In this exam all variables are integers. Solutions mean integer solutions.

1. (25 points)
 (1) Let \(d = \gcd(231, 175) \). Find \(w \) and \(z \) such that \(231w + 175z = d \).
 (2) Find a complete set of mutually incongruent solutions of
 \(231x \equiv 28 \pmod{175} \).

2. (25 points) Recall that Fibonacci numbers are defined as \(F_1 = 1 \), \(F_2 = 1 \) and \(F_{n+2} = F_{n+1} + F_n \) for all \(n \geq 1 \). Show that
 \[
 F_1 + 2F_2 + 3F_3 + \cdots + nF_n = nF_{n+2} - F_{n+3} + 2
 \]
 for all \(n \geq 1 \).

3. (25 points) Let \(p > 2 \) be prime. Let \(\{a_1, a_2, \ldots, a_{p-1}\} \) be a reduced residue system modulo \(p \). Which of the following are also reduced residue system modulo \(p \)? For each part, if the answer is always yes or no, explain why; if it is sometimes yes and sometimes no, give an example for each case.
 (1). \(\{a_1^3, a_2^3, \ldots, a_{p-1}^3\} \).
 (2). \(\{b_1, b_2, \ldots, b_s\} \) where each \(b_i = \sum_{j \neq i} a_j \) (i.e, \(b_i \) is the sum of all \(a_j \) except \(a_i \)).
 (3). \(\{a_1^k, a_2^k, \ldots, a_{p-1}^k\} \). Here \(1 \leq k \leq p-1 \) and \(\gcd(k, p-1) = 1 \).

4. (25 points) Find the least positive integer \(n \) that satisfies
 \[
 101^{304} \equiv n \pmod{13}.
 \]

Solutions on next page
Solutions:

1. (1). Direct computation shows $d = 7$. One combination is $231 \times (-3) + 175 \times 4 = 7$.

 (2). Since $7 \mid 28$. The equation $231x + 175y = 28$ has solution. One solution for x is $x = -12$ (multiple the solution in (1) by $\frac{28}{7} = 4$). Therefore a set of mutually incongruent solutions for $231x \equiv 28 \pmod{175}$ is $-12 + t \cdot \frac{175}{7} = -12 + 25t$ where $0 \leq t \leq 6$.

2. Use Induction. Check it is true for $n = 1$. Assume it is true for n, then by induction $F_1 + 2F_2 + 3F_3 + \cdots + nF_n + (n+1)F_{n+1} = nF_{n+2} - F_{n+3} + 2 + (n+1)F_{n+1} = (n+1)(F_{n+1} + F_{n+2}) - (F_{n+2} + F_{n+3}) - 2 = (n+1)F_{n+3} - F_{n+4} - 2$.

3. Not always true. For example if is true if $p = 5$, but false if $p = 7$. See (3) below.

 (2). Yes. By #4 in §5.2, $\sum_{i=1}^{p-1} a_i \equiv 0 \pmod{p}$. Therefore $\sum_{j \neq i} a_j \equiv -a_i$, and it is clear $-a_1, -a_2, \cdots, -a_{p-1}$ is also a reduced residue system modulo p.

 (3). Yes. The only thing need to check is all a_i^k are mutually incongruent. Assume $a_i^k = a_j^k$. Note $a_i^{p-1} \equiv 1$ by Fermat’s Theorem. Since $\gcd(k, p-1) = 1$, there exists a and b such that $ak + b(p-1) = 1$. If $a > 0$, then $b < 0$. So

 $$a_i \equiv a_i^{1+(p-1)(-b)} \equiv (a_i^k)^a \equiv (a_j^k)^a \equiv a_j^{1+(p-1)(-b)} \equiv a_j.$$

 So $i = j$. If $a < 0$, then $b > 0$, similarly we have

 $$a_i \cdot (a_i^k)^{-a} \equiv (a_i^{p-1})^b \equiv 1 \equiv (a_j^{p-1})^b \equiv a_j \cdot (a_j^k)^{-a} \equiv a_j \cdot (a_i^k)^{-a}.$$

 Therefore $a_i \equiv a_j$ since $\gcd((a_i^k)^{-a}, p) = 1$.

4. We have $101 \equiv -3 \pmod{13}$. By Fermat’s Theorem $(-3)^{12} \equiv 1 \pmod{13}$. Note $304 = 12 \cdot 25 + 4$. So

 $$101^{304} \equiv (-3)^{304} \equiv ((-3)^{12})^{25} \cdot (-3)^4 \equiv 1 \cdot 81 \equiv 3 \pmod{13}.$$