \xi_i - \lambda c_i)^2 + \sum_j d_j^2$,

Surprise: over-smoothing OK in theory, but harder to select λ

Loss functional

Regression and identifiability

Regularization

Summary and future directions

Inverse problems for mean-field PDE of interacting particles

- Construction of loss functions
- Nonparametric regression: identifiability
- Regularization: adaptive RKHSs Learning kernels in operators

Loss functional

Regression and identifiability

Regularization

Learning with nonlocal dependence:

- Coercivity condition/ spectrum decay
- Convergence (minimax rate)
- High-D φ:
 - Iterative methods?
 - Regularization for NN in function space?