1. The geometry of Euclidean space

1.1. Vectors in 2 or 3 dim space.

Definition 1.1 (Vector). Geometry: consists of a direction and a length. Represented by a line segment with a definite direction.

Algebra: represent vector in terms of its component along coordinate axis in \(\mathbb{R}^n \).

Example 1.1. Length of \(|A| \). \(|(1,2,3)| = \sqrt{14} \). If \(A = (a_1, a_2, a_3) \), then

\[
|A| = \sqrt{a_1^2 + a_2^2 + a_3^2}.
\]

Addition of vectors, \(A + B \). One can define it by geometry and algebra.

\(A + B = (a_1 + b_1, a_2 + b_2, a_3 + b_3) \). We can define \(\lambda A \) for \(\lambda \in \mathbb{R} \). What’s \(A - B \) ?

1.2. Inner product.

Theorem 1.2.

\[
A \cdot B := \sum a_i b_i = |A||B| \cos \theta,
\]

where \(\cdot \) is the inner product and \(\theta \) is the angle between the vectors \(A \) and \(B \).

In textbook, vector also denote by \(a \), and the inner product is denoted by \((a, b) \).

Special case of Theorem 1.2

\[
A \cdot A = |A|^2
\]

Proof. We have,

\[
|c|^2 = c \cdot c = (a - b) \cdot (a - b) = a \cdot a + b \cdot b - 2a \cdot b = |a|^2 + |b|^2 - 2a \cdot b.
\]

By Law of cosines:

\[
|c|^2 = |a|^2 + |b|^2 - 2|a||b| \cos \theta.
\]

Thus,

\[
a \cdot b = |a||b| \cos \theta.
\]

Application of Theorem 1.2

(1) compute length and angels,
(2) detect orthogonality, and
(3) the length of a along u.

1.3. Matrices, Discriminant and the cross product. Area and volume.

How to compute the area of a polygon?

Idea: divide it into a sum of triangles. Reduce the problem to compute
the area of an triangle.

Let a, b be the vectors, then the area of triangle determined by the two
vectors is

$$\det \begin{pmatrix} a_1 & a_2 \\ b_1 & b_2 \end{pmatrix} = |a_1b_2 - a_2b_1|.$$

Determinant in Space.

The volume of parallelepiped determined by $a = (a_1, a_2, a_3), b = (b_1, b_2, b_3)$
and $c = (c_1, c_2, c_3)$ is

$$\text{vol} = |a \cdot (b \times c)| = |\det \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}|.$$

Here

$$b \times c = \begin{pmatrix} i & j & k \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix}.$$

\times is the cross product, and we have the following properties:

(1) $|b \times c|$ is the area of parallelogram which is determined by vectors b
and c, e.g. $b \times b = 0$, and

(2) the direction of $b \times c$ satisfying the right-hand rule: right hand points
b, fingers points c, and the thumb points $b \times c$. e.g. $j \times i = -k$.

Attention: $a \times b \neq b \times a$ if $a \neq b$. Actually, $a \times b = -b \times a$.

Distance: point to plane

Equation of a plane in the space:

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0,$$

where $n = Ai + Bj + Ck$ is the normal vector, $i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1)$.

Distance from a point (x_1, y_1, z_1) to the plane $A(x - x_0) + B(y - y_0) +
C(z - z_0) = 0$ is

$$\frac{|A(x_1 - x_0) + B(y_1 - y_0) + C(z_1 - z_0)|}{\sqrt{A^2 + B^2 + C^2}}.$$

Example 1.2. The distance from $(2, 0, -1)$ to $3x - 2y + 8z + 1$ is $\frac{1}{\sqrt{11}}$.

1.4. Cylindrical and Spherical Coordinates. $(x, y) \rightarrow (r \cos \theta, r \sin \theta)$,
$r \geq 0, 0 \leq \theta < 2\pi$.

Cylindrical Coordinates: $(x, y, z) \rightarrow (r \cos \theta, r \sin \theta, z), r \geq 0, 0 \leq \theta < 2\pi$.

Let $(x, y, z) \rightarrow (\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi), \rho \geq 0, 0 \leq \theta < 2\pi, 0 \leq \phi \leq \pi$.

1.5. **n-dim Vectors.** $\mathbf{x} = (x_1, \ldots, x_n), \mathbf{y} = (y_1, \ldots, y_n) \in \mathbb{R}^n$. The length (or norm) of a vector \mathbf{x}:

$$||\mathbf{x}|| = \sqrt{x_1^2 + \cdots + x_n^2},$$

Cauchy inequality:

$$||\mathbf{x}|| ||\mathbf{y}|| \geq \mathbf{x} \cdot \mathbf{y},$$

where $||\mathbf{x}|| = \sqrt{\mathbf{x} \cdot \mathbf{x}}$.

Several methods:

1. Theorem of Inner product, $\mathbf{x} \cdot \mathbf{y} = ||\mathbf{x}|| ||\mathbf{y}|| \cos \theta \leq ||\mathbf{x}|| ||\mathbf{y}||$.

2. $$\sum_{i=1}^{n} x_i^2 \sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} x_i y_i)^2 = \sum_{1 \leq i < j \leq n} (x_i y_j - x_j y_i)^2,$$

and

3. $$(\mathbf{x} - \lambda \mathbf{y}) \cdot (\mathbf{x} - \lambda \mathbf{y}) \geq 0.$$

Application: the triangle inequality,

$$||\mathbf{x} + \mathbf{y}|| \leq ||\mathbf{x}|| + ||\mathbf{y}||.$$

2. **Differentiation**

2.1. **the Geometry of Real-Valued Functions.** Function $f : \text{domain } U \subseteq \mathbb{R}^n, \text{range } \subseteq \mathbb{R}^m$. f is vector valued if $m \geq 1$, is scalar valued if $m = 1$.

Definition 2.1. Let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}$, graph of f is defined by

$$\text{graph}(f) := \{(x_1, \ldots, x_n, f(x_1, \ldots, x_n))|(x_1, \ldots, x_n) \in U\}.$$

2.2. **Limits and Continuity.** $\mathbf{x}_0 \in \mathbb{R}^n$, open disk of radius r is defined by

$$\mathcal{B}_r(\mathbf{x}_0) := ||\mathbf{x} - \mathbf{x}_0|| < r.$$

Definition 2.2. We say $U \subseteq \mathbb{R}^n$ is an open set in \mathbb{R}^n, if for any point $\mathbf{x}_0 \in U$, there exists $r > 0$, such that $\mathcal{B}_r(\mathbf{x}_0) \subseteq U$.

A neighborhood of $\mathbf{x} \in \mathbb{R}^n$ is an open set U containing \mathbf{x}.

Definition 2.3. We say $V \subseteq \mathbb{R}^n$ is a closed set in \mathbb{R}^n, if $V^c := \mathbb{R}^n \setminus V$ is open.

Example 2.4. $(0, 1) \subset \mathbb{R}^1$ is open, $[0, 1] \subset \mathbb{R}^1$ is closed, $(0, 1] \subset \mathbb{R}^1$ neither open nor closed. $(0, 1) \subset \mathbb{R}^2$ is Not open.

Definition 2.5 (Limits). Let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}^m$, we say $\mathbf{y} \in \mathbb{R}^m$ is a limit of $f(\mathbf{x})$ at \mathbf{x}_0 if for any $\epsilon > 0$, there exists a positive real number $\delta > 0$ which depends on ϵ, such that for any $0 < ||\mathbf{x} - \mathbf{x}_0|| < \delta$, we have

$$||f(\mathbf{x}) - \mathbf{y}|| < \epsilon.$$

We denote it by

$$\lim_{\mathbf{x} \to \mathbf{x}_0} f(\mathbf{x}) = \mathbf{y}.$$
Remark 2.6. Caution. $0 < ||x-x_0|| < \delta$. It is possible that $\lim_{x \to x_0} f(x) \neq f(x_0)$. e.g., $f(x) = 1, x \neq 0, f(x) = 0, x = 0$.

Properties of limits.
(1) Uniqueness. $\lim_{x \to x_0} f(x) = y_1$, $\lim_{x \to x_0} f(x) = y_2$ implies $y_1 = y_2$.
(2) Scalar multi. $\alpha \in \mathbb{R}$. $\lim_{x \to x_0} \alpha f(x) = \alpha \lim_{x \to x_0} f(x)$.
(3) Addition. $\lim_{x \to x_0} (f(x) + g(x)) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$.
(4) Multiplication. $(m = 1)$ $\lim_{x \to x_0} f(x)g(x) = \lim_{x \to x_0} f(x) \lim_{x \to x_0} g(x)$.
(5) Division. $(m = 1)$ $\lim_{x \to x_0} \frac{f(x)}{x} = \frac{1}{\lim_{x \to x_0} f(x)}$.

Example 2.7. $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) := x^2 + y^2 + 2$.

$$\lim_{(x,y) \to (0,1)} f(x,y) = 3.$$

Example 2.8.

$$\lim_{(x,y) \to (0,1)} e^{xy} = 1.$$

Example 2.9. $\lim_{(x,y) \to (0,0)} \frac{2xy}{x^2 + y^2}$ does not exist.

Definition 2.10. Let $f : U \subseteq \mathbb{R}^n \to \mathbb{R}^m$. We say that f is continuous at x_0 if and only if

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Example 2.11. $f(x) = 1, x \neq 0, f(x) = 0, x = 0$ is not continuous at 0.

Example 2.12. Any polynomial is continuous.

Theorem 2.1. $f : U \subseteq \mathbb{R}^n \to \mathbb{R}^m$, $x \to (f_1(x), f_2(x), \ldots, f_n(x))$ is continuous if and only if $f_i(x)$ is continuous for any i.

Example 2.13. $f : \mathbb{R}^2 \to \mathbb{R}^2, f(x,y) = (x^2y, \frac{y+xy^3}{1+x^2})$ is continuous.

Theorem 2.2. Let $g : V \subseteq \mathbb{R}^n \to \mathbb{R}^m$, $f : U \subseteq \mathbb{R}^m \to \mathbb{R}^l$. Suppose $g(V) \subseteq U$, if g is continuous at $x_0 \in V$, and if f is continuous at $y_0 = g(x_0)$, then $f(g(x))$ is continuous at x_0.

Intuitively, as x gets close to x_0, $g(x)$ gets close to $g(x_0)$, and as $g(x)$ gets close to $g(x_0)$, $f(g(x))$ get close to $f(g(x_0))$.

Example 2.14. $f(x,y,z) = (x^2 + y^2 + z^2)^{30} + \sin z^3$.
2.3. Differentiation.

Definition 2.15 (Partial derivatives). Let $U \subseteq \mathbb{R}^n$ be an open set and suppose that $f : U \subset \mathbb{R}^n \rightarrow \mathbb{R}$ is a real-valued function. Then the partial derivatives of f with respect to the first, second, ..., nth variable, are the real valued functions of n variables, which, at the point $x_0 = (x_1^0, \ldots, x_n^0)$ are defined by

$$\frac{\partial f}{\partial x_j}(x_1^0, \ldots, x_n^0) = \lim_{h \to 0} \frac{f(x_0 + h e_j) - f(x_0)}{h}.$$

In other words, $\frac{\partial f}{\partial x_j}$ is the derivative of f with respect to the variable x_j, with the other variables held fixed.

Example 2.16. $f(x, y) = \sin x + y^2$. $\frac{\partial f}{\partial x} = \cos x$, $\frac{\partial f}{\partial y} = 2y$.

It is possible that some partial derivative may exist others not.

Example 2.17. $g(x, y) = |x| - y$. $\frac{\partial g}{\partial x}$ does not exist when $x = 0$. $\frac{\partial g}{\partial y} = -1$.

The next example shows that the existence of partial derivatives does not imply that f is continuous.

Example 2.18. Let $f(x, y) = \frac{2xy}{x^2 + y^2}$, $(x, y) \neq (0, 0)$; $f(0, 0) = 0$. Then $\lim_{(x,y)\to(0,0)} \frac{2xy}{x^2 + y^2}$ does not exist, and $\frac{\partial f}{\partial x}(0, 0) = 0 = \frac{\partial f}{\partial y}(0, 0)$.

Example 2.19. $f(x, y) = \frac{(y^2 - x^2)^2}{y^4 + x^2}$.

For one variable function $f(x)$, f is differentiable at a point x_0, then

$$\lim_{x \to x_0} \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{x - x_0} = 0.$$

The tangent line l through $(x_0, f(x_0))$ with slope $f'(x_0)$ is close to f near $(x_0, f(x_0))$ even when divided by $x - x_0$.

Definition 2.20 (Differentiable: Two variables). Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$. We say f is differentiable at (x_0, y_0), if $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exist at (x_0, y_0) and if

$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x, y) - f(x_0, y_0) - \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) - \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)}{||(x,y) - (x_0,y_0)||} = 0.$$

Definition 2.21 (Tangent plane). $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be differentiable at (x_0, y_0), the tangent plane is defined by

$$z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0).$$

Definition 2.22 (Differentiable). Let $f : U \subseteq \mathbb{R}^n \rightarrow \mathbb{R}^m$. We say f is differentiable at $x_0 \in U$, if partial derivatives of f exist at x_0 and if

$$\lim_{x \to x_0} \frac{||f(x) - f(x_0) - Df(x_0)(x - x_0)||}{||x - x_0||} = 0.$$
Where $Df(x_0)$ is the $m \times n$ matrix with elements $\frac{\partial f_i}{\partial x_j}$ evaluated at x_0. Df is called the Jacobian matrix of f. When $m = 1$, $Df(x) = (\frac{\partial f_1}{\partial x_1}, \ldots, \frac{\partial f_n}{\partial x_n})$ is called the gradient of f, and denoted by ∇f or $\text{grad} f$.

Remark 2.23. f is differentiable at $x_0 \in U$ if and only if f_i is differentiable at $x_0 \in U$ for any i.

Theorem 2.24. Let $f : U \subset \mathbb{R}^n \rightarrow \mathbb{R}^m$.

1. Suppose the partial derivatives $\frac{\partial f_i}{\partial x_j}$ all exist and are continuous in a neighborhood of a point $x_0 \in U$ (C^1 function). Then f is differentiable at x_0.
2. If f is differentiable at x_0, then f is continuous at x_0.

Example 2.25.

- The Jacobian matrix of $f(x, y) = (e^{x+y} + y, y^2 x)$. $f(x, y) = 1, x = 0$ or $y = 0$, $f(x, y) = 0$ otherwise; $f(x, y)$ is not continuous at $(0, 0)$.
- $f : \mathbb{R}^2 \rightarrow \mathbb{R}, f(x, y) = e^{xy} + \sin xy$. $\nabla f(x, y) = (e^{xy} + \cos xy)(yi + xj)$.

2.4. Paths and curves.

Definition 2.26. A path in \mathbb{R}^n is a continuous map $f : [a, b] \rightarrow \mathbb{R}^n$. The image $f([a, b])$ is a curve.

Example 2.27.

- The unit circle $x^2 + y^2 = 1$ is a curve.
- $f(t) = (t, t^2)$, the graph of $f(x) = x^2$.

Definition 2.28 (Velocity Vector). If $f(t)$ is a path and it is differentiable, we say $f(t)$ is a differentiable path. The velocity of f at time t is defined by

$$f'(t) = \lim_{h \rightarrow 0} \frac{f(t + h) - f(t)}{h}.$$

$f'(t)$ is a vector tangent to the path $f(t)$ at time t. The speed of the path $f(t)$ is $||f'(t)||$, the length of the velocity vector. If $f(t) = (x_1(t), \ldots, x_n(t))$, $f'(t) = (x'_1(t), \ldots, x'_n(t)).$

Example 2.29. Compute the tangent vector to the path $f(t) = (t, t^2, e^t)$ at $t = 0, (1, 0, 1)$.

Definition 2.30. If $f(t)$ is a path, and if $f'(t_0) \neq 0$, the equation of its tangent line at the point $f(t_0)$ is

$$I(t) = f(t_0) + (t - t_0)f'(t_0).$$

Example 2.31. Find the tangent line to $f(t) = (t \sin t, 4t)$ at $t = 0, (0, 4t)$

2.5. Chain Rule.

For one variable, $\frac{df(g(t))}{dt} = f'(g(t))g'(t)$. For two variables, $f : \mathbb{R}^2 \rightarrow \mathbb{R}$, $g : \mathbb{R}^2 \rightarrow \mathbb{R}^2$. Suppose $g(x, y) = (u(x, y), v(x, y))$, g is differentiable at (x_0, y_0), f is differentiable at $g(x_0, y_0)$. Let $h := f \circ g(x, y) = f(u(x, y), v(x, y))$, then

$$\left[\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y}\right] = \left[\frac{\partial f}{\partial u}, \frac{\partial f}{\partial v}\right] \left[\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}\right] \left[\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}\right]$$
Example 2.32. \(f(x, y) = xy, \ g(t) = (e^t, \cos t). \ h = f \circ g(t) \).
\[h(t) = f(e^t, \cos t) = e^t \cos t, \]
\[h'(t) = e^t \cos t - e^t \sin t. \]

Example 2.33. \(g(x, y) = (x^2 + 1, y^2), \ f(u, v) = (u + v, u, v^2) \).
\[Df(u, v)Dg(x, y) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 2v \end{bmatrix} \begin{bmatrix} 2x \\ 0 \\ 2y \end{bmatrix} \]

Theorem 2.3 (Chain Rule). Let \(U \subset \mathbb{R}^n \) and \(V \subset \mathbb{R}^m \) be open sets.
\(g : U \subset \mathbb{R}^n \to \mathbb{R}^m, \ f : \subset \mathbb{R}^m \to \mathbb{R}^p \) be given functions such that \(g(U) \subset V \).
Suppose \(g \) is differentiable at \(x_0 \), and \(f \) is differentiable at \(y_0 = g(x_0) \), then
\(f \circ g \) is differentiable at \(x_0 \), and
\[D(f \circ g)(x_0) = Df(y_0)Dg(x_0). \]
The right hand side is the matrix product.

Example 2.34. \(f(x, y, z) = u^2 + v^2 - w, \ u = x^2y, \ v = y^2, \ w = e^{-xz}. \)
\(h(x, y, z) = x^4y^2 + y^4 - e^{-xz}. \)
\(\frac{\partial h}{\partial x} = 2u \cdot 2xy + 2v \cdot 0 + (-1)(-ze^{-xz}) = 4x^3y^2 + ze^{-xz}. \)

2.6. Gradients and Directional Derivatives.

Definition 2.35 (the Gradient). If \(f : U \subseteq \mathbb{R}^3 \to \mathbb{R} \) is differentiable, the
gradient of \(f \) at \((x, y, z)\) is the vector in space given by
\[\nabla f = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}). \]

Definition 2.36 (Directional Derivatives). If \(f : \mathbb{R}^3 \to \mathbb{R} \), the directional
derivative of \(f \) at \(x \) along the vector \(v \) is given by \(\frac{d}{dt}(f(x + tv))|_{t=0} \) if this exists.

Example 2.37. \(f(x, y) = x^2 - y, \ v = (1, 2). \) \(\frac{d}{dt}(f(x + tv))|_{t=0} = 2x - 2. \)
Suppose \(f \) is differentiable, then all directional derivatives exist. By Chain rule, we can show
\[\frac{d}{dt}(f(x + tv))|_{t=0} = D_v f(x) = \nabla f(x) \cdot v. \]

Theorem 2.38 (The gradient is normal to level surfaces). Let \(f : \mathbb{R}^3 \to \mathbb{R} \) be a \(C^1 \) map and let \((x_0, y_0, z_0)\) lie on the level surface \(S \) defined by \(f(x, y, z) = k \), for \(k \) a constant. Then \(\nabla f(x_0, y_0, z_0) \) is normal to the level surface in the following sense: if \(v \) is the tangent vector at \(t = 0 \) of a path \(c(t) \) in \(S \) with \(c(0) = (x_0, y_0, z_0) \), then \(\nabla f(x_0, y_0, z_0) \cdot v = 0 \). The tangent plane of \(S \) at a point \((x_0, y_0, z_0)\) of \(S \) is defined by equation \(\nabla f(x_0, y_0, z_0) \cdot (x - x_0, y - y_0, z - z_0) = 0 \).

Proof. By the chain rule, \(0 = \frac{d}{dt}(f(c(t)))|_{t=0} = \nabla f(c(0)) \cdot v. \)

Example 2.39. The equation of the plane tangent to the surface defined by \(3xy + z^2 = 4 \) at \((1, 1, 1)\) is \(3x + 3y + 2z = 8 \).
3. Higher-order Derivative: Maxima and Minima

3.1. Iterated Partial Derivatives.

Definition 3.1. A function \(f : U \to \mathbb{R} \) is of class \(C^1 \) if \(\nabla(f) = (\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}) \) exists and is continuous at each point of \(U \). If each partial derivative of \(\frac{\partial f}{\partial x_i} \) exists and is continuous at each point of \(U \), then we say \(f \) is of class \(C^2 \).

Definition 3.2. \(\frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial y^2}, \frac{\partial^2 f}{\partial x \partial y} \) are called iterated partial derivatives, \(\frac{\partial^2 f}{\partial y \partial x} \) are called mixed partial derivatives.

Example 3.3. \(f(x, y) = e^{xy} \). \(f(x, y) = \sin x \sin^2 y \).

Theorem 3.4 (Equality of Mixed Partial). If \(f(x, y) \) is of class \(C^2 \), then
\[
\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y}.
\]
Proof.
\[
f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) - f(x_0, y_0 + \Delta y) + f(x_0, y_0)
= \frac{\partial^2 f}{\partial y \partial x}(x', y')\Delta x \Delta y.
\]
\[\Box\]

Example 3.5. \(f(x, y) = xe^y + yx^2 \).

Theorem 3.6 (Equality of Mixed Partial). If \(f(x, y, z) \) is of class \(C^3 \), then
\[
\frac{\partial^3 f}{\partial x \partial y \partial z} = \frac{\partial^3 f}{\partial z \partial y \partial x}.
\]

3.2. Taylor’s Theorem.

\[
f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots + \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k + h_k(x)(x - x_0)^k,
\]
where \(\lim_{x \to x_0} h_k(x) = 0 \).

Example 3.7. \(f(x) = e^{2x} \) at \(x = 0 \), \(f(x) = 1 + 2x + 2x^2 + h_2(x)x^2 \).

Generalize to multi-variable.

Theorem 3.8 (First-order Taylor Formula). Let \(f : U \subset \mathbb{R}^n \to \mathbb{R} \) be differentiable at \(x_0 \in U \). Then
\[
f(x_0 + h) = f(x_0) + \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(x_0) + R_1(x_0, h),
\]
where \(\frac{R_1(x_0, h)}{\|h\|} \to 0 \) as \(h \to 0 \) in \(\mathbb{R}^n \).
Theorem 3.9 (Second-order Taylor Formula). Let \(f : U \subset \mathbb{R}^n \to \mathbb{R} \) is of class \(C^2 \). Then

\[
f(x_0 + h) = f(x_0) + \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(x_0) + \frac{1}{2} \sum_{i,j=1}^{n} h_i h_j \frac{\partial^2 f}{\partial x_i \partial x_j}(x_0) + R_2(x_0, h),
\]

where \(\frac{R_2(x_0, h)}{||h||^2} \to 0 \) as \(h \to 0 \) in \(\mathbb{R}^n \).

Example 3.10. \(f(x, y) = e^{2x+y} \), find second-order expansion at \((0,0)\).
\(f(x, y) = 1 + 2x + y + 4x^2 + 4xy + y^2 + R_2 \).

Example 3.11. \(f(x, y) = \sin xy \) at \((x_0, y_0) = (1, \frac{\pi}{2})\).
\[1 - \frac{x^2}{8} \left(x - 1 \right)^2 - \frac{\pi}{2} \left(x - 1 \right) \left(y - \frac{\pi}{2} \right) - \frac{1}{2} \left(y - \frac{\pi}{2} \right)^2. \]

3.3. Maxima and Minima for functions of \(n \)-variables.

Definition 3.12. If \(f : U \subset \mathbb{R}^n \to \mathbb{R} \) is a given scalar function (\(U \) is an open set), a point \(x_0 \in U \) is called a local minimum of \(f \) if there is a neighborhood \(V \) of \(x_0 \) such that for all \(x \in V \), \(f(x) \geq f(x_0) \). A point \(x_0 \) is a critical point of \(f \) if either \(f \) is not differentiable at \(x_0 \), or it is, \(Df(x_0) = 0 \).

Theorem 3.13. Every extremum is a critical point.

Proof. \(g(t) = f(x_0 + th) \). \(g'(0) = 0 = Df(x_0) \cdot h. \)

Definition 3.14. A critical point that is not a local extremum is called a saddle point.

Example 3.15. \(f(x) = x^3 \) at \(x = 0 \). \(f(x, y) = x^2 - y^2 \) at \((x, y) = (0,0)\).
\(f(x, y) = x^2 + y^2 \) at \((x, y) = (0,0)\).

Definition 3.16. Suppose \(f \) is \(C^2 \). The Hessian of \(f \) at \(x_0 \) is the quadratic function defined by

\[
Hf(x_0)(h) = \frac{1}{2} \sum_{1 \leq i,j \leq n} \frac{\partial^2 f}{\partial x_i \partial x_j}(x_0)h_i h_j.
\]

A quadratic function is called positive-definite if \(g(h) \geq 0 \) for all \(h \in \mathbb{R}^n \) and \(g(h) = 0 \) only for \(h = 0 \).

If \(Df(x_0) = 0 \), then by the Taylor formula,

\[
f(x_0 + h) = f(x_0) + Hf(x_0)(h) + R_2(x_0, h).
\]

Theorem 3.17. If \(f : U \subset \mathbb{R}^n \to \mathbb{R} \) is \(C^2 \), \(x_0 \) is a critical point of \(f \), and the Hessian \(Hf(x_0)(h) \) is positive-definite, then \(x_0 \) is a relative minimum of \(f \). (Maximum is similar)

Proof. \(Hf(x_0)(h) \geq M||h||^2 \) for some \(M > 0 \).
\[0 < Hf(x_0)(h) + R_2(x_0, h) = f(x_0 + h) - f(x_0) \]

In particular, we have the following.
Theorem 3.18. $f(x,y)$ is C^2 on an open set $U \subset \mathbb{R}^2$. Suppose that
\[
\frac{\partial f}{\partial x}(x_0, y_0) = 0 = \frac{\partial f}{\partial y}(x_0, y_0). \quad \frac{\partial^2 f}{\partial x^2}(x_0, y_0) > 0. \quad \text{Then } (x_0, y_0) \text{ is a local minimum of } f, \text{ if } D = \frac{\partial^2 f}{\partial x^2}(x_0, y_0) \frac{\partial^2 f}{\partial y^2}(x_0, y_0) - \left(\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) \right)^2 > 0. \quad \text{If } D < 0, \text{ then } (x_0, y_0) \text{ is a saddle point.}
\]

Example 3.19. $f(x, y) = x^2 + y^2$. $f(x, y) = x^5 y + xy^5 + xy$, saddle point.
$f(x, y) = xy + \frac{1}{x} + \frac{1}{y}$, $(1, 1)$ is local min.

Global extreme.

Theorem 3.20 (Global existence Theorem for Maxima and Minima). A set D is said to be bounded if there is a number $M > 0$, such that $||x|| < M$ for all $x \in D$. Let D be a closed and bounded set in \mathbb{R}^n and let $f : D \to \mathbb{R}$ be continuous. Then f attains its maximum and minimum values at some points of D.

Example 3.21. Find the Max and min value of the function $f(x, y) = x^2 + y^2 - x - y + 1$ in the Disc $x^2 + y^2 \leq 1$. $-\sqrt{2} \leq -x - y \leq \sqrt{2}$.
min $= \frac{1}{2}, \max = 2 + \sqrt{2}$.

3.4. Constrained Extrema and Lagrange Multipliers.

Theorem 3.22 (Lagrange Multipliers). Suppose that $f : U \subset \mathbb{R}^n \to \mathbb{R}$ and $g : U \subset \mathbb{R}^n \to \mathbb{R}$ are given C^1 real-valued functions. Let $x_0 \in U$ and
$g(x_0) = c$, and let S be the level set for g with value c. Assume $\nabla g(x_0) \neq 0_n$.

If $f|_S$, which denotes “f restricted to S” has a local maximum or minimum on S at x_0, then there is a real number λ such that $\nabla f(x_0) = \lambda \nabla g(x_0)$.

Proof. Some geometry from the proof. For any path $c(t)$ in S, $\frac{\partial}{\partial t} g(c(t)) = \frac{dc}{dt} = 0 = \nabla g(x_0) \cdot c'(0)$, $c'(0)$ is orthogonal to $\nabla g(x_0)$.

If $f|_S$ has a maximum at x_0, then $f(c(t))$ has a maximum at $t = 0$.
$0 = \frac{\partial}{\partial t} g(c(t)) = \nabla f(x_0) \cdot c'(0) \quad \nabla f(x_0)$ and $\nabla g(x_0)$ are parallel. \hspace{1cm} \Box

Example 3.23. $f(x, y) = x^2 - y^2$, $S : x^2 + y^2 = 1$. Find the extrema of $f|_S$. $(0, 1), (0, -1), (1, 0), (-1, 0)$.

several constraints.

Example 3.24. $f(x, y, z) = x+y+z$, $x^2 + y^2 = 2, x+z = 1$. $(0, \sqrt{2}, 1), (0, -\sqrt{2}, 1)$.

Strategy for finding max and min on bounded regions with boundary. Let f be a differentiable function on a closed and bounded region $D = U \cup \partial U$.

1. Locate all critical point of f in U.
2. Use Lagrange multiplier to locate all the critical points of $f|_{\partial U}$.
3. Compute the values of f at all these critical points.
4. select the largest and the smallest.

Example 3.25. Find the absolute maximum of $f(x, y) = xy$ on the unit disc D, where D is the set of points (x, y) with $x^2 + y^2 \leq 1$.

Optional: Second-Derivative test for constrained extrema.
4. Vector-Valued Functions

Recall a path in \(\mathbb{R}^n \) is a map of \(c \) of \(\mathbb{R} \) or an interval in \(\mathbb{R}^n \). If a path is differentiable, \(c'(t) = (c'_1(t), \ldots, c'_n(t)) \).

Example 4.1. \(b(t) = (t, 3t^2), c(t) = (4e^t, \sin(-t)). \) \(\frac{d}{dt}(b(t) \cdot c(t)) = (4e^t + te^{4t}, 6t \sin + 3t^2 \cos(t)) = b'(t) \cdot c(t) + b(t) \cdot c'(t). \)

Theorem 4.2. \(\frac{d}{dt}(b(t) \cdot c(t)) = b'(t) \cdot c(t) + b(t) \cdot c'(t). \) \(\frac{d}{dt}(b(t) \times c(t)) = b'(t) \times c(t) + b(t) \times c'(t). \)

Example 4.3. If \(c(t) \) is a vector function such that \(||c(t)|| \) is constant, then \(c'(t) \) is perpendicular to \(c(t) \) for all \(t \).

Theorem 4.4. If \(c(t) \) is \(C^1 \). The length of the path \(c(t) = (x(t), y(t), z(t)) \) for \(t_0 \leq t \leq t_1 \) is

\[
c(t) = \int_{t_0}^{t_1} \sqrt{x'(t)^2 + y'(t)^2 + z'(t)^2} dt.
\]

Example 4.5. The arc length of the path \(c(t) = (r \cos t, r \sin t) \) for \(t \) lying in the interval \([0, 2\pi]\) is \(2\pi r \). The graph of a function of one variable \(y = f(x) \) for \(x \in [a, b] \) is \(\int_a^b \sqrt{1 + f'(x)^2} dx \). \(c(t) = (x(t), y(t)) = (|t|, |t - \frac{1}{2}|), -1 \leq t \leq 1. \)

Definition 4.6 (Vector fields). A vector fields in \(\mathbb{R}^n \) is a map \(F : A \subset \mathbb{R}^n \to \mathbb{R}^n \) that assigns to each point \(x \) in its domain \(A \) a vector \(F(x) \). If \(n = 2, F \) as called a vector field in the plane, and \(n = 3, F \) is a vector field in a space.

Example 4.7. \(V(x, y) = -yi + xj \). Gradient vector Fields, \(\nabla f(x, y, z) \). Show that \(V(x, y) = yi - xj \) is not a gradient vector field.

Definition 4.8 (divergence, curl). del operator \(\nabla = \frac{\partial}{\partial x}i + \frac{\partial}{\partial y}j + \frac{\partial}{\partial z}k \).

\(F = (F_1, F_2, F_3), \) \(\text{div} F = \nabla \cdot F = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}, \text{curl} F = \nabla \times F = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_1 & F_2 & F_3 \end{vmatrix}, \) Laplace operator \(\nabla^2 f = \nabla \cdot \nabla f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}. \)

Example 4.9. \(F = x^2yi + zj + xyk \). \(\text{div} F = 3xy \). \(F = xi + xyj + k \). \(\nabla \times F = yk. \)

Theorem 4.10. \(f \) is \(C^2 \). \(\nabla \times (\nabla f) = 0 \). \(\text{div(curl} F) = \nabla \cdot (\nabla \times F) = 0 \)

Example 4.11. \(V(x, y) = yi - xj \) is not a gradient vector field since \(\text{curl} V = -2k \). \(V = xi + yj + zk \) cannot be the curl of some vector field \(F \) since \(\text{div} V = 3 \neq 0 \). \(\nabla^2 (\frac{1}{\sqrt{x^2+y^2+z^2}}) = 0 \). If \(\nabla^2 f = 0, f \) is harmonic.

Theorem 4.12. If \(f \) is a harmonic function defined on all of \(\mathbb{R}^n \) which is bounded above or bounded below, then \(f \) is constant. If \(V \) is a nonempty closed and bounded subset of \(U \), then \(f \) restricted to \(V \) attains its maximum and minimum on the boundary of \(V \). If \(f \) is harmonic, then \(F(z) = F(x + iy) = f_x - if_y \) is differentiable.
5. Double and triple integrals

Let \(f \) be a bounded function, i.e., there is a number \(M > 0 \) such that
\[-M < f(x, y) < M \] for all \((x, y)\) in the domain of \(f \). Let \(a = x_1 \leq x_2 \leq \cdots \leq x_n \leq b = x_{n+1} \), and \(x_{i+1} - x_i = \frac{b-a}{n} \), \(c_i \in [x_i, x_{i+1}] \), \(S_n = \sum_{i=1}^{n} f(c_i) \frac{b-a}{n} = \sum_{i=1}^{n} f(c_i) \Delta A \). \(S_n \) is called Riemann sum of \(f \).

Definition 5.1. If the sequence \(S_n \) converge to a limit \(S \) as \(n \to \infty \) and if the limit \(S \) is the same for any choice of point \(c_i \) in the closed interval, then we say \(f \) is integral over \([a, b]\) and we write \(\int_{a}^{b} f(x) \, dx \).

The area under the graph of a nonnegative continuous function \(f \) from \(x = a \) to \(x = b \) is \(\int_{a}^{b} f(x) \, dx \).

Nonnegative is important, e.g. \(f(x) = 1 - x \).

Let \(R \) be a rectangle \(R = [a, b] \times [c, d] \subset \mathbb{R}^2 \), \(a = x_1 \leq x_2 \leq \cdots \leq x_n \leq b = x_{n+1} \), \(c = y_1 \leq y_2 \leq \cdots \leq y_n \leq d = y_{n+1} \), \(c_{i,j} \in [x_i, x_{i+1}] \times [y_j, y_{j+1}] \).

\[S_n = \sum_{i=1}^{n} S_{i,j} = \sum_{i=1}^{n} f(c_{i,j}) \Delta A \].

Definition 5.2. If the sequence \(S_n \) converge to a limit \(S \) as \(n \to \infty \) and if the limit \(S \) is the same for any choice of point \(c_{i,j} \) in the rectangles, then we say \(f \) is integral over \(R \) and we write \(\int \int_{R} f(x, y) \, dxdy, \int \int_{R} f(x, y) \, dA \) or \(\int_{R} f(x, y) \, dxdy \) for the limit \(S \).

Definition 5.3. The volume of the region above \(R \) and under the graph of a nonnegative function \(f \) is called the double integral \(f \) over \(R \) and is denoted by \(\int \int_{R} f(x, y) \, dxdy \).

Example 5.4. \(f(x, y) = k, R = [0, 1] \times [0, 1], \int_{R} f(x, y) \, dxdy = k \).

Theorem 5.5.
(1) Any continuous function defined on a closed rectangle \(R \) is integrable.
(2) (Fubini Theorem) Let \(f \) be a continuous function defined on a \([a, b] \times [c, d]\). Then
\[\int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx = \int_{c}^{d} \int_{a}^{b} f(x, y) \, dx \, dy = \int \int_{R} f(x, y) \, dA.\]

Example 5.6. \(f(x, y) = (x^2 + y), R = [0, 1] \times [0, 1]. \int_{R} f \, dA = \frac{5}{6} \). Use two different ways.
\[f(x, y) = y(x^3 - 12x), R = [-2, 1] \times [0, 1]. \int_{R} f \, dA = \frac{57}{8}. \] (Fubini remains valid in the case \(f \) is negative or changes sign on \(R \))