Universal Coefficient Theorem for Homology

We present a direct proof of the universal coefficient theorem for homology that is simpler and shorter than the standard proof.

THEOREM 1 Given a chain complex C in which each C_n is free abelian, and a coefficient group G, we have for each n the natural short exact sequence

$$0 \longrightarrow H_n(C) \otimes G \longrightarrow H_n(C \otimes G) \longrightarrow \operatorname{Tor}(H_{n-1}(C), G) \longrightarrow 0, \tag{2}$$

which splits (but not naturally).

In particular, this applies immediately to singular homology.

THEOREM 3 Given a pair of spaces (X, A) and a coefficient group G, we have for each n the natural short exact sequence

$$0 \longrightarrow H_n(X,A) \otimes G \longrightarrow H_n(X,A;G) \longrightarrow \operatorname{Tor}(H_{n-1}(X,A),G) \longrightarrow 0,$$

which splits (but not naturally). \Box

We shall derive diagram (2) as an instance of the following elementary result.

LEMMA 4 Given homomorphisms $f: K \to L$ and $g: L \to M$ of abelian groups, with a splitting homomorphism $s: L \to K$ such that $f \circ s = \mathrm{id}_L$, we have the split short exact sequence

$$0 \longrightarrow \operatorname{Ker} f \xrightarrow{\subset} \operatorname{Ker}(g \circ f) \xrightarrow{f'} \operatorname{Ker} g \longrightarrow 0, \tag{5}$$

where $f' = f | \operatorname{Ker}(g \circ f)$, with the splitting $s' = s | \operatorname{Ker} g : \operatorname{Ker} g \to \operatorname{Ker}(g \circ f)$.

Proof We note that f' and s' are defined, as $f(\operatorname{Ker}(g \circ f)) \subset \operatorname{Ker} g$ and $s(\operatorname{Ker} g) \subset \operatorname{Ker}(g \circ f)$. (In detail, if $l \in \operatorname{Ker} g$, $(g \circ f)sl = gfsl = gl = 0$ shows that $sl \in \operatorname{Ker}(g \circ f)$.) Then $f \circ s = \operatorname{id}_L$ restricts to $f' \circ s' = \operatorname{id}$. Since $\operatorname{Ker} f \subset \operatorname{Ker}(g \circ f)$, we have $\operatorname{Ker} f' = \operatorname{Ker} f \cap \operatorname{Ker}(g \circ f) = \operatorname{Ker} f$. This completes the proof. \square

Preliminaries We consider a chain complex C as in Theorem 1. We adopt the usual notation: Z_n for the group of n-cycles, B_n for the group of n-boundaries, and $H_n = H_n(C) = Z_n/B_n$; also $Z_n(C \otimes G)$ etc. for the chain complex $C \otimes G$. The key idea of our proof of Theorem 1 is to express $\partial: C_n \to C_{n-1}$ as the composite

$$\partial: C_n \longrightarrow \frac{C_n}{B_n} \longrightarrow \frac{C_n}{Z_n} \xrightarrow{\cong} B_{n-1} \xrightarrow{\subset} Z_{n-1} \xrightarrow{\subset} C_{n-1}.$$
 (6)

By definition, we have the short exact sequence

$$0 \longrightarrow B_n \stackrel{\subset}{\longrightarrow} Z_n \longrightarrow H_n \longrightarrow 0 \tag{7}$$

for any n. As B_n and Z_n are subgroups of the free abelian group C_n and therefore free abelian, we recognize (7) as a free resolution of H_n .

Also by definition, from diagram (6) we have the short exact sequence

$$0 \longrightarrow Z_n \stackrel{\subset}{\longrightarrow} C_n \stackrel{\partial}{\longrightarrow} B_{n-1} \longrightarrow 0, \tag{8}$$

110.615-616 Algebraic Topology JMB File: ucthgy, Rev. C; 9 Dec 2008; Page 1

which splits because B_{n-1} is free abelian. Using (7) and (8), we may rewrite the canonical short exact sequence

$$0 \longrightarrow Z_n/B_n \xrightarrow{\subset} C_n/B_n \longrightarrow C_n/Z_n \longrightarrow 0$$

as

$$0 \longrightarrow H_n \longrightarrow C_n/B_n \stackrel{\bar{\partial}}{\longrightarrow} B_{n-1} \longrightarrow 0, \tag{9}$$

where $\bar{\partial}$ is a quotient of ∂ . As B_{n-1} is free abelian, this short exact sequence also splits, and we may choose a splitting homomorphism $s: B_{n-1} \to C_n/B_n$.

Proof of Theorem 1 We tensor diagram (6) and the above short exact sequences with G, to form the following diagram of exact sequences.

$$\begin{array}{c}
0 \\
\downarrow \\
H_n \otimes G
\end{array}$$

$$\downarrow \\
B_n \otimes G \longrightarrow C_n \otimes G \longrightarrow \frac{C_n}{B_n} \otimes G \longrightarrow 0$$

$$0 \longrightarrow \operatorname{Tor}(H_{n-1}, G) \longrightarrow B_{n-1} \otimes G \longrightarrow Z_{n-1} \otimes G$$

$$\downarrow \\
0 \longrightarrow C_{n-1} \otimes G$$

$$\downarrow \\
C_{n-1} \otimes G$$

Both vertical sequences are exact, since (9) and (8) split. The upper horizontal sequence is exact, because $-\otimes G$ is right exact. The lower horizontal sequence is exact, as $\text{Tor}(H_{n-1}, G) = \text{Ker}[B_{n-1} \otimes G \to Z_{n-1} \otimes G]$ by definition.

We deduce that $B_{n-1}(C \otimes G) = \operatorname{Im}(\partial \otimes \operatorname{id}) = \operatorname{Im}[B_{n-1} \otimes G \to C_{n-1} \otimes G]$. On replacing n-1 by n, we see that

$$B_n(C \otimes G) = \operatorname{Im}[B_n \otimes G \longrightarrow C_n \otimes G] = \operatorname{Ker}[C_n \otimes G \longrightarrow (C_n/B_n) \otimes G].$$

Then $(C_n \otimes G)/B_n(C \otimes G) \cong (C_n/B_n) \otimes G$. Also, $Z_n(C \otimes G) = \text{Ker}[C_n \otimes G \to Z_{n-1} \otimes G]$, and hence $(C_n \otimes G)/Z_n(C \otimes G) \cong \text{Im}[C_n \otimes G \to Z_{n-1} \otimes G] \subset Z_{n-1} \otimes G$.

We next use the canonical short exact sequence

$$0 \longrightarrow \frac{Z_n(C \otimes G)}{B_n(C \otimes G)} \stackrel{\subset}{\longrightarrow} \frac{C_n \otimes G}{B_n(C \otimes G)} \longrightarrow \frac{C_n \otimes G}{Z_n(C \otimes G)} \longrightarrow 0$$

to rewrite our target group as

$$H_n(C \otimes G) = \frac{Z_n(C \otimes G)}{B_n(C \otimes G)} \cong \operatorname{Ker} \left[\frac{C_n}{B_n} \otimes G \longrightarrow Z_{n-1} \otimes G \right].$$

We now apply Lemma 4 with $K = (C_n/B_n) \otimes G$, $L = B_{n-1} \otimes G$ and $M = Z_{n-1} \otimes G$, and use the splitting $s \otimes \operatorname{id}: L \to K$. Diagram (10) identifies $\operatorname{Ker}[K \to L]$ with $H_n \otimes G$ and $\operatorname{Ker}[L \to M]$ with $\operatorname{Tor}(H_{n-1}, G)$. These identifications reduce the split short exact sequence (5) to the desired (2). \square

110.615-616 Algebraic Topology JMB File: ucthgy, Rev. C; 9 Dec 2008; Page 2