MA119-A Applied Calculus for Business

2006 Fall

Practice Test of Midterm 2

(Only 10 Problems will be graded. You can choose any 10 Problems.)

1. Find an equation of the tangent line to the graph of the function

 \[f(x) = \frac{8}{\sqrt{x^2 + 6x}} \]

 at the given point (2, 2).

2. Acceleration of a Car

 The distance \(s \) (in feet) covered by a car after \(t \) sec given by

 \[s(t) = 2xe^{3x} \quad (t \geq 0). \]

 Find a general expression for the car’s acceleration at any time \(t \) \((t \geq 0)\). Show that the car is always accelerating.

3. Find the derivative \(\frac{dy}{dx} \) of

 \[(x + y^2)^{10} = x^2 + 25 \]

 by implicit differentiation.

4. Find the interval(s) where the function

 \[f(x) = \frac{x^2}{x - 1} \]

 is increasing and the interval(s) where it is decreasing.
5. Find the relative maxima and relative minima, if any, of the function

\[g(x) = \frac{x}{x^2 - 1}. \]

6. Find the inflection point(s), if any, of the function

\[f(x) = x^4 - 2x^3 + 6. \]

7. Find the relative extrema, if any, of the function

\[f(x) = \frac{2x}{x^2 + 1}. \]

Use the second derivative test, if applicable.

8. Find the absolute maximum value and the absolute minimum value, if any, of the function

\[g(x) = 3x^4 + 4x^3 \]

on \([-2, 1]\).

9. Solve the equation

\[8^x = \left(\frac{1}{32} \right)^{x-2} \]

for \(x\).

10. Use logarithms to solve the equation \(\frac{50}{1 + 4e^{0.2t}} = 20 \) for \(t\).

11. Find the interest rate needed for an investment of $5000 to grow to an amount of $8000 in 4 yr if interest is compounded semiannually.

12. Find the derivative \(\frac{dy}{dx} \) of the function

\[y = \frac{(2x^2 - 1)^5}{\sqrt{x + 1}}. \]