
7. LIE GROUPS AND LIE ALGEBRAS

1. Lie algebras

1.1. Definition. Here F = R or C. A Lie algebra over F is a pair (g, [·, ·]), where g is a vector space
over F and

[·, ·] : g× g → g

is an F -bilinear map satisfying the following properties

[X, Y ] = −[Y,X]

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z, X]] = 0

The latter is the Jacobi identity.

1.1.1. Note. [x, x] = 0, ∀x ∈ g.

1.2. Example. If V is a vector space over F , glF (V ) = (L(V ), [·, ·]op) is a Lie algebra over F , where the
(operator) Lie bracket is given by

[A,B]op = AB −BA

If V = Fn then we will use the notation gln(F ) or gl(n, F ).

1.3. Homomorphism of Lie algebras. An F -linear map φ : g1 → g2 of Lie algebras over F is called
a homomorphism of Lie algebras if it preserves the bracket in the following manner

[φ(x), φ(y)] = φ([x, y]), ∀x, y ∈ g1

Note that the bracket on the left-hand side is taken in g2, while on the right-hand side is taken in g.

1.4. Abelian Lie algebras. In general, the Lie algebra structure on a given vector space is not unique.
For example, we can endow any vector space V (over F ) with the trivial Lie algebra structure given by

[x, y]ab = 0, ∀x, y ∈ V

From now on, we will use the words abelian Lie algebra or commutative Lie algebra to refer to a Lie
algebra with a trivial Lie bracket.

1.4.1. Note. From now on we will refer to the Lie algebra as g instead of (g, [·, ·]), without specifying the
bracket (assuming it is understood).

1.5. One-dimensional Lie algebras. Since [x, x] = 0, it means that a Lie algebra of dimension one
is necessarily abelian. Thus to obtain non-trivial examples of Lie algebra one has to look in dimension
greater or equal to two.

1.6. Adjoint action. Assume g is a Lie algebra over F and gl(g) is the Lie algebra of linear operators
on g. Consider the following map

ad : g → gl(g), ad(x)y = [x, y], ∀x, y ∈ g

We call the map ad(x) : g → g the adjoint action of the element x on g. It is straightforward to check
that ad is a homomorphism of Lie algebra:

ad(x)([y, z]) = [ad(x)y, ad(x)z]

In fact, this is equivalent to the Jacobi identity.
1
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2. The Adjoint Representation

2.1. Definition. In this section G = GL(n,C) and g = gl(n,C). For g ∈ G, we define the map

Ad(g) : g → g, Ad(g)(X) = gXg−1, ∀X ∈ g

This gives a representation of G on g, in that

Ad(g)Ad(h) = Ad(gh)

In other words, the map
Ad : G → GL(g)

is a group homomorphism. We call this representation the adjoint representation.

2.1.1. Note. dimC g = n2, so a matrix representation of Ad(g) would require n2×n2 matrix. Already for
n = 3 this is a matrix with 81 entries. It might be easier at this point to appreciate the point of view
that a representation assigns to a group element a linear operator rather than a matrix.

2.2. Conjugation. geXg−1 = eAd(g)X , for g ∈ G and X ∈ g.

This follows from the identity gXng−1 = (gXg−1)n.

2.3. Theorem. The following diagram is commutative

g
ad−−−−→ gl(g)

yexp

yexp

G
Ad−−−−→ GL(g)

That is, we have an identity of linear operators

Ad(exp X) = ead X : g → g, ∀X ∈ g

2.3.1. Proof. Ad(exp tX) is a (continuous) one-parameter subgroup of GL(g) (check). Therefore there
exists A ∈ gl(g) such that Ad(exp tX) = exp(tA). The generator of this one-parameter group is given by

A =
d

dt
Ad(exp tX)|t=0

This means that for Y ∈ g, A(Y ) is given by

A(Y ) =
d

dt
Ad(exp(tX))Y |t=0 =

d

dt
etXY e−tX |t=0 = XY − Y X = [X,Y ] = ad(X)Y

by Leibniz rule.

2.3.2. Equivalent formulation. In other words, for X, Y ∈ g, we have

eX · Y · e−X = ead X(Y ) =
∞∑

n=0

1
n!

ad(X)n(Y )

= Y +
1
1!

[X, Y ] +
1
2!

[X, [X, Y ]] +
1
3!

[X, [X, [X, Y ]]] + . . .

3. Lie subgroups of GL(n,C)

3.1. Definition. A Lie subgroup of GL(n,C) is a closed subgroup of GL(n,C). From now on, a Lie group
will be either a Lie subgroup of GL(n,C), or a group isomorphic to it. Note that a closed subgroup of a
Lie group is automatically a Lie group.

3.2. Topology. Since we can think of GL(n,C) as an open subset of Cn2
, its topology is the one inherited

from Cn2
. In other words, the sequence {gk} with gk ∈ GL(n,C) converges to g ∈ GL(n,C) if and only

if (gk)ij → gij , for all 1 ≤ i, j ≤ n, where g(ij) is the ij-entry of the matrix g.

A subgroup H ⊂ GL(n,C) is closed it it has the following property:

if gn → g ∈ GL(n,C) and gn ∈ H, then g ∈ H as well

3.3. Examples. R>0 is a closed subgroup of GL(1,C), hence a Lie group.

The group isomorphism exp : (R,+) → (R>0, ·) identifies R with R>0. This makes R itself a Lie group.
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4. The Lie algebra of a Lie subgroup

4.1. Definition. If G ⊆ GL(n,C) is a closed subgroup, we define its Lie algebra to be the set

g := Lie(G) = {X ∈ gl(n,C) : exp(tX) ∈ G, ∀t ∈ R}
4.2. Theorem A. g is a Lie subalgebra of gl(n,C) over R, meaning:

• tX ∈ g, ∀t ∈ R
• X + Y ∈ g
• [X, Y ] ∈ g

whenever X, Y ∈ g.

4.2.1. Proof. The first relation follows from the definition.

For the second part, we need the following

4.2.2. Lemma. For X,Y ∈ gl(n,C),

lim
n→+∞

(exp(X/n) exp(Y/n))n = exp(X + Y )

To prove the lemma, note that the left-hand side is

(exp M(X/n, Y/n))n = exp(nM(X/n, Y/n)) = exp(n(X/n + Y/n + O(1/n2)) = exp(X + Y + O(1/n))

To see how to use this formula to prove the second part of the Theorem, note that for X, Y ∈ g,

exp(t(X + Y ) = lim
n

(
exp(tX/n) exp(tY/n)

)n

The terms of the sequence of right-hand side belong to G. But G is closed, so the limit belongs to G as
well, that is exp(t(X + Y )) ∈ G. Since this is true for all t ∈ R, it means that X + Y ∈ g.

For the last part of the Theorem, we use [homework]

lim
n→∞

(exp(X/n) exp(Y/n) exp(−X/n) exp(−Y/n))n2
= exp([X,Y ])

4.3. The Adjoint Representation. If g ∈ G and X ∈ g, then Ad(g)X ∈ G. To see this,

exp(tAd(g)X) = g exp(tX)g−1 ∈ G, ∀t ∈ R
Hence Ad(g)X ∈ g. We thus obtain the adjoint representation Ad : G → gl(g) and a commutative
diagram as in the case of GL(n,C).

4.4. Note. Let g the Lie algebra of a Lie group G. Then the bracket operation does not depend on
the particular embedding G ⊂ GL(n,C). On the other hand, the matrix product XY does. This is the
reason why it is necessary to think of [, ] as the natural operation on g.

5. Cartan’s Theorem

5.1. Theorem B. If G ⊂ GL(n,C) is a closed subgroup, then there exists neighborhoods 0 ∈ U ⊂
gl(n,C) and e ∈ V ∈ GL(n,C) such that

exp : U ' V, exp(U ∩ g) = V ∩G

5.1.1. Note. This shows that closed Lie subgroups of GL(n,C) are smooth sumbmanifolds of GL(n,C).

6. Discrete subgroups

6.1. Definition. A subgroup Γ ⊂ G is discrete if for any γ ∈ Γ there exists an open neighborhood
γ ∈ V ⊂ G such that V ∩ Γ = {γ}. A discrete subgroup is automatically closed, hence it is a Lie
subgroup. Its Lie algebra is trivial, Lie(Γ) = {0}.
6.2. Examples. Z ⊂ R and SL(2,Z) ⊂ SL(2,R).

7. Example: SL(2,R)

This is clearly a closed subgroup of GL(2,R), hence a Lie subgroup.

7.1. Lie algebra. Let sl(2,R) := Lie(SL(2,R)). By definition, X ∈ sl(2,R) iff det exp(tX) = 1, for all
t ∈ R. Since det exp(tX) = et trace(X), we have

sl(2,R) = {X : trace X = 0}
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7.2. Generators. The matrices

H =
[ 1 0

0 −1

]
, E+ =

[ 0 1
0 0

]
, E− =

[ 0 0
1 0

]

form a basis for sl(2,R) as a vector space over R. They satisfy the relations

[H,E+] = 2E+, [H,E−] = −2E−, [E+, E−] = H

We say that {H, E+, E−} form an sl(2)-triple.

7.2.1. Note. H · E+ /∈ sl(2,R) (matrix multiplication) but [H, E+] ∈ sl(2,R).

7.3. sl(2) triples. To show that another (real) Lie algebra h is isomorphic to sl(2,R) it is enough to find
a linear basis x, y+, y− of h such that

[x, y±] = ±2y±, [y+, y−] = x

7.4. Exponential map. exp : sl(2,R) → SL(2,R) is not surjective, although SL(2,R) is connected.

To see this, take g =
[ −1 1

0 −1

]
. Then g /∈ exp(sl(2,R)). For assume that was the case, g = exp X,

traceX = 0. We know that X is not diagonalizable (since g is not) which means that X has a double
eigenvalue. Since trace X = 0, the double eigenvalue = 0. But this implies that g = eX has eigenvalue 1,
contradiction.

7.5. Inverse in SL(2). Useful formula: for g =
[ a b

c d

]
∈ SL(2,R), g−1 =

[ d −b
−c a

]
.

8. Example: O(2), SO(2)

8.1. Definition. O(2) = {g ∈ SL(2,R) : gtg = I}, SO(2) = {g ∈ O(2) : det g = 1}.
8.2. Lie algebra. o(2) := Lie(O(2)) = {X ∈ gl(2,R) : exp(tX) exp(tXτ ) = I2,∀t ∈ R). By differentiat-
ing this identity at t = 0

Xt + X =
d

dt
exp(tXt) exp(tX)|t=0 = 0

Hence o(2) = {X ∈ gl(2,R) : Xt = −X}. Note that an antisymmetric matrix has zero on the diagonal,

and hence zero trace. This means that so(2) = o(2). Note that o(2) = so(2) = {
[ 0 t
−t 0

]
, t ∈ R} is

generated by H =
[ 0 1
−1 0

]
. Then

SO(2) = exp(tH) = {
[ cos t sin t
− sin t cos t

]
, t ∈ R} ' S1

and [O(2) : SO(2)] = 2. Then O(2) is the disjoint union O(2) = SO(2)
⋃

gSO(2), with g =
[ 1 0

0 −1

]
.

9. Example: SU(2)

9.1. Definition. SU(2) = {g ∈ GL(2,C) : det g = 1, gtg = I2}. Note that

gt = g−1 ⇒
[ ā c̄

b̄ d̄

]
=

[ d −b
−c a

]

Hence SU(2) = {g =
[ a b
−b̄ ā

]
: |a|2 + |b|2 = 1}. Topologically SU(2) ' S3.

9.2. Lie algebra. su(2) := {X ∈ gl(2,C) : X
t
+ X = 0} = {

[ ia β

−β −ia

]
: a ∈ R, β ∈ C}.

10. Connected component

10.1. Definition. G0 := connected component of e ∈ G. In other words, G0 is the set of points g with
the property that there exists an compact interval [a, b] ⊂ R and continuous map c : [a, b] → G such that
c(a) = e and c(b) = g. We say that c(t) is a path joining e and g.
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10.2. Theorem.

a) G0 is both open and closed in G.

b) Then G0 C G is a normal subgroup of G.

c) Let e ∈ V ⊂ G0 an open, symmetric, connected subset of G0. Then G0 =< V >, i.e. the set V
generates the group G0.

d) Lie(G0) = Lie(G).

10.2.1. Proof. a) Assume x, y ∈ G0. Take c1 a path in G joining e and x; c2 a path joining e and y. Then
the concatenation of the translated paths c1(t)−1x and x−1c2(t) is a path joining e and x−1y. Therefore
x−1y ∈ G0, which shows that G0 is a subgroup of G. Being the connected component of e, G0 is at once
open and closed relative to G (this is a general fact).
b) Assume g ∈ G and x ∈ G0. If c(t) is a path joining e and x, then g · c(t) · g−1 is a (continuous) path
joining e and gxg−1, hence gxg−1 ∈ G0.
c) The statement of part c) is

G0 = ∪∞n=0V
n, where V n := {g = x1 · · · · · xn : x1, . . . , xn ∈ V }

But this is true since the right-hand side is an open subgroup of G0 and hence also closed relative to G0.
d) G0 being a closed subgroup of G, it is a Lie subgroup. Hence it makes sense to talk about its Lie
algebra. The identity of the two Lie algebras is immediate once we notice that a continuous path (such
as a one-parameter subgroup) passing through e stays in G0.

10.2.2. Note. Assume G is a Lie group and H ⊂ G is an open subgroup. Then H is also closed . To see
this, write G as a disjoint union of left H-cosets: G = ∪i∈IgiH, where say g0 = e. Then G−H = ∪i 6=0giH
is a union of open sets, hence open. But this means that H itself is closed.

10.3. Theorem C. Assume G and H are two Lie subgroups of GL(n,C) with the same Lie algebra.
Then G0 = H0.

10.3.1. Proof. Assume g = h, where G,H ⊂ GL(n,C) are closed subgroups. Let U a small neighborhood
of 0 ∈ gl(n,C) such that exp : U ' V , with V a neighborhood of I ∈ GL(n,C). By Theorem B,
exp(U ∩ g) is an open connected neighborhood of both e ∈ G and e ∈ H. Two groups generated by the
same elements are identical:

G0 =< exp(U ∩ g) >= H0

10.4. Examples. For n ≥ 2, the Lie groups SL(n,R), SL(n,C), SU(n) and SO(n) are connected while
O(n) is not connected. SO(n) = O(n)0 and [O(n) : SO(n)] = 2.


