First Examination

50 minutes. Closed book. No notes. 80 points, 20 per question.
Partial credit may be available, but only if you show your working.
HINT: Many answers can be checked by direct substitution or other methods.
Use only the officially provided blue books.
Begin each of the four questions on a fresh page and number it clearly in the margin.

1. (a) Solve the linear system

$$
\left\{\begin{aligned}
x+y-2 z+t & =5 \\
2 x+y-3 z-t & =0 \\
x-y & =1
\end{aligned}\right.
$$

(b) Note that the solution in (a) is not unique.
(i) Is there a solution with $x=75$? If so, use (a) to write one down.
(ii) Is there a solution with $y=75$? If so, use (a) to write one down.
(iii) Is there a solution with $z=75$? If so, use (a) to write one down.
(iv) Is there a solution with $t=75$? If so, use (a) to write one down.
2. (a) Evaluate the determinant (where t is a variable)

$$
d=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 3 & 9 \\
t & t^{2} & t^{3}
\end{array}\right|
$$

(b) For what values of t is $d=0$?
(c) Without using (a), explain why the values of t listed in (b) make $d=0$.
3. For each of the statements below, state whether it is true or false, and give a reason. All matrices appearing are understood to be $n \times n$ matrices.
(a) $(A+B)^{2}=A^{2}+2 A B+B^{2}$;
(b) $(A B)^{-1}=A^{-1} B^{-1}$, assuming that A and B are invertible;
(c) $5(A+B)=5 A+5 B$;
(d) If $A^{2}=I$, then $A= \pm I$;
(e) If $A B=I$, then $B=A^{-1}$.
4. By any method, compute the inverse of the matrix

$$
\left[\begin{array}{rrr}
1 & 2 & 3 \\
1 & 1 & 2 \\
2 & -3 & 1
\end{array}\right]
$$

