Consider a linear transformation T from $\mathbb{R}^n \rightarrow \mathbb{R}^p$ and some linearly independent vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ in \mathbb{R}^n. Are the vectors $T(\vec{v}_1), T(\vec{v}_2), \ldots, T(\vec{v}_m)$ necessarily linearly independent?

A counterexample suffices: suppose $T(\vec{x}) = \vec{0}$ for all \vec{x}. Then $T(\vec{v}_1) = T(\vec{v}_2) = \ldots = T(\vec{v}_m) = \vec{0}$ and so they are not linearly independent.

Another way to think about it:

Since $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ are linearly independent, the only solution to $c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_m \vec{v}_m = \vec{0}$ is $c_1 = c_2 = \ldots = c_m = 0$.

By the linearity of T, we can also write

$$k_1 T(\vec{v}_1) + k_2 T(\vec{v}_2) + \ldots + k_m T(\vec{v}_m) = \vec{0}$$

$$T(k_1 \vec{v}_1 + k_2 \vec{v}_2 + \ldots + k_m \vec{v}_m) = \vec{0}$$

In the case where $c_1 = k_1, c_2 = k_2, \ldots, c_m = k_m$, this is the same as $T(\vec{0}) = \vec{0}$, and so

$T(\vec{v}_1), T(\vec{v}_2), \ldots, T(\vec{v}_m)$ are linearly independent.

If this is not the case, then we cannot draw a similar conclusion, and so $T(\vec{v}_1), T(\vec{v}_2), \ldots, T(\vec{v}_m)$ are not necessarily linearly independent.
#28 For which values of the constant k do the vectors below form a basis of \mathbb{R}^4?

\[
\begin{bmatrix}
1 \\
0 \\
2 \\
2
\end{bmatrix}, \begin{bmatrix}
0 \\
0 \\
3 \\
3
\end{bmatrix}, \begin{bmatrix}
0 \\
0 \\
0 \\
4
\end{bmatrix}, \begin{bmatrix}
2 \\
3 \\
4 \\
k
\end{bmatrix}
\]

Vectors form a basis if they span the entire space and they are linearly independent. There are several ways to check:

- if the matrix \[
\begin{bmatrix}
1 & 0 & 0 & 27 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 4 \\
2 & 3 & 4 & k
\end{bmatrix}
\]
is invertible.

RREF: \[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & k-29
\end{bmatrix}
\implies \text{this is invertible if } k \neq 29
\]

- by inspection:

\[
2 \begin{bmatrix}
1 \\
0 \\
2 \\
2
\end{bmatrix} + 3 \begin{bmatrix}
0 \\
0 \\
0 \\
3
\end{bmatrix} + 4 \begin{bmatrix}
0 \\
0 \\
0 \\
4
\end{bmatrix} = \begin{bmatrix}
2 \\
3 \\
2 \\
2
\end{bmatrix} \implies \begin{bmatrix}
2 \\
3 \\
4 \\
k
\end{bmatrix} \text{ is not linearly independent.}
\]

\[
\begin{bmatrix}
2 \\
3 \\
4 \\
29
\end{bmatrix} = \begin{bmatrix}
2 \\
3 \\
4 \\
k
\end{bmatrix} \implies \text{linearly independent if } k \neq 29
\]
#33 A subspace \(V \) of \(\mathbb{R}^n \) is called a hyperplane if \(V \) is defined by a homogeneous linear equation \(c_1x_1 + c_2x_2 + \ldots + c_nx_n = 0 \) where at least one of the coefficients \(c_i \neq 0 \). What is the dimension of a hyperplane in \(\mathbb{R}^n \) in \(\mathbb{R}^3 \) in \(\mathbb{R}^2 \)?

Since at least one \(c_i \neq 0 \), the \(x_1, x_2, \ldots, x_n \) are not linearly independent. Therefore we can remove one \(x_i \) to get a basis of the hyperplane. So, our basis has \(n-1 \) elements, and the dimension of a hyperplane in \(\mathbb{R}^n \) is \(n-1 \). In \(\mathbb{R}^3 \), this is \(3-1 = 2 \Rightarrow \) a plane. In \(\mathbb{R}^2 \), this is \(2-1 = 1 \Rightarrow \) a line.

3.4

#38. Find a basis \(B \) such that the \(B \) matrix of the following transformation is diagonal:

- reflection about the line in \(\mathbb{R}^2 \) spanned by \(\left[\begin{array}{c} 2 \\ 3 \end{array} \right] \)

Recall that the reflection of a vector \(\vec{x} = \vec{x}^\perp + \vec{x}^\parallel \) is \(\text{Ref}_L(\vec{x}) = \vec{x}^\parallel - \vec{x}^\perp \) where \(\vec{x}^\parallel \) is the component parallel to the line and \(\vec{x}^\perp \) is the component perpendicular to the line. So to get a diagonal matrix (here, \(B = \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right] \)) we can pick our basis to be a parallel and perpendicular vector to the line: \(\vec{v}_1 = \left[\begin{array}{c} 2 \\ 3 \end{array} \right] \) \(\begin{bmatrix} \frac{2}{3} \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} = 0 \Rightarrow 2a + 3b = 0 \), pick \(\begin{bmatrix} a \\ b \end{bmatrix} = \left[\begin{array}{c} -3 \\ 2 \end{array} \right] \)

\(\vec{v}_2 = \left[\begin{array}{c} -3 \\ 2 \end{array} \right] \)

\(B = \left\{ \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \begin{bmatrix} -3 \\ 2 \end{bmatrix} \right\} \)
Consider a 3×3 matrix A and a vector \vec{v} in \mathbb{R}^3 such that $A^3 \vec{v} = \vec{0}$ but $A^2 \vec{v} \neq \vec{0}$.

(a) Show that the vectors $A^2 \vec{v}, A \vec{v}, \vec{v}$ form a basis of \mathbb{R}^3.

It suffices to show linear independence, i.e., the only solution to $c_1 A^2 \vec{v} + c_2 A \vec{v} + c_3 \vec{v} = \vec{0}$ is $c_1 = c_2 = c_3 = 0$.

\[A^2 (c_1 A^2 \vec{v} + c_2 A \vec{v} + c_3 \vec{v} = \vec{0}) \]
\[c_1 \underbrace{A^2 \vec{v}}_{\vec{0}} + c_2 \underbrace{A \vec{v}}_{\vec{0}} + c_3 \underbrace{\vec{v}}_{\vec{0}} = \vec{0} \]
\[c_3 A^2 \vec{v} = \vec{0}, \ A^2 \vec{v} \neq \vec{0} \Rightarrow c_3 = 0. \]

\[A (c_1 A^2 \vec{v} + c_2 A \vec{v} = \vec{0}) \]
\[c_1 A^2 \vec{v} + c_2 A \vec{v} = \vec{0} \]
\[c_2 A^2 \vec{v} = \vec{0}, \ A^2 \vec{v} \neq \vec{0} \Rightarrow c_2 = 0 \]

\[c_1 A^2 \vec{v} = \vec{0}, \ A^2 \vec{v} \neq \vec{0} \Rightarrow c_1 = 0 \]

Therefore these three vectors form a basis of \mathbb{R}^3.

(b) Find the matrix of the transformation $T(\vec{x}) = A \vec{x}$ w.r.t. the basis $A^2 \vec{v}, A \vec{v}, \vec{v}$.

We use the following construction of B-matrices:

\[B = \begin{bmatrix} [T(A^2 \vec{v})]_B & [T(A \vec{v})]_B & [T(\vec{v})]_B \end{bmatrix} \]

\[= \begin{bmatrix} [A^2 \vec{v}]_B & [A \vec{v}]_B & [\vec{v}]_B \end{bmatrix} \]

\[= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \]