van Kampen's Theorem

We present a variant of Hatcher's proof of van Kampen's Theorem, for the simpler case of just two open sets.

Theorem 1 Let X be a space with basepoint x_{0}. Let A_{1} and A_{2} be open subspaces that contain x_{0} and satisfy $X=A_{1} \cup A_{2}$. Assume that A_{1}, A_{2} and $A_{1} \cap A_{2}$ (and hence X) are all path-connected. Then the commutative square of homomorphisms induced by inclusions in the diagram

is a pushout square of groups: given any group G and homomorphisms $\phi_{1}: \pi_{1}\left(A_{1}\right) \rightarrow G$ and $\phi_{2}: \pi_{1}\left(A_{2}\right) \rightarrow G$ such that $\phi_{1} \circ i_{1 *}=\phi_{2} \circ i_{2 *}$, there is a unique homomorphism $\phi: \pi_{1}(X) \rightarrow G$ that makes the diagram commute, i. e. $\phi \circ j_{1 *}=\phi_{1}$ and $\phi \circ j_{2 *}=\phi_{2}$.

The proof will involve subdivisions of paths. Take any path $f: I \rightarrow X$ in X and let $0=s_{0}<s_{1}<s_{2}<\ldots<s_{m-1}<s_{m}=1$ be any subdivision of I. Write f_{i} for the obvious path from $f\left(s_{i-1}\right)$ to $f\left(s_{i}\right)$, namely $f_{i}(s)=f\left((1-s) s_{i-1}+s s_{i}\right)$.

Lemma 3 With the above notation, there is a path homotopy $f \simeq f_{1} \cdot f_{2} \cdot \ldots \cdot f_{m}$.
Remark The convention here is that parentheses are to be inserted anywhere in $f_{1} \cdot f_{2} \cdot \ldots \cdot f_{m}$ to make it defined; since all choices yield path-homotopic results, the specific choice is irrelevant.

Proof Given $a, b \in I$, denote by $\lambda_{a, b}: I \rightarrow I$ the straightline path in I from a to b, i. e. $\lambda_{a, b}(s)=(1-s) a+s b$. Then $f_{i}=f \circ \lambda_{s_{i-1}, s_{i}}$ and

$$
\begin{aligned}
f_{1} \cdot f_{2} \cdot \ldots \cdot f_{m} & =\left(f \circ \lambda_{s_{0}, s_{1}}\right) \cdot\left(f \circ \lambda_{s_{1}, s_{2}}\right) \cdot \ldots \cdot\left(f \circ \lambda_{s_{m-1}, s_{m}}\right) \\
& =f \circ\left(\lambda_{s_{0}, s_{1}} \cdot \lambda_{s_{1}, s_{2}} \cdot \ldots \cdot \lambda_{s_{m-1}, s_{m}}\right) \\
& \simeq f \circ \operatorname{id}_{I}=f,
\end{aligned}
$$

since $\lambda_{s_{0}, s_{1}} \cdot \lambda_{s_{1}, s_{2}} \cdot \ldots \cdot \lambda_{s_{m-1}, s_{m}} \simeq \operatorname{id}_{I}, I$ being convex.
Proof of Theorem Because we have to deal with four different spaces, we write $[f]_{Y}$ for the path-homotopy class in Y of a loop in Y. (The basepoint for all loops will be x_{0} and is suppressed from the notation.)

We have to construct $\phi(f)$ for each loop f in X at x_{0}.
The recipe Given f, the open sets $f^{-1}\left(A_{1}\right)$ and $f^{-1}\left(A_{2}\right)$ cover the compact metric space I. By the Lebesgue covering lemma, there is a subdivision $0=s_{0}<s_{1}<s_{2}<$ $\ldots<s_{m}=1$ of I such that for each $i, f\left(\left[s_{i-1}, s_{i}\right]\right) \subset A_{\alpha(i)}$, where $\alpha(i)=1$ or 2 .

$$
\begin{array}{cccccccc}
s_{0}=0 & f_{1} & s_{1} & \overrightarrow{f_{2}} & s_{2} & \cdots & \overrightarrow{s_{m-1}} & \overrightarrow{f_{m}}
\end{array} s_{m}=1
$$

We note that $f\left(s_{i}\right) \in A_{\alpha(i)} \cap A_{\alpha(i+1)}$. Since this space is path-connected, we can choose, for each $i(0<i<n)$, a path g_{i} in $A_{\alpha(i)} \cap A_{\alpha(i+1)}$ from x_{0} to $f\left(s_{i}\right)$; we also put $g_{0}=g_{m}=c$, the constant loop at x_{0}. For each i, we have the loop $\omega_{i}=g_{i-1} \cdot f_{i} \cdot \bar{g}_{i}$ in $A_{\alpha(i)}$. We put $z_{i}=\phi_{\alpha(i)}\left(\left[\omega_{i}\right]_{A_{\alpha(i)}}\right)$ and set

$$
\begin{equation*}
\phi(f)=z_{1} z_{2} \ldots z_{m} \quad \text { in } G . \tag{4}
\end{equation*}
$$

Commutativity Given a loop f in A_{β}, we take $m=1$ and don't subdivide at all, $0=s_{0}<s_{1}=1$. Then $\omega_{1} \simeq f$ and (4) reduces to $\phi(f)=\phi_{\beta}\left([f]_{A_{\beta}}\right)$, which will imply that $\phi\left(j_{\beta *}\left([f]_{A_{\beta}}\right)\right)=\phi(f)=\phi_{\beta}\left([f]_{A_{\beta}}\right)$, as required.
Uniqueness of $\phi[f]$ By Lemma 3,

$$
\left[\omega_{1}\right]_{X}\left[\omega_{2}\right]_{X} \ldots\left[\omega_{m}\right]_{X}=\left[c \cdot f_{1} \cdot \bar{g}_{1} \cdot g_{1} \cdot f_{2} \cdot \bar{g}_{2} \cdot \ldots \cdot g_{m-1} \cdot f_{m} \cdot c\right]_{X}=[f]_{X}
$$

in $\pi_{1}(X)$. Since ϕ is to be a homomorphism, we must use the formula (4), with

$$
z_{i}=\phi\left(\left[\omega_{i}\right]_{X}\right)=\phi\left(j_{\alpha(i) *}\left(\left[\omega_{i}\right]_{A_{\alpha(i)}}\right)\right)=\phi_{\alpha(i)}\left(\left[\omega_{i}\right]_{A_{\alpha(i)}}\right) .
$$

Homomorphism To verify that ϕ is a homomorphism on $\pi_{1}(X)$, we have to show that, given two loops f and $f^{\prime}, \phi\left(f \cdot f^{\prime}\right)=\phi(f) \phi\left(f^{\prime}\right)$. Choose subdivisions, $\alpha(i)$ and g_{i} as above for each of f and f^{\prime}, to get elements z_{i} and z_{j}^{\prime} of G. If we combine these subdivisions to get a subdivision for $f \cdot f^{\prime}$, we find

$$
\phi\left(f \cdot f^{\prime}\right)=z_{1} z_{2} \ldots z_{m} z_{1}^{\prime} z_{2}^{\prime} \ldots z_{m^{\prime}}^{\prime}=\phi(f) \phi\left(f^{\prime}\right) .
$$

To prove that $\phi[f]$ is well defined on $\pi_{1}(X)$ (which will complete the proof), we have to show it is independent of:
(i) The choice of $\alpha(i)$ for each i;
(ii) The choice of g_{i} for each i;
(iii) The choice of subdivision of I;
(iv) The choice of f in the homotopy class $[f]$.
$\phi(f)$ is independent of the choice of $\alpha(i)$. There is no choice unless f_{i} lies in $A_{1} \cap A_{2}$. In this case, ω_{i} also lies in $A_{1} \cap A_{2}$ and z_{i} is well defined, because

$$
\phi_{1}\left(\left[\omega_{i}\right]_{A_{1}}\right)=\phi_{1}\left(i_{1 *}\left(\left[\omega_{i}\right]_{A_{1} \cap A_{2}}\right)\right)=\phi_{2}\left(i_{2 *}\left(\left[\omega_{i}\right]_{A_{1} \cap A_{2}}\right)\right)=\phi_{2}\left(\left[\omega_{i}\right]_{A_{2}}\right) .
$$

$\phi(f)$ is independent of g_{i}. Suppose we choose a different path g_{i}^{\prime} from x_{0} to $f\left(s_{i}\right)$ in $A_{\beta} \cap A_{\gamma}$, where $\alpha(i)=\beta$ and $\alpha(i+1)=\gamma$. We then have the loop $k=g_{i} \cdot \bar{g}_{i}^{\prime}$, so that $\bar{k}=g_{i}^{\prime} \cdot \bar{g}_{i}$. We replace ω_{i} by $\omega_{i}^{\prime}=g_{i-1} \cdot f_{i} \cdot \bar{g}_{i}^{\prime} \simeq \omega_{i} \cdot k$ and ω_{i+1} by $\omega_{i+1}^{\prime}=$ $g_{i}^{\prime} \cdot f_{i+1} \cdot \bar{g}_{i+1} \simeq \bar{k} \cdot \omega_{i+1}$. The other loops ω_{j} are unchanged. Then

$$
z_{i}^{\prime} z_{i+1}^{\prime}=z_{i} \phi_{\beta}\left([k]_{A_{\beta}}\right) \phi_{\gamma}\left([\bar{k}]_{A_{\gamma}}\right) z_{i+1} \quad \text { in } G .
$$

Since $[\bar{k}]=[k]^{-1}$, this reduces to $z_{i} z_{i+1}$ if $\beta=\gamma$. Otherwise, we use

$$
\phi_{1}\left([k]_{A_{1}}\right)=\phi_{1}\left(i_{1 *}\left([k]_{A_{1} \cap A_{2}}\right)\right)=\phi_{2}\left(i_{2 *}\left([k]_{A_{1} \cap A_{2}}\right)\right)=\phi_{2}\left([k]_{A_{2}}\right) .
$$

$\phi(f)$ is independent of the subdivision. To compare any two subdivisions, it is enough to consider the effect of inserting one extra point s_{+}between s_{i-1} and s_{i}. Suppose
f_{i} maps into A_{β}; then we break up $f_{i} \simeq f_{i}^{\prime} \cdot f_{i}^{\prime \prime}$ as in Lemma 3, where f_{i}^{\prime} and $f_{i}^{\prime \prime}$ also map into A_{β}. We choose a path g_{+}in A_{β} from x_{0} to $f\left(s_{+}\right)$; then in (4), we replace z_{i} by

$$
\begin{aligned}
z_{i}^{\prime} z_{i}^{\prime \prime} & =\phi_{\beta}\left(\left[g_{i-1} \cdot f_{i}^{\prime} \cdot \bar{g}_{+}\right]_{A_{\beta}}\right) \phi_{\beta}\left(\left[g_{+} \cdot f_{i}^{\prime \prime} \cdot \bar{g}_{i}\right]_{A_{\beta}}\right) \\
& =\phi_{\beta}\left(\left[g_{i-1} \cdot f_{i}^{\prime} \cdot \bar{g}_{+} \cdot g_{+} \cdot f_{i}^{\prime \prime} \cdot \bar{g}_{i}\right]_{A_{\beta}}\right) \\
& =\phi_{\beta}\left(\left[\omega_{i}\right]_{A_{\beta}}\right)=z_{i},
\end{aligned}
$$

which does not change $\phi(f)$.
Homotopy To make ϕ well defined on $\pi_{1}(X)$, we have to show that for any loop homotopy $f_{t}, \phi\left(f_{0}\right)=\phi\left(f_{1}\right)$. The homotopy provides a map $F: I \times I \rightarrow X$. The open sets $F^{-1}\left(A_{1}\right)$ and $F^{-1}\left(A_{2}\right)$ cover the compact metric space $I \times I$. Again by the Lebesgue covering lemma, we can subdivide the path variable $s \in I$ by

$$
\begin{equation*}
0=s_{0}<s_{1}<\ldots<s_{m}=1 \tag{5}
\end{equation*}
$$

and the homotopy variable $t \in I$ by $0=t_{0}<t_{1}<\ldots<t_{n}=1$ to make each rectangle $R_{i, j}=\left[s_{i-1}, s_{i}\right] \times\left[t_{j-1}, t_{j}\right]$ map into A_{1} or into A_{2}; we have only to make them small enough. It is enough to show that $\phi\left(f_{t_{j-1}}\right)=\phi\left(f_{t_{j}}\right)$ for each j.

Suppose $F\left(R_{i, j}\right) \subset A_{\beta}$; we use $\alpha(i)=\beta$ and the same subdivision (5) for both $f_{t_{j-1}}$ and $f_{t_{j}}$, as pictured.

As in Lemma 3, we subdivide $f_{t_{j-1}} \simeq u_{1} \cdot u_{2} \cdot \ldots \cdot u_{m}$ and $f_{t_{j}} \simeq u_{1}^{\prime} \cdot u_{2}^{\prime} \cdot \ldots \cdot u_{m}^{\prime}$. Let v_{i} be the obvious path from $F\left(s_{i}, t_{j-1}\right)$ to $F\left(s_{i}, t_{j}\right)$. As usual, we choose paths g_{i} from x_{0} to $f_{t_{j-1}}\left(s_{i}\right)$ for $f_{t_{j-1}}$; but for $f_{t_{j}}$, we use the paths $g_{i}^{\prime}=g_{i} \cdot v_{i}$. Then for (4), $\omega_{i}=g_{i-1} \cdot u_{i} \cdot \bar{g}_{i}$, while $\omega_{i}^{\prime}=g_{i-1} \cdot v_{i-1} \cdot u_{i}^{\prime} \cdot \bar{v}_{i} \cdot \bar{g}_{i}$. Because $R_{i, j}$ is convex and maps into $A_{\beta}, u_{i} \simeq v_{i-1} \cdot u_{i}^{\prime} \cdot \bar{v}_{i}$ in A_{β}, which implies $\omega_{i}^{\prime} \simeq \omega_{i}$ and $z_{i}^{\prime}=z_{i}$.
Extensions 1. The sets A_{1} and A_{2} do not need to be open; it is enough to have $\operatorname{Int} A_{1} \cup \operatorname{Int} A_{2}=X$. To prove existence of a suitable subdivision of I or $I \times I$, we start from the open covering of X by $\operatorname{Int} A_{1}$ and $\operatorname{Int} A_{2}$. The rest of the proof is unchanged.
2. Instead of two open sets A_{1} and A_{2}, we can have many, even infinitely many. Beyond the obvious changes to the statement and proof, one extra condition is needed:

$$
A_{\alpha} \cap A_{\beta} \cap A_{\gamma} \text { is path-connected for all } \alpha, \beta, \gamma .
$$

Hatcher (p. 44) gives an example to show the necessity. See if you can find where in this proof it is needed.

