7. LIE GROUPS AND LIE ALGEBRAS

1. LIE ALGEBRAS

1.1. Definition. Here F' = R or C. A Lie algebra over F is a pair (g,[,]), where g is a vector space
over F' and

[]:axg—g
is an F-bilinear map satisfying the following properties
(X, Y] = -[Y, X]
(X, Y, Z]]+ [Z,[ X, Y]]+ [Y,[Z,X]] =0

The latter is the Jacobi identity.
1.1.1. Note. [z,2] =0, Vz € g.

1.2. Example. If V is a vector space over F, glp(V) = (L(V), [, ]op) is a Lie algebra over F', where the
(operator) Lie bracket is given by

[A,Bl,, = AB — BA
If V = F™ then we will use the notation gi,(F) or gl(n, F).

1.3. Homomorphism of Lie algebras. An F-linear map ¢ : g1 — go of Lie algebras over F' is called
a homomorphism of Lie algebras if it preserves the bracket in the following manner

[¢(x), o(m)] = ¢([z,9]), Va,y € m
Note that the bracket on the left-hand side is taken in go, while on the right-hand side is taken in g.
1.4. Abelian Lie algebras. In general, the Lie algebra structure on a given vector space is not unique.
For example, we can endow any vector space V (over F) with the trivial Lie algebra structure given by
[‘ray]abzov vx7yev

From now on, we will use the words abelian Lie algebra or commutative Lie algebra to refer to a Lie
algebra with a trivial Lie bracket.

1.4.1. Note. From now on we will refer to the Lie algebra as g instead of (g, [+, ]), without specifying the
bracket (assuming it is understood).

1.5. One-dimensional Lie algebras. Since [z,z] = 0, it means that a Lie algebra of dimension one
is necessarily abelian. Thus to obtain non-trivial examples of Lie algebra one has to look in dimension
greater or equal to two.

1.6. Adjoint action. Assume g is a Lie algebra over F' and gl(g) is the Lie algebra of linear operators
on g. Consider the following map

ad: g — gl(g), ad(x)y=][z,y], Vx,y€g

We call the map ad(z) : g — g the adjoint action of the element x on g. It is straightforward to check
that ad is a homomorphism of Lie algebra:

ad(z)([y, 2]) = [ad(2)y, ad(x)z]

In fact, this is equivalent to the Jacobi identity.
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2. THE ADJOINT REPRESENTATION
2.1. Definition. In this section G = GL(n,C) and g = gl(n,C). For g € G, we define the map
Ad(g):g—9, Ad(g)(X)=¢gXg ™', VXeg
This gives a representation of G on g, in that
Ad(g) Ad(h) = Ad(gh)

In other words, the map
Ad: G — GL(g)
is a group homomorphism. We call this representation the adjoint representation.
2.1.1. Note. dimc g = n?, so a matrix representation of Ad(g) would require n? x n? matrix. Already for
n = 3 this is a matrix with 81 entries. It might be easier at this point to appreciate the point of view
that a representation assigns to a group element a linear operator rather than a matrix.
2.2. Conjugation. geXg~—! = 240X for g G and X € g.
This follows from the identity ¢X"g~! = (gXg~')".

2.3. Theorem. The following diagram is commutative

g —2— gl(g)

lexp lexp
G -2, GL(g)
That is, we have an identity of linear operators

Ad(expX) =X :g g, VXeg

2.3.1. Proof. Ad(exptX) is a (continuous) one-parameter subgroup of GL(g) (check). Therefore there
exists A € gl(g) such that Ad(exptX) = exp(tA). The generator of this one-parameter group is given by

A= a Ad(exptX)|i=o

dt
This means that for Y € g, A(Y) is given by
d d

AY) = o Ad(exp(tX))Y |i—g = 7 eXYe X o= XY - YX = [X,Y] =ad(X)Y

by Leibniz rule.
2.3.2. Equivalent formulation. In other words, for X, Y € g, we have
oo
_ a 1 n
XY e X = X(y) = Zﬁad(X) (Y)

n=0

1 1 1
=Y+ XY+ S X XY+ g[K XX Y+

3. LIE SUBGROUPS OF GL(n,C)

3.1. Definition. A Lie subgroup of GL(n,C) is a closed subgroup of GL(n,C). From now on, a Lie group
will be either a Lie subgroup of GL(n,C), or a group isomorphic to it. Note that a closed subgroup of a
Lie group is automatically a Lie group.

3.2. Topology. Since we can think of GL(n,C) as an open subset of C"Q, its topology is the one inherited

from C"°. In other words, the sequence {g;} with g € GL(n,C) converges to g € GL(n,C) if and only
if (gk)ij — gij, for all 1 <4, j < n, where g(ij) is the ij-entry of the matrix g.

A subgroup H C GL(n,C) is closed it it has the following property:
if g, > g € GL(n,C) and g, € H, then g € H as well

3.3. Examples. R is a closed subgroup of GL(1,C), hence a Lie group.
The group isomorphism exp : (R, +) — (Rxo, -) identifies R with Rso. This makes R itself a Lie group.
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4. THE LIE ALGEBRA OF A LIE SUBGROUP
4.1. Definition. If G C GL(n,C) is a closed subgroup, we define its Lie algebra to be the set
g:= Lie(G) ={X € gl(n,C) : exp(tX) € G,Vt € R}

4.2. Theorem A. g is a Lie subalgebra of gl(n,C) over R, meaning:
e tXecg VteR
e X+Yeg
e [X,Y]€g

whenever X,Y € g.

4.2.1. Proof. The first relation follows from the definition.

For the second part, we need the following

4.2.2. Lemma. For X,Y € gl(n,C),
lim (exp(X/n)exp(Y/n))" =exp(X +Y)

n—-+o0o

To prove the lemma, note that the left-hand side is
(exp M(X/n,Y/n))" = exp(nM(X/n,Y/n)) = exp(n(X/n+Y/n+ O(1/n?)) = exp(X + Y + O(1/n))
To see how to use this formula to prove the second part of the Theorem, note that for XY € g,
exp(t(X +Y) = lirrln (exp(tX/n) exp(tY/n))n

The terms of the sequence of right-hand side belong to G. But G is closed, so the limit belongs to G as
well, that is exp(t(X +Y)) € G. Since this is true for all ¢ € R, it means that X +Y € g.

For the last part of the Theorem, we use [homework]

lim (exp(X/n) exp(Y/n) exp(~X/n) exp(~Y/n))" = exp([X, Y])

4.3. The Adjoint Representation. If g € G and X € g, then Ad(g)X € G. To see this,
exp(tAd(g)X) = gexp(tX)g ' € G, VteR

Hence Ad(g)X € g. We thus obtain the adjoint representation Ad : G — g¢l(g) and a commutative
diagram as in the case of GL(n,C).

4.4. Note. Let g the Lie algebra of a Lie group G. Then the bracket operation does not depend on
the particular embedding G C GL(n,C). On the other hand, the matrix product XY does. This is the
reason why it is necessary to think of [,] as the natural operation on g.

5. CARTAN’S THEOREM

5.1. Theorem B. If G C GL(n,C) is a closed subgroup, then there exists neighborhoods 0 € U C
gl(n,C) and e € V € GL(n,C) such that

exp:U~V, exp(UNg)=VnNG
5.1.1. Note. This shows that closed Lie subgroups of GL(n,C) are smooth sumbmanifolds of GL(n,C).

6. DISCRETE SUBGROUPS

6.1. Definition. A subgroup I' C G is discrete if for any v € I' there exists an open neighborhood
v € V C G such that VNT = {v4}. A discrete subgroup is automatically closed, hence it is a Lie
subgroup. Its Lie algebra is trivial, Lie(I") = {0}.

6.2. Examples. Z C R and SL(2,Z) C SL(2,R).

7. EXAMPLE: SL(2,R)
This is clearly a closed subgroup of GL(2,R), hence a Lie subgroup.

7.1. Lie algebra. Let si(2,R) := Lie(SL(2,R)). By definition, X € sl(2,R) iff det exp(tX) = 1, for all
t € R. Since det exp(tX) = et *2*(X) " we have

sl(2,R) = {X : trace X = 0}
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7.2. Generators. The matrices

#=[o L) Ee=[y o] &=[V ]

form a basis for sl(2,R) as a vector space over R. They satisfy the relations
[H>E+] :2E+7 [H7E*] =-2E_, [E+7E*] =H
We say that {H, E,, E_} form an sl(2)-triple.

7.2.1. Note. H - E; ¢ sl(2,R) (matrix multiplication) but [H, E1] € sl(2,R).

7.3. sl(2) triples. To show that another (real) Lie algebra b is isomorphic to si(2,R) it is enough to find
a linear basis z,y4,y— of h such that

[z, y+] = F2y+, [y4,y-] ==
7.4. Exponential map. exp : sl(2,R) — SL(2,R) is not surjective, although SL(2,R) is connected.
To see this, take g = [ _01 _11 ] Then g ¢ exp(sl(2,R)). For assume that was the case, g = exp X,

trace X = 0. We know that X is not diagonalizable (since g is not) which means that X has a double
eigenvalue. Since trace X = 0, the double eigenvalue = 0. But this implies that g = e¥ has eigenvalue 1,
contradiction.

7.5. Inverse in SL(2). Useful formula: for g = [ i Z } € SL(2,R), g~! = [ d —b ]

—c a
8. ExaMPLE: O(2),50(2)
8.1. Definition. O(2) = {g € SL(2,R) : g'g =1}, SO(2) ={g € O(2) : detg = 1}.

8.2. Lie algebra. o(2) := Lie(O(2)) = {X € gl(2,R) : exp(tX) exp(tX") = I1,Vt € R). By differentiat-
ing this identity at t =0

d
X'+ X = — exp(tX") exp(tX)|i=o =0

dt
Hence 0(2) = {X € gl(2,R) : X' = —X}. Note that an antisymmetric matrix has zero on the diagonal,
and hence zero trace. This means that so(2) = o(2). Note that o(2) = so(2) = {{ —Ot 8 },t € R} is
0 1
generated by H = [ 10 } Then
_ _ cost sint oal
SO(2) = exp(tH) = {[ oo ],teR} ~S

and [0(2) : SO(2)] = 2. Then O(2) is the disjoint union O(2) = S0(2) U g5O(2), with g = | (1) 0 |

9. EXxaMPLE: SU(2)
9.1. Definition. SU(2) = {g € GL(2,C) : detg = 1, g'g = I5}. Note that

=05 ]

Hence SU(2) = {g = [ _al—) g } : la|? + |b]? = 1}. Topologically SU(2) ~ S3.

s}

Il

s}
—
QL

9.2. Lie algebra. su(2) :={X € ¢l(2,C) X +X = 0} = {{ i% —ia } :a €R,BeCl.

10. CONNECTED COMPONENT

10.1. Definition. G := connected component of e € G. In other words, GO is the set of points g with
the property that there exists an compact interval [a,b] C R and continuous map ¢ : [a,b] — G such that
c(a) = e and ¢(b) = g. We say that c(t) is a path joining e and g.
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10.2. Theorem.
a) G is both open and closed in G.
b) Then G° <1 G is a normal subgroup of G.

c) Let e € V C G° an open, symmetric, connected subset of G°. Then G° =< V >, i.e. the set V
generates the group G°.

d) Lie(G°) = Lie(G).

10.2.1. Proof. a) Assume z,y € G°. Take ¢; a path in G joining e and x; ¢3 a path joining e and y. Then
the concatenation of the translated paths c;(t) ™!z and 2~ 'ey(t) is a path joining e and 2~ 'y. Therefore
x~ 1y € GY, which shows that G° is a subgroup of G. Being the connected component of e, G is at once
open and closed relative to G (this is a general fact).

b) Assume g € G and x € GO. If ¢(t) is a path joining e and x, then g - c(t) - g~
joining e and gxrg~!, hence grg~! € G°.

c¢) The statement of part c) is

GO =1, V™, where V":={g=ay - 2p:21,...,2, €V}

But this is true since the right-hand side is an open subgroup of G° and hence also closed relative to G°.
d) GY being a closed subgroup of G, it is a Lie subgroup. Hence it makes sense to talk about its Lie
algebra. The identity of the two Lie algebras is immediate once we notice that a continuous path (such
as a one-parameter subgroup) passing through e stays in G°.

lis a (continuous) path

10.2.2. Note. Assume G is a Lie group and H C G is an open subgroup. Then H is also closed . To see
this, write G as a disjoint union of left H-cosets: G = U;erg;H, where say go = e. Then G—H = U;»09; H
is a union of open sets, hence open. But this means that H itself is closed.

10.3. Theorem C. Assume G and H are two Lie subgroups of GL(n,C) with the same Lie algebra.
Then G° = HO.

10.3.1. Proof. Assume g = b, where G, H C GL(n,C) are closed subgroups. Let U a small neighborhood
of 0 € gl(n,C) such that exp : U ~ V, with V a neighborhood of I € GL(n,C). By Theorem B,
exp(U N g) is an open connected neighborhood of both e € G and e € H. Two groups generated by the
same elements are identical:

G' =< exp(Ung) >= H

10.4. Examples. For n > 2, the Lie groups SL(n,R), SL(n,C), SU(n) and SO(n) are connected while
O(n) is not connected. SO(n) = O(n)? and [O(n) : SO(n)] = 2.



