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Learning kernels in operators

Learn the kernel φ: Rφ[u] + ε = f

from data:
D = {(uk , fk )}Nk=1, (uk , fk ) ∈ X× Y

Operator Rφ[u](x) =
∫
φ(x − y)g[u](x , y)dy

I Interacting particles/agents

Rφ[u] = ∇·[u(Kφ∗u)] = ∂tu−σ∆u, Kφ(x) = φ(|x |) x
|x |
∈ Rd

Rφ[X t ] =
[
− 1

n

n∑
j=1

Kφ(X i
t − X j

t )
]

i = Ẋ t + Ẇt , Rnd

I Nonlocal PDEs:

Rφ[u](x) =

∫
Ω

φ(x − y)[u(y)− u(x)]dy = ∂ttu − v .

I Integral operators, Toeplitz matrix: Rφu = (φ(xi − xj )uj ) = f
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Learning kernels in operators

Learn the kernel φ: Rφ[u] + ε = f

from data:
D = {(uk , fk )}Nk=1, (uk , fk ) ∈ X× Y

Operator Rφ[u](x) =
∫
φ(x − y)g[u](x , y)dy

Statistical learning
⋂

inverse problem
I random {(uk , fk )}: statistical learning
I deterministic (e.g., N small): inverse problem
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Learning kernels in operators

ϕ(x)

x

ϕ(x)

Classical learning Learning kernel

Values are
undetermined 

from data

Local dependence

{(xi, ϕ(xi) + ϵi)} {(uk, Rϕ[uk] + ηk)}
Nonlocal dependence

u

R[u]

Operator learning

Local dependence

{(uk, R[uk] + ηk)}

x̂ϕ = I−1ϕD ̂R = I−1RD̂ϕ = L−1
G ϕDInversion

̂ϕ = (I + λQ)−1ϕD ̂ϕ = (LG + λL−1
G )−1ϕD ̂R = (I + λQ)−1RDRegularization

ϕ(x)

x

ϕ(x)

Classical learning Learning kernels

Values are
undetermined 

from data

Local dependence

{(xi, ϕ(xi) + ϵi)} {(uk, Rϕ[uk] + ηk)}
Nonlocal dependence

u

R[u]

Operator learning

Local dependence

{(uk, R[uk] + ηk)}

x

Nonlocal dependence
low-dimensional structure; linear in φ
methods: regression/Neural network

This talk: ⇒ Convergent estimator as mesh refines
understand the ill-posed inverse problem
introduce a new regularization norm
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Part 2: Regression and regularization
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Nonparametric regression

Loss functional: E(φ) = 1
N
∑N

i=1 ‖Rφ[ui ]− fi‖2L2 .

Hypothesis space: φ =
∑n

i=1 ciφi ∈ Hn = span{φi}ni=1:

E(φ) = c>Anc−2c>bn+Cf
N ,⇒ φ̂Hn =

∑
i

ĉiφi , where ĉ = A
−1
n bn,

Three issues
A
−1

: ill-conditioned/singular
Choice of Hn: {φi}ni=1 and n
Convergence when data mesh refines ∆x → 0
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Regularization

Regularization is necessary:

An ill-conditioned

bn: noise or numerical error

Tikhonov/ridge Regularization:

Eλ(φ) = E(φ) + λ‖φ‖2
∗ ⇒ c>Anc − 2b

>
n c + λ‖c‖2

B∗

φ̂λHn
=
∑

i

ĉλi φi , where ĉ = (An + λB∗)−1bn,

λ by the L-curve method [Hansen00]

(x(λ), y(λ)) := (log(E(ĉλ)), log(‖ĉλ‖2
∗)),

λ∗ = maximal curvature

Which norm ‖ · ‖∗ to use? B∗ = In?
-3 -2 -1 0

log
10
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Principle: [Stuart2010]

Avoid discretization until the last possible moment
↓

Avoid basis selection until the last possible moment

Hypothesis space: φ =
∑n

i=1 ciφi ∈ Hn = span{φi}ni=1:

Rφ[u](x) =

∫
Ω
φ(|x − y |)g[u](x , y)dy = f

Function space of φ? Identifiability?
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Part 3: Identifiability & regularization

DARTR: Data adpative RKHS Tikhonov regularization
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Identifiability

An exploration measure: ρ(dr) ⇒ φ ∈ L2
ρ

Rφ[u](x) =
∫

Ω φ(|x − y |)g[u](x , y)dy , ρ(dr) ∝
∫ ∫

δ|x−y|(dr)
∣∣g[u](x , y)

∣∣dxdy

An integral operator⇐ the Fréchet derivative of loss functional

E(ψ) =
1
N

N∑
i=1

‖Rψ[ui ]− fi‖2
L2 = 〈LGψ,ψ〉L2

ρ
− 2〈φD, ψ〉L2

ρ

∇E(ψ) = 2LGψ − 2φD = 0 ⇒ φ̂ = LG
−1φD

I LG: nonnegative compact, {(λi , ψi )}, λi ↓ 0
I φD = LGφtrue + φerror

Function space of identifiability (FSOI):
φ̂ = LG

−1(LGφtrue+φerror)⇒ H = Null(LG)⊥ = span{ψi}i:λi>0

I ill-defined beyond H; ill-posed in H
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DARTR: Data Adaptive RKHS Tikhonov Regularization

A new task for Regularization:
ensure that the learning takes place in the FSOI

data-dependent H = span{ψi}i:λi>0

= HG
L2
ρ

G⇒RKHS: HG = LG
1/2(L2

ρ)

For φ =
∑

k ckψk , ‖φ‖2
L2
ρ

=
∑

k c2
k ,

‖φ‖2
HG

=
∑

k

λ−1
k c2

k = 〈LG
−1ψ,ψ〉L2

ρ

⇒ Regularization norm: ‖φ‖2HG

Eλ(φ) = E(φ) + λ‖φ‖2HG
= 〈(LG + λLG

−1)φ, φ〉L2
ρ
− 2〈φD, φ〉L2

ρ

φ̂λ = (LG + λLG
−1)−1φD = (LG

2 + λI)−1LGφ
D
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What DARTR has done: remove error outside FSOI:
(Adaptive to data; regularize in FSOI )

No regularization:

φ̂ = LG
−1φD = LG

−1(LGφtrue + φerror
H + φerror

H⊥ )

DARTR: ‖φerror
H⊥ ‖

2
HG

=∞

(LG + λLG
−1)−1φD = (LG + λLG

−1)−1(LGφtrue + φerror
H )

l2 or L2 regularizer: with C =
∑
φi ⊗ φj or C = I

(LG + λC)−1φD = (LG + λC)−1(LGφtrue + φerror
H + φerror

H⊥ )
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DARTR: computation

Eλ(φ) = E(φ) + λ‖φ‖2HG
⇒ c>Anc − 2b>n c + λ‖c‖2Brkhs

Input: An,bn and Bn = (〈φi , φj ,〉 L2
ρ)i,j .

Output: reguarized estimator

ĉλ = (An + λ∗Brkhs)−1bn

Generalized eigenvalue problem (An,Bn)↔ LG
AnV = BnV Λ and V>BnV = In
Brkhs = (V ΛV>)†

L-curve to select λ∗

22 / 36



Learning kernels Regression and regularization Identifiability and DARTR Iterative method

Interaction kernel in a nonlinear operator

Rφ[u] = ∇ · [u(Kφ ∗ u)] = f , Kφ = φ(|x |) x
|x |

Recover kernel from discrete noisy data
Robust in accuracy, consistent rates as mesh refines

Convergence of Estimators, nsr = 0.1 & 1  Convergence Rates

MF Operator

Typical estimators,   Δx = 0.05
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More robust L-curve
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Homogenization of wave propagation in meta-material

heterogeneous bar with microstructure + DNS⇒ Data
Homogenization: [LAY23]

Rφ[u] =
∫

Ω φ(|y |)[u(x + y)− u(x)]dy = ∂ttu − g.

(c): resolution-invariant
(e): l2 and L2 leading to non-physical kernel
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Part 4: Iterative method

Large scale Ax = b, A ∈ Rm×n ill-conditioned , n >> 1
b: noisy
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DARTR for Ax = b

An = A>A,bn = A>b and Bn = diag(ρ).

ĉλ = (An + λ∗Brkhs)−1bn

ρ = normalized column sum of (|Aij |): pre-conditioning
Generalized eigenvalue problem (An,Bn)
AnV = BnV Λ and V>BnV = In ⇒ Brkhs = (V ΛV>)†

Brkhs = A†n when Bn = In
L-curve to select λ∗

—————-
Direct method: based on costly matrix decomposition.

Iterative method: use but without computing Brkhs?
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Iterative Data Adaptive RKHS regularization

Solve: xk = arg min
x∈Xk

‖x‖Brkhs , Xk = {x : minx∈Sk ‖Ax − b‖}

Sk = span{(B†rkhsA>A)iB†rkhsA>b}ki=0

Use B†rkhs, not Brkhs: B†rkhs = B−1A>AB−1

generalized Golub-Kahan bidiagonalization (gGKB)
⇒ construct Sk only using matrix-vector product
Sk = RKHS-restricted Krylov subspace
Early stopping: select k
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Computational complexity

DARTR: O(n3)
iDARR: O(3mnk)
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Fredholm integral equation: 1st kind

Polynomial decaying spectrum:
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Figure 3: Results in the case of polynomial decaying spectrum. Top-row: typical estimators of IR-l2,
IR-L2, and iDARR when nsr “ 0.0625 and their denoising of the output signal. The 2nd-top row: the
residual }Axk ´ b}2 as iteration number k increases in one realization when nsr “ 0.0625, as well as the
box plots of the stopping iteration numbers the 100 simulations. The lower two rows: box plots of the
estimators’ L2

⇢ errors and loss function values in the 100 simulations.

Figure 4: Computational time in 10 simulations with m “ 500.
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Image deblurring
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Regularization:

Is DA-RKHS better than other norms?

No regularizer is universally "best"
I no universal criteria: similar to Prior in Bayesian learning
I Multiple factors: Smoothness of true function, Operator

spectral decay, Noise distribution, hyper-parameter

Small noise analysis [CLLW22,LuOu23,LangLu23]

I Data-Adaptive is important
fractional RKHS Hs

G = Ls/2
G L2

ρ

I Convergence rate: same as L2, a smaller factor
I Robust for selection of hyper-parameter
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Summary

Learning kernels in operators:

Rφ[u] = f ⇐ D = {(uk , fk )}Nk=1

Nonlocal dependence
Identifiability: FSOI

DARTR: data adaptive RKHR Tikhonov-Reg

I Synthetic data: convergent, robust to noise
I Homogenization: resolution-independent

Iterative method: iDARR
Regularization: Ax = b ⇒ xλ = (A + λA−1)b
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Future directions

Learning with nonlocal dependence

Convergence: ∆x ,N

Data-adaptive basis

Regularization for ML:
‖φθ‖2rkhs, not ‖θ‖
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