Row Space and Column Space

References are to Anton-Rorres
PROBLEM: Compute everything about the 4×5 matrix

$$
A=\left[\begin{array}{rrrrr}
1 & -2 & 0 & 0 & 3 \tag{1}\\
2 & -5 & -3 & -2 & 6 \\
0 & 5 & 15 & 10 & 0 \\
2 & 6 & 18 & 8 & 6
\end{array}\right]
$$

(This includes Example 8 (p. 267) in §5.5.)
The nullspace of A Find the dimension $(=\operatorname{nullity}(A))$ and a basis. In effect, solve the linear system $A \mathbf{x}=\mathbf{0}$. Therefore we use elementary row operations to reduce A to row echelon form (not uniquely, so your answer may vary)

$$
R=\left[\begin{array}{rrrrr}
\boxed{1} & -2 & 0 & 0 & 3 \tag{2}\\
0 & \boxed{1} & 3 & 2 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

with the leading ones boxed. Or we can go all the way to reduced row echelon form

$$
R^{\prime}=\left[\begin{array}{rrrrr}
\boxed{1} & 0 & 0 & -2 & 3 \tag{3}\\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

which is unique. From (2) or (3), it is clear that x_{4} and x_{5} are free variables and may be chosen arbitrarily; we put $x_{4}=r$ and $x_{5}=s$. Then from (2), by back substitution, or directly from (3), the general solution of $A \mathbf{x}=\mathbf{0}$ can be written

$$
x_{1}=2 r-3 s, \quad x_{2}=r, \quad x_{3}=-r, \quad x_{4}=r, \quad x_{5}=s
$$

Thus the nullspace has dimension 2, as it needs two coordinates, and has the basis

$$
\{(2,1,-1,1,0), \quad(-3,0,0,0,1)\}
$$

(Here, the first vector is obtained by setting $r=1$ and $s=0$ and the second by $r=0$ and $s=1$; equivalently, we read off the coefficients of r and s in each x_{j}.)

The row space of A Find the dimension $(=\operatorname{rank}(A))$ and a basis. By Theorem 5.5.4, the row space of A is the same as the row space of R (or R^{\prime}). But by Theorem 5.5.6, we see from (2) that the first three rows of R form a basis. (None of these rows is a linear combination of later rows, and the zero row has no effect on the row space.) Thus the row space of A has dimension $\operatorname{rank}(A)=3$ and has the basis

$$
\{(1,-2,0,0,3), \quad(0,1,3,2,0), \quad(0,0,1,1,0)\}
$$

The column space of A Find the dimension $(=\operatorname{rank}(A))$ and a basis. Write \mathbf{u}_{j} for column j of R^{\prime}. It is clear that $\mathbf{u}_{1}=\mathbf{e}_{1}, \mathbf{u}_{2}=\mathbf{e}_{2}$, and $\mathbf{u}_{3}=\mathbf{e}_{3}$, and that these form
a basis of the column space of R^{\prime}. Explicitly, we read off that $\mathbf{u}_{4}=-2 \mathbf{u}_{1}-\mathbf{u}_{2}+\mathbf{u}_{3}$ and $\mathbf{u}_{5}=3 \mathbf{u}_{1}$. The column space of R^{\prime} is not the same as the column space of A; however, Theorem 5.5.5 allows us to conclude that the corresponding columns \mathbf{c}_{j} of A do the same job for A. Namely, the column space of A has dimension $\operatorname{rank}(A)=3$ and has the basis

$$
\left\{\mathbf{c}_{1}=(1,2,0,2), \quad \mathbf{c}_{2}=(-2,-5,5,6), \quad \mathbf{c}_{3}=(0,-3,15,18)\right\}
$$

Further, the remaining columns of A are expressed in terms of these as

$$
\mathbf{c}_{4}=(0,-2,10,8)=-2 \mathbf{c}_{1}-\mathbf{c}_{2}+\mathbf{c}_{3}, \quad \mathbf{c}_{5}=(3,6,0,6)=3 \mathbf{c}_{1}
$$

as is easily checked from (1).
The row space of A, revisited Better: Select a basis from the rows of A, $\left\{\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{4}\right\}$. Theorem 5.4.6 says that this is always possible, and sometimes, this is what we need. We just did it for the columns of A. [It is perfectly possible to develop a theory of column operations, but we and Anton-Rorres choose not to go this route.] IDEA: Consider the transpose of A, the 5×4 matrix

$$
A^{T}=\left[\begin{array}{rrrr}
1 & 2 & 0 & 2 \\
-2 & -5 & 5 & 6 \\
0 & -3 & 15 & 18 \\
0 & -2 & 10 & 8 \\
3 & 6 & 0 & 6
\end{array}\right]
$$

Elementary row operations reduce this to the row echelon form (see p. 268)

$$
\left[\begin{array}{rrrr}
\boxed{1} & 2 & 0 & 2 \tag{4}\\
0 & 1 & -5 & -10 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and to the reduced row echelon form

$$
\left[\begin{array}{rrrr}
\boxed{1} & 0 & 10 & 0 \tag{5}\\
0 & 1 & -5 & 0 \\
0 & 0 & 0 & \boxed{1} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Write \mathbf{v}_{j} for column j of this matrix. This time, we have the basis $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{4}\right\}$, and $\mathbf{v}_{3}=10 \mathbf{v}_{1}-5 \mathbf{v}_{2}$. Again by Theorem 5.5.5 (applied to A^{T}), we deduce the basis

$$
\left\{\mathbf{r}_{1}=(1,-2,0,0,3), \quad \mathbf{r}_{2}=(2,-5,-3,-2,6), \quad \mathbf{r}_{4}=(2,6,18,8,6)\right\}
$$

of the row space of A, and the relation (easily verified from (1))

$$
\mathbf{r}_{3}=(0,5,15,10,0)=10 \mathbf{r}_{1}-5 \mathbf{r}_{2}
$$

The nullspace of A^{T} Find the dimension and a basis. From (5), we see that this time there is only one free variable, x_{3}. The dimension is 1 and the basis consists of the single vector $(-10,5,1,0)$. Note that $1=4-3$, as in Theorem 5.6.3 (for $\left.A^{T}\right)$.

