
van Kampen’s Theorem

We present a variant of Hatcher’s proof of van Kampen’s Theorem, for the simpler
case of just two open sets.

Theorem 1 Let X be a space with basepoint x0. Let A1 and A2 be open subspaces
that contain x0 and satisfy X = A1 ∪ A2. Assume that A1, A2 and A1 ∩ A2 (and
hence X) are all path-connected. Then the commutative square of homomorphisms
induced by inclusions in the diagram
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is a pushout square of groups: given any group G and homomorphisms φ1: π1(A1) → G
and φ2: π1(A2) → G such that φ1 ◦ i1∗ = φ2 ◦ i2∗, there is a unique homomorphism
φ: π1(X) → G that makes the diagram commute, i. e. φ ◦ j1∗ = φ1 and φ ◦ j2∗ = φ2.

The proof will involve subdivisions of paths. Take any path f : I → X in X and
let 0 = s0 < s1 < s2 < . . . < sm−1 < sm = 1 be any subdivision of I. Write fi for the
obvious path from f(si−1) to f(si), namely fi(s) = f((1−s)si−1 + ssi).

Lemma 3 With the above notation, there is a path homotopy f ' f1 · f2 · . . . · fm.

Remark The convention here is that parentheses are to be inserted anywhere in
f1 · f2 · . . . · fm to make it defined; since all choices yield path-homotopic results, the
specific choice is irrelevant.

Proof Given a, b ∈ I, denote by λa,b: I → I the straightline path in I from a to b,
i. e. λa,b(s) = (1−s)a + sb. Then fi = f ◦ λsi−1,si

and

f1 · f2 · . . . · fm = (f ◦λs0,s1) · (f ◦λs1,s2) · . . . · (f ◦λsm−1,sm)

= f ◦ (λs0,s1 · λs1,s2 · . . . · λsm−1,sm)

' f ◦ idI = f,

since λs0,s1 · λs1,s2 · . . . · λsm−1,sm ' idI , I being convex.

Proof of Theorem Because we have to deal with four different spaces, we write [f ]Y
for the path-homotopy class in Y of a loop in Y . (The basepoint for all loops will be
x0 and is suppressed from the notation.)

We have to construct φ(f) for each loop f in X at x0.

The recipe Given f , the open sets f−1(A1) and f−1(A2) cover the compact metric
space I. By the Lebesgue covering lemma, there is a subdivision 0 = s0 < s1 < s2 <
. . . < sm = 1 of I such that for each i, f([si−1, si]) ⊂ Aα(i), where α(i) = 1 or 2.
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s0 = 0 f1 s1 f2 s2 sm−1 fm sm = 1

We note that f(si) ∈ Aα(i) ∩ Aα(i+1). Since this space is path-connected, we can
choose, for each i (0 < i < n), a path gi in Aα(i)∩Aα(i+1) from x0 to f(si); we also put
g0 = gm = c, the constant loop at x0. For each i, we have the loop ωi = gi−1 · fi · gi

in Aα(i). We put zi = φα(i)([ωi]Aα(i)
) and set

φ(f) = z1z2 . . . zm in G. (4)

Commutativity Given a loop f in Aβ, we take m = 1 and don’t subdivide at all,
0 = s0 < s1 = 1. Then ω1 ' f and (4) reduces to φ(f) = φβ([f ]Aβ

), which will imply
that φ(jβ∗([f ]Aβ

)) = φ(f) = φβ([f ]Aβ
), as required.

Uniqueness of φ[f ] By Lemma 3,

[ω1]X [ω2]X . . . [ωm]X = [c · f1 · g1 · g1 · f2 · g2 · . . . · gm−1 · fm · c]X = [f ]X

in π1(X). Since φ is to be a homomorphism, we must use the formula (4), with

zi = φ([ωi]X) = φ(jα(i)∗([ωi]Aα(i)
)) = φα(i)([ωi]Aα(i)

).

Homomorphism To verify that φ is a homomorphism on π1(X), we have to show
that, given two loops f and f ′, φ(f · f ′) = φ(f)φ(f ′). Choose subdivisions, α(i) and
gi as above for each of f and f ′, to get elements zi and z′j of G. If we combine these
subdivisions to get a subdivision for f · f ′, we find

φ(f · f ′) = z1z2 . . . zmz′1z
′
2 . . . z′m′ = φ(f)φ(f ′).

To prove that φ[f ] is well defined on π1(X) (which will complete the proof), we
have to show it is independent of:

(i) The choice of α(i) for each i;

(ii) The choice of gi for each i;

(iii) The choice of subdivision of I;

(iv) The choice of f in the homotopy class [f ].

φ(f) is independent of the choice of α(i). There is no choice unless fi lies in A1∩A2.
In this case, ωi also lies in A1 ∩ A2 and zi is well defined, because

φ1([ωi]A1) = φ1(i1∗([ωi]A1∩A2)) = φ2(i2∗([ωi]A1∩A2)) = φ2([ωi]A2).

φ(f) is independent of gi. Suppose we choose a different path g′i from x0 to f(si)
in Aβ ∩ Aγ, where α(i) = β and α(i+1) = γ. We then have the loop k = gi · g′i,
so that k = g′i · gi. We replace ωi by ω′

i = gi−1 · fi · g′i ' ωi · k and ωi+1 by ω′
i+1 =

g′i · fi+1 · gi+1 ' k · ωi+1. The other loops ωj are unchanged. Then

z′iz
′
i+1 = ziφβ([k]Aβ

)φγ([k]Aγ )zi+1 in G.

Since [k] = [k]−1, this reduces to zizi+1 if β = γ. Otherwise, we use

φ1([k]A1) = φ1(i1∗([k]A1∩A2)) = φ2(i2∗([k]A1∩A2)) = φ2([k]A2).

φ(f) is independent of the subdivision. To compare any two subdivisions, it is enough
to consider the effect of inserting one extra point s+ between si−1 and si. Suppose

110.615 Algebraic Topology JMB File: vanK, Revision B; 24 Oct 2005; Page 2



van Kampen’s Theorem 3

fi maps into Aβ; then we break up fi ' f ′
i · f ′′

i as in Lemma 3, where f ′
i and f ′′

i also
map into Aβ. We choose a path g+ in Aβ from x0 to f(s+); then in (4), we replace zi

by
z′iz

′′
i = φβ([gi−1 · f ′

i · g+]Aβ
)φβ([g+ · f ′′

i · gi]Aβ
)

= φβ([gi−1 · f ′
i · g+ · g+ · f ′′

i · gi]Aβ
)

= φβ([ωi]Aβ
) = zi,

which does not change φ(f).

Homotopy To make φ well defined on π1(X), we have to show that for any loop
homotopy ft, φ(f0) = φ(f1). The homotopy provides a map F : I × I → X. The
open sets F−1(A1) and F−1(A2) cover the compact metric space I × I. Again by the
Lebesgue covering lemma, we can subdivide the path variable s ∈ I by

0 = s0 < s1 < . . . < sm = 1 (5)

and the homotopy variable t ∈ I by 0 = t0 < t1 < . . . < tn = 1 to make each rectangle
Ri,j = [si−1, si]× [tj−1, tj] map into A1 or into A2; we have only to make them small
enough. It is enough to show that φ(ftj−1

) = φ(ftj) for each j.
Suppose F (Ri,j) ⊂ Aβ; we use α(i) = β and the same subdivision (5) for both

ftj−1
and ftj , as pictured.

. . . - . . .r rtj
u′i

vi−1 Ri,j
vi

. . . - . . .r r
6 6

tj−1 uisi−1 si

As in Lemma 3, we subdivide ftj−1
' u1 · u2 · . . . · um and ftj ' u′1 · u′2 · . . . · u′m.

Let vi be the obvious path from F (si, tj−1) to F (si, tj). As usual, we choose paths gi

from x0 to ftj−1
(si) for ftj−1

; but for ftj , we use the paths g′i = gi · vi. Then for (4),
ωi = gi−1 · ui · gi, while ω′

i = gi−1 · vi−1 · u′i · vi · gi. Because Ri,j is convex and maps
into Aβ, ui ' vi−1 · u′i · vi in Aβ, which implies ω′

i ' ωi and z′i = zi.

Extensions 1. The sets A1 and A2 do not need to be open; it is enough to have
Int A1 ∪ Int A2 = X. To prove existence of a suitable subdivision of I or I × I, we
start from the open covering of X by Int A1 and Int A2. The rest of the proof is
unchanged.

2. Instead of two open sets A1 and A2, we can have many, even infinitely many.
Beyond the obvious changes to the statement and proof, one extra condition is needed:

Aα ∩ Aβ ∩ Aγ is path-connected for all α, β, γ.

Hatcher (p. 44) gives an example to show the necessity. See if you can find where in
this proof it is needed.
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