Attaching a 2-cell

Compare Proposition 1.26 in Hatcher.

Attach a 2-cell to X by means of the attaching map $f: S^1 \to X$ to form the space Y, so that we have the pushout square of spaces

$$D^{2} \xrightarrow{g} Y$$

$$\uparrow^{i} \qquad \uparrow^{j} \qquad (1)$$

$$S^{1} \xrightarrow{f} X$$

We wish to know the effect on the fundamental group.

Choose a basepoint $d_1 \in S^1$ and put $x_1 = f(d_1)$.

THEOREM 2 Given the above data, we have the pushout square of groups

$$\pi_1(D^2, d_1) \xrightarrow{g_*} \pi_1(Y, x_1)$$

$$\uparrow^{i_*} \qquad \uparrow^{j_*}$$

$$\pi_1(S^1, d_1) \xrightarrow{f_*} \pi_1(X, x_1)$$

Here, $\pi_1(D^2)$ is trivial because D^2 is convex and hence contractible, and $\pi_1(S^1) = \mathbb{Z}$, generated by $[\omega_1]$. Moreover, we don't wish to assume f is based; let x_0 be some other point of X, with h a path from x_0 to x_1 . By combining with the isomorphisms β_h of Proposition 1.5, we deduce the more general version.

COROLLARY 3 We have the pushout square of groups

$$\{1\} \longrightarrow \pi_1(Y, x_0)$$

$$\downarrow \qquad \qquad \downarrow^{j_*}$$

$$\mathbb{Z} \longrightarrow \pi_1(X, x_0)$$

where the lower homomorphism takes $1 \in \mathbb{Z}$ to $\alpha = \beta_h(f_*[\omega_1])$.

Interpretation By definition of pushouts, given any group H and homomorphisms $\phi_1: \{1\} \to H$ and $\phi_2: \pi_1(X, x_0) \to H$ that agree on \mathbb{Z} , there is a unique homomorphism $\phi: \pi_1(Y, x_0) \to H$ that makes the whole diagram commute. Thus ϕ_1 is trivial and $\phi_2(\alpha) = 1$. Then Ker ϕ_2 is a normal subgroup of $\pi_1(X, x_0)$ that contains α . Let N be the smallest normal subgroup of $\pi_1(X, x_0)$ that contains α (it is the intersection of all such subgroups). Then we may identify $\pi_1(Y, x_0)$ with the quotient group $\pi_1(X, x_0)/N$ and j_* with the natural quotient homomorphism.

Proof of Theorem The given pushout square diagram (1) does not lend itself to direct application of van Kampen's Theorem. The key idea is to *attach a collar*. Define the

110.615 Algebraic Topology JMB File: attach2, Revision A; 4 Oct 2002; Page 1

collar $V = \{x \in D^2 : ||x|| > 1/2\}$ of S^1 in D^2 ; it contains S^1 as a deformation retract. Now we form the expanded diagram of spaces, which contains diagram (1),

It contains *five* pushout squares, as pushout squares can be stacked.

Now we can apply van Kampen, taking $A_1 = e^2$ and $A_2 = X \cup g(V)$ and a basepoint $d_2 \in V - S^1$ that retracts to d_1 , to obtain the pushout square of groups

where $y_2 = g(d_2)$.

This is not quite what we want. The basepoint y_2 is particularly inconvenient, as it does not lie in X. We may change any of the groups by an isomorphism. The retraction $V - S^1 \subset V \to S^1$ induces an isomorphism $\pi_1(V - S^1, d_2) \cong \pi_1(S^1, d_1)$. The induced retraction $s: X \cup g(V) \to X$ induces an isomorphism $s_*: \pi_1(X \cup g(V), y_2) \cong$ $\pi_1(X, x_1)$, and the resulting homomorphism $\pi_1(S^1, d_1) \to \pi_1(X, x_1)$ is clearly f_* . Finally, we take k to be a path from x_1 to y_2 such that $s \circ k$ is the constant path at x_1 and use the commutative diagram

to fix up the right side of diagram (4). \Box

110.615 Algebraic Topology JMB File: attach2, Revision A; 4 Oct 2002; Page 2