# Final Examination 

by J. Michael Boardman, Department of Mathematics

Three hours. Open book, no notes.
100 points, 10 per question (plus an extra-credit challenge question).
Partial credit may be available, but only if you show your working.
Begin each question on a new page and number it clearly in the margin.
If you use two books, label them "Book 1 of 2" and "Book 2 of 2". (If you use three books, ...)

Use only the officially provided blue books.
The reals $\mathbb{R}$ and $\mathbb{R}^{2}$ are understood to have the standard topology.
The integers are denoted by $\mathbb{Z}$ and the positive integers by $\mathbb{Z}_{+}$.

1. Consider the collection of open balls $B\left(x, 1 / 2^{n}\right)$ in $\mathbb{R}^{2}$, where $x \in \mathbb{R}^{2}$ has rational coordinates and $n$ is a positive integer. Prove that this collection is a basis of the standard topology on $\mathbb{R}^{2}$. (A complete formal proof is required here.)
2. Determine whether each of the following subsets of $\mathbb{R}^{2}$ is open, closed, both, or neither. Give reasons. (Sketches may help.)
$A=\left\{(x, y) \in \mathbb{R}^{2}: x>0\right.$ and $\left.y \neq 0\right\} ;$
$B=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \geq 2\right\} ;$
$C=\left\{(x, y) \in \mathbb{R}^{2}: x \in \mathbb{Z}\right\} ;$
$D=\left\{(x, y) \in \mathbb{R}^{2}: x+y \in \mathbb{Q}\right\} \quad(\mathbb{Q}$ denotes the rationals);
$E=\left\{(x, y) \in \mathbb{R}^{2}: x+y \leq 0\right\}$.
3. Find which of the spaces in Question 2 are connected and which are pathconnected. Give reasons. (Again, sketches may help.)
4. Let $p: X \rightarrow Y$ be a surjective closed continuous map such that $p^{-1}(y)$ is compact for each $y \in Y$. If $X$ is Hausdorff, show that $Y$ is Hausdorff. (Recall that the map $p$ is closed if $p(C)$ is closed in $Y$ whenever $C$ is closed in $X$.)
5. Is each of the following sets finite, countably infinite, or uncountable? Give reasons. If finite, find an upper bound for its cardinality.
$F$, the set of all equivalence relations on the set $\mathbb{Z}$;
$G$, the set of all rationals of the form $m / 2^{n}$, where $m$ and $n$ are positive integers;
$H$, the set of all functions $f: \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}$that satisfy $f(n)=n$ for all sufficiently large $n$ (how large depends on $f$ );
$J$, the set of all topologies on a finite set with $n$ elements;
$K$, the set of all (simple) order relations on the set $\mathbb{Z}$.
6. Which of the following spaces are simply connected? Give reasons.
$L$, the unit interval $[0,1]$ in $\mathbb{R}$;
$M$, the subspace of all $x \in \mathbb{R}^{2}$ that satisfy $\|x\| \geq 2$;
$N$, the subspace of all $(x, y) \in \mathbb{R}^{2}$ that satisfy $y \neq 0$.
7. Let $X$ and $Y$ be metric spaces.
(a) Find a metric on $X \times Y$ that induces the product topology on $X \times Y$, and prove that it does.
(b) Does your metric make the projection map $\pi_{1}: X \times Y \rightarrow X$ uniformly continuouos? Justify your answer.
8. Show that a connected normal space that contains more than one point is uncountable. [Hint: The book's definition (not universally accepted) of normal includes the condition that each singleton $\{x\}$ is closed.]
9. Let $\mathcal{B}$ be a basis of the topological space $X$. Show that $X$ is compact if and only if each covering of $X$ by members of $\mathcal{B}$ has a finite subcovering. (Again, a real formal proof is required.)
10. Find the interior, boundary and closure of each of the following subsets:
$P=\left\{x \in \mathbb{R}^{2}: 1 \leq\|x\|<2\right\}$, a subset of $\mathbb{R}^{2}$;
$Q$, the set of all irrational points in the unit interval $[0,1]$, considered as a subset of $\mathbb{R}$.
11. (extra-credit challenge question) Given (simply) ordered sets $X$ and $Y$, find necessary and sufficient conditions for the dictionary order topology on $X \times Y$ to coincide with the product topology. (Assume that $X$ and $Y$ both contain at least three points.)
