van Kampen’s Theorem

We present a variant of Hatcher’s proof of van Kampen’s Theorem, for the simpler
case of just two open sets.

THEOREM 1 Let X be a space with basepoint xy. Let A; and As be open subspaces
that contain z, and satisfy X = A; U Ay. Assume that Ay, Ay and A; N Ay (and
hence X) are all path-connected. Then the commutative square of homomorphisms
induced by inclusions in the diagram

is a pushout square of groups: given any group G and homomorphisms ¢1:m (A1) — G
and ¢y: w1 (As) — G such that ¢y o i1, = @9 o io, there is a unique homomorphism
¢:m(X) — G that makes the diagram commute, i.e. ¢ o j1. = ¢1 and ¢ o jo, = ¢o.

The proof will involve subdivisions of paths. Take any path f: I — X in X and
let 0 =59 <51 <8 <...<8m1 <S8, =1 beany subdivision of I. Write f; for the
obvious path from f(s;—1) to f(s;), namely f;(s) = f((1—s)s;—1 + 5;).

LEMMA 3 With the above notation, there is a path homotopy f ~ fi1- fo- ...  fm.

Remark The convention here is that parentheses are to be inserted anywhere in
fi-fo-...- fin to make it defined; since all choices yield path-homotopic results, the
specific choice is irrelevant.

Proof Given a,b € I, denote by A,p: I — I the straightline path in I from a to b,
i.e. \gp(s) = (1—=s)a+ sb. Then f; = fo A, , 5 and

fl : f2 et fm = (fo)‘So,81> : (f°>‘81782) Tl (fo)‘SmA,Sm)
=fo ()\50,51 : )\51,52 et >‘sm—1,sm)
~ foids = f,

since Agy s, © A - A ~id;, I being convex. [

81,82 ° Sm—1,5m

Proof of Theorem Because we have to deal with four different spaces, we write [f]y
for the path-homotopy class in Y of a loop in Y. (The basepoint for all loops will be
xo and is suppressed from the notation.)

We have to construct ¢(f) for each loop f in X at x.

The recipe  Given f, the open sets f~1(A;) and f~1(Ay) cover the compact metric
space I. By the Lebesgue covering lemma, there is a subdivision 0 = sy < §1 < §9 <
... < 8y =1 of I such that for each 4, f([s;_1,5;]) C Aa(;), where a(i) =1 or 2.
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2 van Kampen’s Theorem

50 =0 fi 51 f2 S Sm—1  fm Sm=1

We note that f(s;) € Aag) N Aa@it1)- Since this space is path-connected, we can
choose, for each i (0 < i < n), a path g; in Aq;)N A1) from zo to f(s;); we also put
Jgo = gm = ¢, the constant loop at zy. For each i, we have the loop w; = g;—1 - fi - g;
in Aa@y. We put 2; = dai)([wila,,,) and set

o(f) =z129...2m in G. (4)
Commutativity Given a loop f in Ag, we take m = 1 and don’t subdivide at all,
0 =59 <s; =1 Then w; ~ f and (4) reduces to ¢(f) = ds([f]a,), which will imply
that ¢(js([f1a,)) = &(f) = ¢s([f]a,), as required.

Uniqueness of ¢[f] By Lemma 3,
lwilxlwalx . fwmlx =[c- fi i g1 fo Gor oo Gmor - f - dx = [flx

in 7 (X). Since ¢ is to be a homomorphism, we must use the formula (4), with

zi = P([wilx) = ¢(Jaiy=(Wila,y)) = Gai) (Wil )-
Homomorphism  To verify that ¢ is a homomorphism on 7 (X), we have to show
that, given two loops f and f', &(f - ') = ¢(f)o(f"). Choose subdivisions, a(i) and
gi as above for each of f and f’, to get elements z; and z; of G. If we combine these
subdivisions to get a subdivision for f - f’, we find

O(f - ) =z120. . z2mz12y . 2h = O())oO(f).
To prove that ¢[f] is well defined on 71 (X) (which will complete the proof), we
have to show it is independent of:
(i) The choice of (i) for each i;
(ii) The choice of g; for each i;
(iii) The choice of subdivision of I;
(iv) The choice of f in the homotopy class [f].

o(f) is independent of the choice of a(i). There is no choice unless f; lies in A; N As.
In this case, w; also lies in A; N Ay and z; is well defined, because

P1(wilay) = ¢1(ins([wilainay)) = d2(ins([wilaina,)) = ¢2(lwila,)-
o(f) is independent of g;. Suppose we choose a different path ¢} from zy to f(s;)
in Ag N A,, where a(i) = § and a(i+1) = v. We then have the loop k = ¢; - 7,
so that k = g/ - g;. We replace w; by w} = gi—1 - fi - §; ~ w; - k and w;q by wj,, =
gi - fis1 - Giy1 = k - wiy1. The other loops w; are unchanged. Then

%z = 2i0p([k]a,)04([Fla,)zisn in G
Since [k] = k]!, this reduces to z;z;1; if 8 = 7. Otherwise, we use
¢1([Klar) = ¢1(i0a([Flaina,)) = da(ine([Faina,)) = d2([Fa,)-

o(f) is independent of the subdivision. To compare any two subdivisions, it is enough
to consider the effect of inserting one extra point s, between s, ; and s;. Suppose
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fi maps into Ag; then we break up f; >~ f/ - f/' as in Lemma 3, where f/ and f;’ also
map into Az. We choose a path g, in Ag from o to f(sy); then in (4), we replace z;
b
' 4 = olaics - -5 14, 0ollan - 730,
= ¢5([gi—1 - [} - T4 - g+ - £ - Gila,)
= ¢ﬁ([wi]A@) = %,
which does not change ¢(f).

Homotopy To make ¢ well defined on (X)), we have to show that for any loop
homotopy fi, ¢(fo) = ¢(f1). The homotopy provides a map F:I x I — X. The
open sets F1(A;) and F~'(Ay) cover the compact metric space I x I. Again by the
Lebesgue covering lemma, we can subdivide the path variable s € I by

0=50<85<...<8,=1 (5)

and the homotopy variablet € I by 0 =ty < t; < ... < t, = 1 to make each rectangle
R; ;j = [si—1,si] X [tj_1,t;] map into A; or into Ay; we have only to make them small
enough. It is enough to show that ¢(f;,_,) = ¢(f;,) for each j.

Suppose F(R; ;) C Ag; we use a(i) = ( and the same subdivision (5) for both
ft,_, and f,, as pictured.

tj 7
U;

v L

i—1 Ri,j )
t‘ 1 P -~
J= Ui

Si-1 'S
: s ~ ~ ! / /
As in Lemma 3, we subdivide f;, | >~ uy-ug ... uy and fi; ~uj-uh -,

Let v; be the obvious path from F(s;,t;_1) to F(s;,t;). As usual, we choose paths g;
from xq to f;,_,(s;) for f;,_,; but for f;,, we use the paths g; = g; - v;. Then for (4),
Wi = Gi—1 - U; - J;, while W] = g;_1 - v;_1 - u} - T; - ;. Because R, ; is convex and maps

into Ag, w; >~ v;_1 - u, - T; in Ag, which implies w] ~ w; and 2] = z;. O

Extensions 1. The sets A; and Ay do not need to be open; it is enough to have
Int A; UInt A, = X. To prove existence of a suitable subdivision of I or I x I, we
start from the open covering of X by Int A; and Int A5. The rest of the proof is
unchanged.

2. Instead of two open sets A; and A,, we can have many, even infinitely many.
Beyond the obvious changes to the statement and proof, one extra condition is needed:

Ay N Ag N A, is path-connected for all «, 3, .

Hatcher (p. 44) gives an example to show the necessity. See if you can find where in
this proof it is needed.
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