LECTURE NOTES FROM WEEK 6

1. Tuesday, Oct 16, 2007

1. New concepts:
 (1) **local max** (peaks) and **local min** (valleys)
 Note. In general, boundary points (edges of interval) are not local extrema (even if they can be global extrema)
 (2) **global max/min** (over an interval): points where a function achieves its max/min
 (3) **critical points**: where \(f'(x) = 0 \)
 Note. We can think of the critical points as "determined", since they are the roots of an explicit equation (that one can, in applications, solve).

2. **Theorem (Extreme Values Theorem)**. A continuous function \(f : [a, b] \rightarrow \mathbb{R} \) has global max/min.
 Note. If \(c_{\text{max}} \) is the point of global max, then \(f(c_{\text{max}}) = \max_{[a, b]} f \) (the maximum value of \(f \) over the interval \([a, b]\)).

3. **Theorem (Fermat)**. A point of local max (local min) for a differentiable function is also a critical point.

 Application. Determine \(\max_{[a, b]} f \) over a closed interval \([a, b]\) (when \(f \) is differentiable).

 Answer. You have to make a table
 \[
 \begin{array}{c|c|c}
 x & \text{critical points} & \text{boundary points} \\
 \hline
 f(x) & & \\
 \end{array}
 \]

 Similar approach if you have to determine \(\min_{[a, b]} f \).

2. Wednesday, Oct 17, 2007

1. **Proof of Fermat’s theorem.**

2. **Theorem (Rolle’s Theorem)**

 Given:
 - \(f(x) \) differentiable function
 - \(a < b \) such that \(f(a) = f(b) \)

 Then:
 - \(\exists c \in (a, b) \) such that \(f'(c) = 0 \)

 Note. We discussed a proof of Rolle’s theorem.

 Application. Prove that a certain equation has a unique root.

 The answer is a combination of
 - IVT (to prove that at least one root exists)
 - proof by contradiction (which uses Rolle’s Theorem).

3. **Theorem. (MVT=Mean Value Theorem)**

 Given:
 - \(f(x) \) differentiable function
 - \(a < b \)

 Then:
 - \(\exists c \in (a, b) \) such that \(f'(c) = \frac{f(b) - f(a)}{b - a} \)

 Application. \(\sin(x) \leq x, \forall x > 0. \)