Attaching a 2-cell

Compare Proposition 1.26 in Hatcher.
Attach a 2-cell to X by means of the attaching map $f: S^{1} \rightarrow X$ to form the space Y, so that we have the pushout square of spaces

We wish to know the effect on the fundamental group.
Choose a basepoint $d_{1} \in S^{1}$ and put $x_{1}=f\left(d_{1}\right)$.
Theorem 2 Given the above data, we have the pushout square of groups

Here, $\pi_{1}\left(D^{2}\right)$ is trivial because D^{2} is convex and hence contractible, and $\pi_{1}\left(S^{1}\right)=$ \mathbb{Z}, generated by $\left[\omega_{1}\right]$. Moreover, we don't wish to assume f is based; let x_{0} be some other point of X, with h a path from x_{0} to x_{1}. By combining with the isomorphisms β_{h} of Proposition 1.5, we deduce the more general version.

Corollary 3 We have the pushout square of groups

where the lower homomorphism takes $1 \in \mathbb{Z}$ to $\alpha=\beta_{h}\left(f_{*}\left[\omega_{1}\right]\right)$.
Interpretation By definition of pushouts, given any group H and homomorphisms $\phi_{1}:\{1\} \rightarrow H$ and $\phi_{2}: \pi_{1}\left(X, x_{0}\right) \rightarrow H$ that agree on \mathbb{Z}, there is a unique homomorphism $\phi: \pi_{1}\left(Y, x_{0}\right) \rightarrow H$ that makes the whole diagram commute. Thus ϕ_{1} is trivial and $\phi_{2}(\alpha)=1$. Then $\operatorname{Ker} \phi_{2}$ is a normal subgroup of $\pi_{1}\left(X, x_{0}\right)$ that contains α. Let N be the smallest normal subgroup of $\pi_{1}\left(X, x_{0}\right)$ that contains α (it is the intersection of all such subgroups). Then we may identify $\pi_{1}\left(Y, x_{0}\right)$ with the quotient group $\pi_{1}\left(X, x_{0}\right) / N$ and j_{*} with the natural quotient homomorphism.

Proof of Theorem The given pushout square diagram (1) does not lend itself to direct application of van Kampen's Theorem. The key idea is to attach a collar. Define the
collar $V=\left\{x \in D^{2}:\|x\|>1 / 2\right\}$ of S^{1} in $D^{2} ;$ it contains S^{1} as a deformation retract. Now we form the expanded diagram of spaces, which contains diagram (1),

It contains five pushout squares, as pushout squares can be stacked.
Now we can apply van Kampen, taking $A_{1}=e^{2}$ and $A_{2}=X \cup g(V)$ and a basepoint $d_{2} \in V-S^{1}$ that retracts to d_{1}, to obtain the pushout square of groups

where $y_{2}=g\left(d_{2}\right)$.
This is not quite what we want. The basepoint y_{2} is particularly inconvenient, as it does not lie in X. We may change any of the groups by an isomorphism. The retraction $V-S^{1} \subset V \rightarrow S^{1}$ induces an isomorphism $\pi_{1}\left(V-S^{1}, d_{2}\right) \cong \pi_{1}\left(S^{1}, d_{1}\right)$. The induced retraction $s: X \cup g(V) \rightarrow X$ induces an isomorphism $s_{*}: \pi_{1}\left(X \cup g(V), y_{2}\right) \cong$ $\pi_{1}\left(X, x_{1}\right)$, and the resulting homomorphism $\pi_{1}\left(S^{1}, d_{1}\right) \rightarrow \pi_{1}\left(X, x_{1}\right)$ is clearly f_{*}. Finally, we take k to be a path from x_{1} to y_{2} such that $s \circ k$ is the constant path at x_{1} and use the commutative diagram

to fix up the right side of diagram (4).

